
Digital Social Contracts: A Foundation for an
Egalitarian and Just Digital Society?

Luca Cardelli1, Liav Orgad2, Gal Shahaf3, Ehud Shapiro3, and
Nimrod Talmon4

1 University of Oxford luca.a.cardelli@gmail.com
2 European University Institute liav.orgad@eui.eu

3 Weizmann Institute {gal.shahaf, ehud.shapiro}@weizmann.ac.il
4 Ben-Gurion University talmonn@bgu.ac.il

Abstract. Almost two centuries ago Pierre-Joseph Proudhon proposed
social contracts – voluntary agreements among free people – as a foun-
dation from which an egalitarian and just society can emerge. A digital
social contract (DSC) is the novel incarnation of this concept for the
digital age: a voluntary agreement between people that is specified, un-
dertaken, and fulfilled in the digital realm. It embodies the notion of
“code-is-law” in its purest form, in that a DSC is a program – code
in a social contracts programming language, which specifies the digital
actions parties to the social contract may take; and the parties to the
contract are entrusted, equally, with the task of ensuring that each party
abides by the contract. Parties to a social contract are identified via their
public keys, and the one and only type of action a party to a DSC may
take is a “digital speech act” – signing an utterance with her private
key and sending it to the other parties to the contract. We present a
formal definition of a DSC as agents that communicate asynchronously
via digital speech acts, where the output of each agent is the input of
all the other agents. We outline an abstract design for a social contracts
programming language and hint on their applicability to social networks,
sharing-economy, egalitarian currency networks, and democratic commu-
nity governance.

Keywords: Democratic Governance · Programming Language Design.

1 Introduction

Over the last three decades, the Internet has mushroomed from 0 to 4.6 billion
active “users”, 60 per cent of the world population (and more than 90 per cent
in the developed world), the fastest diffusion in human history. But what kind of
“society” has it created? The digital realm includes a few powerful entities, who

? Full version available on arXiv [1]. Copyright c© 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC
BY 4.0).

2 L. Cardelli et al.

control the entire space, and billions of data subjects, as termed by the EU’s Gen-
eral Data Protection Regulation (GDPR), who have almost no rights and cannot
vote, be consulted, or influence decision-making. They have no due process (e.g.,
in censorship, account blocking, or privacy violation) and are not the owners of
their data. The structure of the digital space remains “feudal” in nature—people
are not even perceived as digital “citizens” but as “users”—and it is not based
on the ideals on which citizenship in democracies is grounded: liberty, equal-
ity, and popular sovereignty. The digital space is further rampant with sybils
(fake/duplicate accounts) and bots, making it a hostile environment and unten-
able for democratic governance. To a large extent, digital technology is the great
unequalizer in today’s world, making a few digital “barons” rich and powerful
by profiting from the multitudes performing digital labour without compensa-
tion. Like feudal lords of yore, the digital barons set their platform’s rules of
conduct (legislative), interpretation (judicial), and implementation (executive),
and violate the dictum “no taxation without representation”. New technologies
do not support the ideals of democracy. Rather, the design of the digital world
presents a dystopian future, with the global reach of surveillance capitalism [19]
robbing citizens of both power and wealth. The structure of the digital world
resembles the “state of nature” (i.e., a social disorder).

