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Abstract 
We observe the methods of constructing (dis)similarity-based correlation functions defined on 

scales with polarity given by an involutive operation. We consider basic polar scales: binary 

scales and bipolar scales with more than two grades. Correlation functions are constructed 

using similarity and dissimilarity functions defined on such scales and satisfying suitable 

properties.   
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1. Introduction 

Correlation and association coefficients were used for more than one hundred years as important 

tools of knowledge extraction from data in medicine, ecology, signal processing, social and behavioral 

sciences, etc. [1-10]. In the last decades, they are also considered together with similarity and 

association measures as measures of relationship and interestingness in data mining, recommender 

systems, and machine learning [8, 11-14]. Recently, a correlation was defined as a function defined on 

a set with involution operation and satisfying some properties of Pearson's product-moment correlation 

coefficient [15-18]. It was shown that the correlation function could be defined using suitable similarity 

or dissimilarity functions. We will call these functions for short as (dis)similarity functions. This new 

approach to the construction of correlation functions was used for introducing new correlation 

coefficients on different domains [17-24]. In this work, we observe the methods of construction of 

correlation coefficients on polar scales: binary scales and bipolar scales with more than two grades. 

These scales differ by the methods of definition of involution operation on the scale and by the methods 

of definition of (dis)similarity functions.  

The paper has the following structure. Section 2 describes the definition of the correlation and 

(dis)similarity functions and considers the methods of construction of correlation functions from 

(dis)similarity functions. Section 3 considers the methods of constructing correlation functions on a 

binary scale. Section 4 describes the method of constructing a correlation function on bipolar scales 

using a utility function defined on the scale. Section 5 contains the conclusion. 

2. Correlation and (dis)similarity functions 

Let Ω be a nonempty set with involutive operation 𝑁(𝑥) called reflection or negation such that for 

all x in Ω the reflection 𝑁(𝑥) belongs to Ω, and satisfies the property: 

𝑁(𝑁(𝑥)) = 𝑥.                (involutivity) 

The element x in Ω such that 𝑁(𝑥) = 𝑥, is referred to as a fixed point of the negation in Ω. The set of all fixed 

points of N in Ω denoted by 𝐹𝑃(𝑁, Ω) or 𝐹𝑃. The set of fixed points can be empty.  
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Let Ω be a set with a reflection operation N, and V be a non-empty subset of Ω ∖ 𝐹𝑃 closed under 

operation N. The correlation function (association measure) on V is a function 𝐴(𝑥, 𝑦) such that for 

any x and y in V it takes values in [-1, 1], and satisfies the following properties: 

𝐴(𝑥, 𝑦) = 𝐴(𝑦, 𝑥),                                             (symmetry) 
𝐴(𝑥, 𝑥)  =  1,                                                      (reflexivity) 

𝐴(𝑥, 𝑁(𝑦)) = −𝐴(𝑥, 𝑦).                 (inverse relationship) 

From the definition of the correlation function, it follows the fulfillment of the following properties 

fulfilled for all x and y in V: 

𝐴(𝑥, 𝑁(𝑥)) =  −1,                           (opposite elements) 

𝐴(𝑁(𝑥), 𝑁(𝑦)) = 𝐴(𝑥, 𝑦),                    (co-symmetry-I) 

𝐴(𝑥, 𝑁(𝑦)) = 𝐴(𝑁(𝑥), 𝑦).                     (co-symmetry-II) 

The correlation between the elements of  Ω and possible fixed points 𝑥𝐹𝑝 of N is not defined. 

Depending on the underlying domain, such correlations can be redefined for all x in Ω  as follows:  

𝐴(𝑥, 𝑥𝐹𝑃) = 0 or 𝐴(𝑥, 𝑥𝐹𝑃)  = 1. 