To establish a self-governed, egalitarian, and just society in the digital world,
we advocate the development of DSCs to govern digital human behavior. A DSC
is the digital counterpart of social contract theories, as envisioned centuries ago
by the founding philosophers of the Enlightenment – Thomas Hobbes, John
Locke, Jean-Jacques Rousseau, and Pierre-Joseph Proudhon – and more recent
thinkers, such as John Rawls [11, 14, 10, 6, 5]. Social contract theories are the
cornerstone of modern democracies (they explain the conditions under which
people rationally agree to submit their rights to a legitimate authority in return
for collective benefits, such as protection, freedom, or justice) yet, thus far, have
remained merely an abstract ideal, based on a hypothetical narrative and the
presupposition of tacit, rather than explicit, consent [13]. A DSC offers, for the
first time in history, a conceptual model to translate the social contract from a
hypothetical theory into a political reality, by utilizing technology in the service
of the most important ideas of the Enlightenment. In short, a DSC is a voluntary
agreement between individuals, specified, undertaken, and fulfilled in the digital
realm. It allows for conditions to reach the social contract to be programmed by
generating equal access to information. It further enables the programming of
the method of agreement by implementing a “one person, one vote” system, and
provides the opportunity to check contractual outcomes in ways that comply
with requirements of fairness, e.g., by limiting unequal distributional outcomes.
We aim for DSCs that are equal (in sharing power), just (in allocating resources),
and self-governed (among the participating members). Hence, the equal shar-
ing of power would require mitigating sybils (fake and duplicate identities) and
launching digital currencies where distributed and egalitarian coin minting pro-
vides a form of Universal Basic Income [18] to members.

Digital Social Contracts 3

On the technological design, DSCs are programs for a distributed, locally-
replicated, asynchronous blockchain architecture. DSCs embody the notion of
“code-is-law” in that they are a code in a social-contract programming language,
which specifies the digital actions parties may take and the terms. Unlike present
digital platforms, this code is not inflicted on the user by a monopolistic digi-
tal entity to its financial benefit; rather, people who trust each other enter into
a code-regulated relationship voluntarily. DSCs allow for cooperative behavior
because they disallow faulty, non-cooperative actions; a party can behave only
according to the contract. Agents are expected to employ genuine identifiers and
function as both actors and validators. An agent may participate simultaneously
in multiple social contracts; similarly, each contract may have a different set of
agents as parties; the result is a hypergraph with agents as vertices and contracts
as hyperedges. Signed indexed transactions (“digital speech acts”), specified and
carried out according to a contract, are replicated only among parties to a con-
tract, who ratify them, and are synchronized independently by each agent. A
transaction carried out is finalized when ratified by an appropriate supermajor-
ity of the parties to the contract. A party to a contract is typically an agent who
embodies a natural person via her genuine identifier, but, if deterministic, could
also be a synthetic agent (aka “legal person”), which functions algorithmically,
very similar to a “smart contract” of standard blockchains [12].

In 2017, Mark Zuckerberg published a vision on how to turn Facebook from
a social network to a “Global Community” governing the planet in most aspects
of life, where every user can vote on “global problems that span national bound-
aries” and “participate in collective decision-making” [20]. According to Zucker-
berg, “Facebook can explore examples of how community governance might work
at scale” yet, in his global community, people have no rights and bear no respon-
sibilities; they are a means to make profit for Facebook’s stakeholders. Zucker-
berg’s community turns the problem on its head – Facebook is presented as the
solution, rather than the problem. Our starting point is radically different than
Facebook and similar-minded companies in two aspects: 1) vision: it starts from
the premise that there can and should be a digital public life, complementary to
the traditional public life in the physical world, by which political communities
govern their life; 2) technology: The only technology that provides sovereignty to
its community of users is blockchain. Nobody can unplug Bitcoin or Ethereum;
both will keep running as long as someone somewhere keeps running their pro-
tocols. Alas, current blockchain technologies are environmentally harmful and
plutocratic – they are neither egalitarian nor just as sovereignty is shared not
equally but according to one’s wealth, i.e., one’s ability to prove work or stake.
We aim to offer an alternative. In summary, DSCs are: Conceptually, a volun-
tary agreement among individuals, specified, undertaken, and fulfilled in the dig-
ital realm; Mathematically, an abstract model of computation – a transition
system specifying concurrent, non-deterministic asynchronous agents engaged
in digital speech acts; Computationally, a program in a Social-Contracts Pro-
gramming Language with which social contracts among computational agents
are easy to express, comprehend and debug; Technologically, a programmable,

4 L. Cardelli et al.

distributed, locally-replicated, asynchronous blockchain architecture, operating
on mobile phones, tagged by the genuine identifiers of their owners.