A function 𝑆(𝑥, 𝑦) is called a similarity function on Ω if for all x,y in Ω it takes values in [0, 1] and 

satisfies the following properties: 

𝑆(𝑥, 𝑦) = 𝑆(𝑦, 𝑥),                                          (symmetry) 

𝑆(𝑥, 𝑥) = 1.                                                        (reflexivity) 

Dually, a function 𝐷(𝑥, 𝑦) is called a dissimilarity function on Ω if for all x,y in Ω it takes values in 

[0, 1] and satisfies the following properties: 

𝐷(𝑥, 𝑦) = 𝐷(𝑦, 𝑥),                                             (symmetry) 

𝐷(𝑥, 𝑥) = 0.                                                     (irreflexivity) 

Similarity and dissimilarity functions are called complementary if, for all x, y in Ω it is fulfilled:  

𝑆(𝑥, 𝑦) = 1 − 𝐷(𝑦, 𝑥),       𝐷(𝑥, 𝑦) = 1 − 𝑆(𝑦, 𝑥).  

A non-negative real-valued function 𝑑(𝑥, 𝑦) of elements of Ω will be referred to as a distance if for 

all  x, y in Ω it fulfills:  

𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥),                                              (symmetry) 
𝑑(𝑥, 𝑥) = 0.                                                      (irreflexivity) 

If for some positive real value M for all x, y in Ω it is fulfilled 𝑑(𝑥, 𝑦) ≤ 𝑀, then the function  

𝐷(𝑥, 𝑦) =
𝑑(𝑥,𝑦)

𝑀
, 

will be a dissimilarity function taking values in the interval [0, 1]. 

Let V be a subset of Ω ∖ 𝐹𝑃(𝑁) closed under operation N. A similarity and dissimilarity functions 𝑆 

and D are called consistent on V if for x in V it is fulfilled, respectively: 

𝑆(𝑥, 𝑁(𝑥)) = 0.                                             (consistency) 

𝐷(𝑥, 𝑁(𝑥)) = 1.                                              (consistency) 

(Dis)similarity functions 𝑆 and  D are called co-symmetric on V if for all x,y in V it is fulfilled, 

respectively: 

𝑆(𝑁(𝑥), 𝑁(𝑦)) = 𝑆(𝑥, 𝑦).                       (co-symmetry-I) 

𝐷(𝑁(𝑥), 𝑁(𝑦)) = 𝐷(𝑥, 𝑦).                      (co-symmetry-I) 

It was shown that co-symmetry-I is equivalent to co-symmetry-II: 

𝑆(𝑥, 𝑁(𝑦)) = 𝑆(𝑁(𝑥), 𝑦).                      (co-symmetry-II) 

𝐷(𝑥, 𝑁(𝑦)) = 𝐷(𝑁(𝑥), 𝑦).                     (co-symmetry-II) 



Theorem 1 [15-17]. Let Ω be a set with a reflection operation N, and V be a subset of Ω ∖ 𝐹𝑃 closed 

under N. If 𝑆 is a co-symmetric and consistent similarity function on V, then the function: 

𝐴(𝑥, 𝑦)  =  𝑆(𝑥, 𝑦) −  𝑆(𝑥, 𝑁(𝑦)), 

defined for all x,y in V is a correlation function on V. 

Dually we obtain for co-symmetric and consistent dissimilarity function: 

𝐴(𝑥, 𝑦)  =  𝐷(𝑥, 𝑁(𝑦)) −  𝐷(𝑥, 𝑦). 

3. Correlation functions for binary scales 

Let 𝑋 = {0,1} be the binary scale. 𝑋 can correspond to the measurements of a binary attribute or variable. 

Consider the Cartesian product of n binary scales: Ω = 𝑋1 × … × 𝑋𝑛 = {(𝑥1, … , 𝑥𝑛)|𝑥𝑖 ∈ 𝑋𝑖 , 𝑖 = 1, … , 𝑛}. 

If the binary scales correspond to different attributes, then n-tuples (𝑥1, … , 𝑥𝑛) correspond to 

measurements of the attribute values of some object x. If all binary scales correspond to the same attribute 

𝑋, i.e. 𝑋1 = 𝑋2 = ⋯ 𝑋𝑛 = 𝑋, then n-tuples (𝑥1, … , 𝑥𝑛) usually give the values of the attribute X for n 

different objects or measurements. If it is not confusing, X denotes an attribute and the set of its possible values.  

Similarity functions between two binary n-tuples (𝑥1, … , 𝑥𝑛) and (𝑦1, … , 𝑦𝑛) use the following 

parameters. Denote:  

 a, the number of measurements when 𝑥𝑖 = 𝑦𝑖 = 1;  

 b, the number of measurements when 𝑥𝑖 = 1, 𝑦𝑖 = 0;  

 c, the number of measurements when 𝑥𝑖 = 0, 𝑦𝑖 = 1;  

 d, the number of measurements s when 𝑥𝑖 = 𝑦𝑖 = 0, 

where 𝑖 =  1, … , 𝑛. The numbers a and d are called the numbers of positive and negative matches, 

respectively. For numbers 𝑎, 𝑏, 𝑐, 𝑑, we have 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑛.  

For each n-tuple 𝑥 = (𝑥1, … , 𝑥𝑛), its negation 𝑁(𝑥) = �̅� defined as follows: �̅� = (1 − 𝑥1, … ,1 − 𝑥𝑛) 

This negation is involutive, i.e., for any binary n-tuple 𝑥 it is fulfilled: �̿� = 𝑥.  

Consider examples of similarity functions [8, 17]:  

Simple Matching:   

𝑆𝑆𝑀(𝑥, 𝑦)  =
𝑎+𝑑

𝑎+𝑏+𝑐+𝑑
, 

YQ similarity:   

𝑆𝑌𝑄(𝑥, 𝑦)  =
𝑎𝑑

𝑎𝑑+𝑏𝑐
. 

These similarity functions symmetric, reflexive, co-symmetric, and consistent, hence satisfy the 

conditions of Theorem 1.  

We obtain: 

𝑆𝑆𝑀(𝑥, 𝑁(𝑦))  =
𝑏+𝑐

𝑎+𝑏+𝑐+𝑑
, 

𝑆𝑌𝑄(𝑥, 𝑁(𝑦))  =
𝑏𝑐

𝑎𝑑+𝑏𝑐
. 

and from Theorem 1 we obtain, respectively, the well-known association coefficients: 

Hamann's association coefficient:   

𝐴𝐻  = 𝑆𝑆𝑀(𝑥, 𝑦) − 𝑆𝑆𝑀(𝑥, 𝑁(𝑦)) =
(𝑎+𝑑)−(𝑏+𝑐)

𝑎+𝑏+𝑐+𝑑
, 

Yule's Q association coefficient:   

𝐴𝑌𝑄 = 𝑆𝑌𝑄(𝑥, 𝑦) − 𝑆𝑌𝑄(𝑥, 𝑁(𝑦)) =
𝑎𝑑−𝑏𝑐

𝑎𝑑+𝑏𝑐
. 

Consider Yule's W association coefficient [8, 10, 17]:  

𝐴𝑌𝑊(𝑥, 𝑦) =
√𝑎𝑑−√𝑏𝑐

√𝑎𝑑+√𝑏𝑐
. 



One can check that it takes values in [−1,1] and satisfies the properties (1)-(3). Hence it is a correlation 

function. The function  

𝑆𝑌𝑊(𝑥, 𝑦) =
√𝑎𝑑

√𝑎𝑑+√𝑏𝑐
 , 

satisfies the properties of co-symmetric and consistent similarity functions. Calculate: 

𝑆𝑌𝑊(𝑥, �̅�) =
√𝑏𝑐

√𝑎𝑑+√𝑏𝑐
 , 

and from Theorem 1 obtain Yule's W: 

𝐴(𝑥, 𝑦) = 𝑆𝑌𝑊(𝑥, 𝑦) − 𝑆𝑌𝑊(𝑥, �̅�) =
√𝑎𝑑−√𝑏𝑐

√𝑎𝑑+√𝑏𝑐
= 𝐴𝑌𝑊(𝑥, 𝑦). 

Consider phi coefficient that is Pearson's product-moment correlation coefficient applied to binary 

variables [8]: 

𝐴𝜌(𝑥, 𝑦) =
𝑎𝑑−𝑏𝑐

√(𝑎+𝑏)(𝑎+𝑐)(𝑏+𝑑)(𝑐+𝑑)
. 

One can check that it is a correlation function. Using Sokal and Sneath similarity measure [8]: 

𝑆𝜌(𝑥, 𝑦) =
𝑎𝑑

√(𝑎+𝑏)(𝑎+𝑐)(𝑏+𝑑)(𝑐+𝑑)
, 

that is a co-symmetric and consistent similarity function, we obtain: 

𝑆𝜌(𝑥, �̅�) =
𝑏𝑐

√(𝑎+𝑏)(𝑎+𝑐)(𝑏+𝑑)(𝑐+𝑑)
. 