Two key concepts are employed in DSCs: (1) Digital Speech Acts: Each
party to a DSC is equipped with a key pair – a public key and a private key
(PKI), with which they can digitally sign text strings and verify each other’s
signatures. All that a computational agent can do, as a party to a DSC, is per-
form and perceive digital speech acts, namely sign a digital utterance and send
it to the other agents that are parties to the contract, or receive signed digital
utterances from these agents. (2) The Person as an Oracle: Computational
agents in a DSC face nondeterministic choices: Which room to book, when and
where? How much to pay and to whom? How to vote on a proposal to accept a
new member to the contract? Computational agents have no volition or free will
and hence cannot make such choices on their own. Therefore, nondeterministic
choices in the social contract code are interpreted as Oracle calls, where the
human operating the computational agent serves as the Oracle. In other words,
nondeterministic choices in the code of an agent specify the interactions be-
tween the “software” and the “user”, namely between the computational agent
and the person operating it: When faced with a nondeterministic choice, the
computational agent consults its human operator as to which choice to make.

Related Work The concepts and design presented here are reminiscent of
the notions of blockchains [17], smart contracts [2], and their programming lan-
guages [3]. Hand-in-hand with these we are working on egalitarian currency
networks [16], an egalitarian and just alternative to existing plutocratic cryp-
tocurrencies such as Bitcoin [7] and Ethereum [3].

A fundamental tenet of our design is that social contracts are made between
people who know and trust each other, directly or indirectly via other people
that they know and trust. This is in stark contrast to the design of cryptocurren-
cies and their associated smart contracts, which are made between anonymous
and trustless accounts. A challenge cryptocurrencies address is how to achieve
consensus in the absence of trust, and their solution is based on proof-of-work [4]
or, more recently, proof-of-stake [8] protocols. In contrast, social contracts are
between known and trustworthy individuals, each expected to posses a genuine
(unique and singular) identifier [15] (see therein discussion on how this can be
ensured). Hence, a different approach can be taken. In our approach, the in-
tegrity of the ledger of actions taken by the parties to the social contract is
preserved internally, among the parties to the agreement, not between external
anonymous “miners”, as in cryptocurrencies. This gives rise to a much simpler
approach to fault tolerance, as discussed in the companion paper [9].

2 Digital Social Contracts

Here we describe a formal model for DSCs – for space constraints, we do not
provide full formal definitions for some preliminaries. We assume a given finite set
of agents V , each associated with a genuine (unique and singular) [15] identifier,

Digital Social Contracts 5

which is also a public key of a key-pair.5 We expect agents to be realized by
computer programs operating on personal devices (e.g. smartphones) of people.
Hence, we refer to agents as “it”. We identify an agent v ∈ V with its genuine
public identifier, and denote by v(s) the result of agent v signing the string s ∈ S
with the private key corresponding to v. We assume computational hardness of
the public-key system, namely that signatures of an agent with a given identifier
cannot be produced without possessing the private key corresponding to this
identifier. If t is a tuple indexed by V , then we use t[v] to refer to the vth element
of t. We say that t′ = t, except for t′[v] := x, to mean that the tuple t′ is obtained
from t by replacing its vth element by x. In particular, if t[v] is a sequence, then
we say that t′ = t, except for t′[v] := t[v] · x, to mean that t′ is obtained from t
by appending x to the sequence t[v]. Agents are assumed to be connected via a
reliable asynchronous communication network (without a message-arrival time
limit), and require all messages to be authenticated. Informally, the only things
an agent can do as a party to a DSC are (i) perform a digital speech act [15],
defined next; (ii) observe digital speech acts performed by others; and (iii) change
internal state.6 A key characteristic of a speech act taken in the physical world
is that all people present indeed perceive the person taking the act as well as
the act itself. We capture this characteristic by requiring that a digital speech
act be (i) digitally signed by the person taking it.