Applying Theorem 1, we obtain phi coefficient. 

From Theorem 1, it follows that these association coefficients satisfy the properties of correlation 

functions. In [24], using Theorem 1, a new parametric correlation function for binary data was proposed. 

4. Bipolar scales 

Many linguistic scales, like Likert scales, etc. [25-29], are linear ordered and have symmetric structure 

such that the grades of one half of the scale can be mapped onto another half of the scale. For example, 

the grades of the scale (never, seldom, sometimes, often, always) are ordered from the left to the right and 

symmetric with respect to the center of the scale C= sometimes. This symmetry can be represented by an 

involutive operation N as follows: N(never)= always, N(seldom)= often, N(sometimes)= sometimes, 

N(often)= seldom, N(always)= never. For example, we have: N(N(never))= N(always) = never, etc. A 

bipolar scale L with n ordered categories c1 < …< cn can be represented by an ordered set of indexes of 

these categories J = {1, …, n}, n > 1, with  the negation operation N(j)  defined by: 

𝑁(𝑗)  =  𝑛 +  1 −  𝑗  for all  j  J. 

This negation is involutive: 

N(N(j)) = j,   for all j  J. 

It is supposed that the bipolar scale has an odd number of elements, i.e., n = 2m + 1 for some positive 

integer m. In this case, it has a fixed point of the negation N: 𝑥𝐹𝑃 = 𝑚 + 1, coinciding with the center 

of the scale: 𝐶 = 𝑚 + 1. One can check that 𝐶 = 𝑚 + 1 is the fixed point:  

𝑁(𝐶)  =  𝑛 +  1 –  𝑚 – 1 =   2𝑚 +  1 –  𝑚  = 𝑚 +  1 =  𝐶. 

The fixed point is called the center of the bipolar scale.  

The values 𝑃1 =  𝑚𝑖𝑛(𝐽)  =  1 and 𝑃2  =  𝑚𝑎𝑥(𝐽)  =  𝑛  are called the negative and the positive 

poles. From 𝑁(𝑗) +  𝑗 =  1 +  𝑛,  for all j in J, it follows that the formula of the negation can be 

presented in the form of bipolarity: 

𝑁(𝑗) +  𝑗 =  𝑃1 + 𝑃2. 



From 𝐶 =  
1

2
(𝑃1 + 𝑃2) it follows also: 

𝑁(𝑗)  +  𝑗 =  2𝐶, for all  𝑗  𝐽.            

Also it is fulfilled: N(P1) = P2 and N(P2) = P1. 

A bipolar scale can be represented by another ordered set of indexes: K = {−m, …, −1, 0, 1, … , m} 

that is the centered form of the bipolar scale J = {1, …, 2m + 1}, m > 0. The negation operation on the 

scale K is defined by: 

𝑁(𝑘)  =  −𝑘,        for all 𝑘  𝐾.   

Unless it can cause confusion, we will use the same letter N for the negation on J and on K, using 

the arguments j or k, respectively. It is clear that N on K is a strictly decreasing and involutive function, 

i.e., N(N(k)) = k, for all k  K. This scale has the center C = 0 with 𝑁(0)  =  −0 =  0, and poles  

𝑃1 =  𝑚𝑖𝑛(𝐾) =  −𝑚 and 𝑃2  =  𝑚𝑎𝑥(𝐾)  =  𝑚. The bipolarity properties also fulfilled for the scale K: 

𝑁(𝑘)  +  𝑘 =  2𝐶=𝑃1 + 𝑃2 = 0,    for all 𝑘  𝐾.   

The scale K = {−m, …, 0,…, m}, m > 0, with the corresponding negation is called a centered bipolar scale.  

For example, the 5-point bipolar scale (never, seldom, sometimes, often, always) can be given by 

two sets of indexes. The set J = {1, 2, 3, 4, 5} has the negation N(j) = 6–j, poles P1 = 1, P2 = 5, and the 

center C = 3. The set K = {−2, −1, 0, 1, 2} has the negation N(k) = −k, poles P1 = −2, P2= 2, and the 

center  C = 0. 

The bipolar scales J= {1, …, 2m+1}, m > 0, and K={−m, …, 0, …, m} can be transformed one into 

the another as follows: 

𝑘 =  𝑗 −  𝑚 −  1, 𝑗 =  𝑘 +  𝑚 + 1,   for all 𝑗𝐽 and 𝑘𝐾. 

Let I denotes the scale J or K. A strictly increasing real function U defined on I is called a scoring or 

utility function on I. This function is called a bipolar scoring function (BSF) if it satisfies the condition: 

𝑈(𝑁(𝑖))  +  𝑈(𝑖)  =  𝑈(𝑃1)  +  𝑈(𝑃2),      for all  𝑖𝐼.         (bipolarity) 

For the scales with the center C from N(C) = C, we have U(P1) + U(P2) = 2U(C), and the bipolarity 

property can be given by:  

𝑈(𝑁(𝑖))  +  𝑈(𝑖)  =  2𝑈(𝐶),         for all  𝑖 𝐼.                   (bipolarity) 

A BSF is called a centered bipolar scoring function (CBSF) if  

𝑈(𝐶)  =  0. 

The definition of the centered bipolar scoring function implies 

𝑈(𝑁(𝑖))  =  −𝑈(𝑖),         for all i  I. 

For a CBSF defined on a centered bipolar scale K = (−m, …, 0, …, m), m>0, we have for all k  K:  

𝑈(𝑘)  >  0 𝑖𝑓 𝑘 >  0,  
𝑈(0)  =  0, 

𝑈(𝑘)  <  0 𝑖𝑓 𝑘 <  0, 
𝑈(−𝑘)  =  −𝑈(𝑘). 

In [16], it was proposed several methods of generation of a bipolar utility functions. Consider the 

method of construction of generator-based bipolar utility function on the bipolar scale 

K= {−m, …, −1, 0, 1, … , m}, m > 0. 

Let G be a positive real value and g:{0, …, m}→ [0, G] be a strictly increasing function such that 

g(0) = 0, g(m) = G. This function generates the function W: K  [− G, G] defined by: 

𝑊(𝑘)  =  𝑔(𝑘)    for all 𝑘  {0, … , 𝑚}, 
𝑊(𝑘)  =  −𝑔(−𝑘)    for all 𝑘  {− 𝑚, … , −1}. 



Here is an example of a parametric generator of bipolar utility function inspired by the parametric 

Sugeno negation used in fuzzy logic, with the parameter  p > −1: 

𝑔1(𝑘) =
𝐺𝑘(1+𝑝)

𝑚+𝑝𝑘
,  𝑘 =  0, … , 𝑚. 

In [20-21] it is proposed the following correlation function on rating profiles with a bipolar utility 

function. Let I be a bipolar scale (I = J or I = K) with the center C, X be a set of profiles x = (x1,…, xM) 

of the length M, xs  I, s = 1, …, M, with the central profile CX = (C, …, C), and U be a bipolar utility 

function on I. The following function is a correlation function on X\{CX}: 

𝐴𝑈(𝑥, 𝑦) =
∑ (𝑈(𝑥𝑆)−𝑈(𝐶))(𝑈(𝑦𝑆)−𝑈(𝐶))

𝑀

𝑆=1

√∑ (𝑈(𝑥𝑆)−𝑈(𝐶))2𝑀

𝑆=1
√∑ (𝑈(𝑦𝑆)−𝑈(𝐶))2𝑀

𝑆=1

. 

5. Conclusion 

The theory of correlation functions gives the possibility to introduce correlation functions on polar 

scales. For binary scales, it can be determined which of existing association coefficients are correlation 

functions.  These association coefficients satisfy the properties, similar to Pearson's product-moment 

correlation coefficient. Also, new correlation functions for binary data can be introduced [24]. For 

bipolar scales, the general methods for construction correlation coefficients have been considered 

[20, 21]. Binary scales can often be obtained from Likert scales. Bipolarity usually does not consider 

for Likert scales, although bipolarity in the form of symmetry is presented in such scales. Bipolar 

correlation functions give the possibility to take into account this bipolarity of scales. Considered 

correlation coefficients can be used to measure the correlation between data from polar scales. The 

dissimilarity-based correlations on circular scales are considered in [23]. One of the promising areas of 

application of correlation on polar scales is the sentiment analysis. 
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