Definition 1 (Digital Speech Act, v-act). Given a set of agents V , a digital
speech act of agent v ∈ V consists of (i) signing an utterance (text string) s,
resulting in m = v(s); and (ii) broadcasting the message m to V . We refer to a
digital speech act by v resulting in the signed action m as the v-act m, and let
M be the set of all v-acts for all v ∈ V .

Definition 2 (Transition System). A transition system TS = (S, s0, T) con-
sists of a set of states S, an initial state s0 ∈ S, and a set of transitions T ,
T ⊆ S × S, with (s, s′) ∈ T written as s −→ s′. The set s→ ∗ = {ŝ | s −→ ŝ ∈ T}
is the outgoing transitions of s. A run of TS is a sequence of transitions r =
s0 −→ s1 −→ . . . from the initial state. A family of transition systems T (S) over
S is a set of transition systems (T, S) where T is a set of transitions over S.

Here we define DSCs in the abstract; in particular, we do not address a dis-
tributed realization nor agent faults. These issues are addressed in a companion
paper [9]. A DSC consists of a set of agents, identified via public keys, and con-
nected via a reliable, asynchronous, order-preserving communication network.
Namely, we assume that between any two agents in the network, the network
delivers all messages sent from one agent to another – correctly, eventually, and

5 We identify the set of agents V with the set of parties to the agreement. Extensions
will allow an agent to be a party to multiple agreements, and different agreements
to have different sets of agents as parties.

6 While the formal definition allows a digital speech act to employ an arbitrary string,
its intended use is to take meaningful actions. As parties employ strings that are
meaningful to the other parties, we believe we do not conjure “speech acts” in vain.

6 L. Cardelli et al.

in the order sent.7 All that agents can do within a DSC is perform digital speech
acts (henceforth, acts), which are sequentially-indexed utterances, signed by the
agent and sent as messages to all other agents that are parties to the contract,
as well as receive such messages. Example acts are “I hereby transfer three blue
coins to Sue” and “I hereby confirm the room reservation by Joe”. A DSC spec-
ifies the digital speech acts each party may take at any state. For example, a
social contract regarding the blue currency may specify that I can say that I
transfer three blue coins to Sue only in a state in which I in fact have at least
three blue coins; and I can say that I confirm Joe’s room reservation only if I
have not already confirmed a conflicting reservation. Our abstract notion of a
DSC identifies a DSC with a transition system. The state of a DSC, referred to
as a ledger, is composed of the states of each of the agents participating in the
contract, referred to as their history, which is but a sequence of digital speech
acts. The history of an agent v consist of digital speech acts it experienced, in
particular: acts by v, referred to as v-acts, in the order taken, interleaved with
acts by the other agents, in the order received from the network. Hence, at any
ledger that is a state of the computation, the u-acts in the history of agent v must
be a prefix of the u-acts in the history of u, for any u and v. We call such a ledger
sound. Next we formalizes this informal description. We assume a given set of
actions A. Signing an action by an agent v makes the action non-repudiated by
v. All that an agent that is party to a DSC does, then, is perform digital speech
acts, as well as receive such acts performed by others, resulting in a sequence of
non-repudiated acts - a history of crypto speech acts.

Definition 3 (v-act, History). We refer to m = v(a), the result of signing an
action a ∈ A by agent v ∈ V , as a v-act, let M denote the set of all v-acts by
all v ∈ V , and refer to members of M as acts. A history is a finite sequence of
acts h = m0,m1, . . .mn, n ∈ N , mi = vi(ai) ∈ M, i ∈ [n], ai ∈ A, vi ∈ V . The
set of all histories is denoted by H.

Definition 4 (Prefix, Consistent Histories). Given a sequence s = x1, x2, . . . xn,
a sequence s′ is a prefix of s, s′ � s, if s′ = x1, x2, . . . xk, for some k ≤ n. h[u]
is the restriction of h to the subsequence of u-acts. Two agent histories h, h′ ∈ H
are consistent if either h[v] � h′[v] or vice versa for every v ∈ V .

I.e., histories are consistent if they agree on the subsequences signed by each
agent. A ledger of a DSC is an indexed tuple of histories of the parties to the
contract. Ledgers are the states of the social contract transition system.

Definition 5 (Ledger). A ledger l ∈ L := HV is a tuple of histories indexed
by the agents V , where lv is the history of agent v in l, or l’s v-history.

Following Definition 4, we apply the notation lv[u] to denote the subsequence
of u-acts in the v-history in l. Our key assumption is that in a ledger that is

7 As agents have public keys with which they sign their sequentially-indexed messages,
such a network can be easily realized on an asynchronous network that is not order-
preserving and is only intermittently reliable.

Digital Social Contracts 7

a state of a computation, each agent’s history is up-to-date about its own acts.
Therefore, for agent histories to be consistent with each other, the history of
each agent can include at most a prefix (empty, partial or complete) of every
other agent’s acts. In particular , the history of v cannot include u-acts different
from the one’s taken by u; nor can it run ahead of u and “guess” acts u might
take in the future. A ledger is not a linear data structure, like a blockchain,
but a tuple of independent agent histories, each of them being a linear sequence
of acts. Furthermore, note that lv, the history of v in ledger l, contains, of
course, all v-acts, but it also contains acts by other agents received by v via
the communication network. Also, note that the v-history lv may be behind on
the acts of other agents but is up-to-date, or even can be thought of as the
authoritative source in l, regarding its own v-acts.

Definition 6 (Ledger Diagonal, Sound Ledger). Given a ledger l ∈ L, the
diagonal of l, l∗, is defined by l∗v := lv[v] for all v ∈ V . A ledger is sound if
lu[v] � l∗v for every u, v ∈ V .

As we assume that each agent is up-to-date about its own acts, the diagonal
contains the complete sequence of v-acts for each agent v ∈ V . Thus, each agent
history in a ledger reflects the agent’s “subjective view” of what actions were
taken, where the diagonal of a ledger contains the “objective truth” about all
agents. Next we define transitions among these states.

Definition 7 (Transitions). The set of social contract transitions T ⊆ L×L
consists of all pairs t = l −→ l′ ∈ L × L where l′ = l except for l′v := lv · m,
m = u(a) ∈ M for some u, v ∈ V and a ∈ A. The transition t is referred to as

a v-transition, and can also be written as t = l
(v,m)−−−→ l′. ut

Definition 8 (Input, Output and Sound Transitions). A v-transition t =

l
(v,u(a))−−−−−→ l′ is output if u = v and input if u 6= v. A transition is sound if it is

either input with l′v[u] � lu[u] or output.

Observation 1 If l is sound and l −→ l̂ ∈ T is sound then l̂ is sound.

The next definition aims to capture the following two requirements: Output
- an agent v may take a v-act in state l based solely on its own history lv. In
particular, v is free to ignore, or to not know, the other agents’ histories in l;
Input - v must accept messages from the communication network in any proper
order the network chooses to deliver them.

Definition 9 (Closed Set of Transitions). A set of transitions T ⊆ T is:

1. Output-closed if for any v-act m, v ∈ V , m ∈ M, and any two output

transitions t = l
(v,m)−−−→ l̂, t′ = l′

(v,m)−−−→ l̂′ ∈ T , if lv = l′v then t ∈ T iff t′ ∈ T .
Namely, if every output v-transition is a function of lv, independently of lu
for all u 6= v.

2. Input-closed if T contains every sound input transition in T .

8 L. Cardelli et al.

3. Closed if it is output-closed and input-closed.

Definition 10 (Digital Social Contract). A DSC among a set of agents V
is a transition system SC = (S, l0, T) with ledgers as states S ⊆ L, initial state
l0 := ΛV , and a closed set of transitions T ⊆ T . The family of all DSCs over S
is denoted by SC(S), and SC(L) is abbreviated as SC.

SC is the family of abstract social contracts, in contrast to its more con-
crete implementations, and view such as specifications for programs in a Social-
Contracts Programming Language.

Example 1 (A Currency Community: Example of a DSC). Let A = {pay(v)}v∈V
be the set of acts. A message m = u(pay(v)) corresponds to a payment of 1 coin

from u to v. A transition t = l
w,u(pay(v))−−−−−−−−→ l′ records in lw a payment of 1 coin

from u to v. Agent u can record a payment from u to v only if the balance
of u, according to lu, is positive. Formally, let lu = m1,m2, ...,mn, with mi =
wi(pay(vi)). Set bal(u) := c+ |{1 ≤ i ≤ n : vi = u}| − |{1 ≤ i ≤ n : wi = u}|,
for some c > 0, and let T = {l u,u(pay(v))−−−−−−−→ l′ : bal(u) > 0}. Let T ⊆ T̃ denote the
closure of T in T . The DSC SC = (S, l0, T̃) over the set of agents V specifies a
currency community where each agent u ∈ V is initially granted c coins.

3 A Social Contracts Programming Language

Here we outline the design of a simple social contract programming language.
Abstractly, all that an agent can do, as a party to a social contract, is take acts
based on its history, and receive acts by others. In a practical social contract, the
acts an agent can take typically depend on salient features of its history, rather
than on the history in its entirety. So, given that social contracts employ a closed
set of transitions, the possible behaviors of an agent can be characterized by a
(not necessarily finite and possibly nondeterministic) state transducer. A state
transducer reads an input tape (in our case the inputs of an agent v) and writes
an output tape (in our case the sequence of v-acts), changing its state in the
process. The history of an agent fully specifies, even synchronizes, both tapes.

Hence, our programming language endows each agent with an internal state,
which can be viewed as a digest of its history. As in a state transducer, the
agent’s state may change as a result of an input or an output. Therefore, our
proposed Social-Contracts Programming Language (SCPL) presents the program
of an agent v as a set of rules of the following form:

S,m −→ m′, S′, where Conditions.

where S is the internal state (state, for short) of v prior to taking the transition,
m is an input u-act by some u 6= v ∈ V , m′ is an output v-act, S′ is the updated
state of v, and Conditions are any conditions on S, m, m′, and S′, that are
required for the transition to take place. The intended meaning of such a rule is
that an agent in internal state S, upon receiving an act m, may take act m′ and

Digital Social Contracts 9

change its internal state to S′, if Conditions are satisfied. Note that degenerate
rules, i.e., rules that do not have input m and/or output m′ and/or Conditions
are allowed. Next we provide an example.

3.1 Egalitarian Governance of Social Contracts

We provide a code example implementing the standard principle of democracy,
namely “one person, one vote”, in effect showing how a community may form
democratically. For simplicity, decisions to add or remove a member are taken
by a simple majority, using a secretary that handles ballots, is autonomous, and
initiated by the founder.

Program 1: Democratic WhatsApp-like Group

founder --> autonomous#secretary([Self]), member.

secretary(Members), _(propose(X)) -->

ballot(X,Members,0), secretary(Members).

secretary(Members), ballot(X,[],Result) -->

secretary_apply(X,Result,Members).

secretary_apply(X,Result,Members) -->

secretary(Members) where Result =< 0.

secretary_apply(add(Member),Result,Members) ->

Member#member, secretary([Member|Members])

where Result > 0.

secretary_apply(remove(Member),Result,Members) -->

please_leave(Member), secretary(Members’)

where Result > 0,

Members’ is the result of removing Member from Members.

member --> says(X), member.

member, ballot(X,[Self|Members],R) -->

ballot(X,Members,R’), member

where R’ := R, R+1, or R-1.

member, _(please_leave(Self)) --> says(bye), stop.

member --> says(bye), stop.

Note that this is a very simple program, in particular as (1) there is no option
to decline an invitation (2) agents must wait for other agents to vote. Indeed, we
provide the program mainly as a proof of concept, but to implement a practical
democratic decision process, more complex program is needed. We also note that
votes are public to the community members and are not anonymous.

Outlook. We have introduced the concept of DSCs, provided a mathematical
definition of them, outlined a design for a social contracts programming language,
and demonstrated its social utility via program examples. Much remains to be
done; some is discussed in companion papers [9, 16].

10 L. Cardelli et al.

Acknowledgements

Ehud Shapiro is the Incumbent of The Harry Weinrebe Professorial Chair of
Computer Science and Biology. We thank the generous support of the Braginsky
Center for the Interface between Science and the Humanities. Nimrod Talmon
was supported by the Israel Science Foundation (ISF; Grant No. 630/19).

References

1. Luca Cardelli, Gal Shahaf, Ehud Shapiro, and Nimrod Talmon. Digital social
contracts: A foundation for an egalitarian and just digital society. arXiv preprint
arXiv:2005.06261, 2020.

2. Lin William Cong and Zhiguo He. Blockchain disruption and smart contracts. The
Review of Financial Studies, 32(5):1754–1797, 2019.

3. Chris Dannen. Introducing ethereum and solidity.
4. Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritz-

dorf, and Srdjan Capkun. On the security and performance of proof of work
blockchains. In Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pages 3–16, 2016.

5. Thomas Hobbes. Leviathan. JM Dent, 1914.
6. John Locke. Second treatise of government: An essay concerning the true original,

extent and end of civil government. John Wiley & Sons, 2014.
7. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2019.
8. Cong T. Nguyen, Dinh Thai Hoang, Diep N. Nguyen, Dusit Niyato, Huynh Tuong

Nguyen, and Eryk Dutkiewicz. Proof-of-stake consensus mechanisms for future
blockchain networks: fundamentals, applications and opportunities. IEEE Access,
7:85727–85745, 2019.

9. Ouri Poupko, Ehud Shapiro, and Nimrod Talmon. Fault-tolerant distributed im-
plementation of digital social contracts. arXiv preprint arXiv:2006.01029, 2020.

10. Pierre-Joseph Proudhon and John Beverley Robinson. General idea of the revolu-
tion in the nineteenth century. Courier Corporation, 2004.

11. John Rawls. A theory of justice. Harvard university press, 2009.
12. Wessel Reijers, Fiachra O’Brolcháin, and Paul Haynes. Governance in blockchain

technologies & social contract theories. Ledger, 1:134–151, 2016.
13. Patrick Riley. Will and political legitimacy: A critical exposition of social contract

theory in Hobbes, Locke, Rousseau, Kant, and Hegel. Harvard University Press,
2013.

14. Jean-Jacques Rousseau and Gita May. The social contract: And, the first and
second discourses. Yale University Press, 2002.

15. Gal Shahaf, Ehud Shapiro, and Nimrod Talmon. Foundation for genuine global
identities. arXiv preprint arXiv:1904.09630, 2019.

16. Gal Shahaf, Ehud Shapiro, and Nimrod Talmon. Egalitarian and just digital cur-
rency networks. arXiv preprint arXiv:2005.14631, 2020.

17. Melanie Swan. Blockchain: Blueprint for a new economy. O’Reilly Media, 2015.
18. Philippe Van Parijs and Yannick Vanderborght. Basic income: A radical proposal

for a free society and a sane economy. Harvard University Press, 2017.
19. Shoshana Zuboff. Surveillance capitalism. Esprit, 5:63–77, 2019.
20. Mark Zuckerberg. Building global community, 2017.

