

Logic of Estimates for Fuzzy Logics Sentences

Gerald Plesniewicza

a National Research University MPEI, 14 Krasnokazarmennaya str., Moscow, Russian Federation

Abstract
Let L be any fuzzy logic. An estimate for L sentence (formula) φ is an expression of the form

φ ≥ a or φ ≤ a where a is a number from the unit interval [0,1]. Estimates are interpreted

naturally: for any fuzzy interpretation “ •” of L formulas, we set the estimates φ ≥ a and

φ ≤ a to be true (i.e., “φ ≥ a” = 1 and “φ ≤ a “ = 1) if and only if “φ” ≥ a and “φ “ ≤ a. Let B

be the set of all Boolean combinations of estimates. We define the logic of estimates E-L

assuming that B is the set of its sentences, and extending interpretations “•” to B in accordance

with the meaning of Boolean operations. Thus, we may consider E-L as a crisp logic that is a

metalogic for the logic L. In this paper we build for the logics E-Z and E-FLTL sound and

complete inference methods based on analytical tableaux. Here Z denotes the Zadeh’s fuzzy

propositional logic and FLTL denotes the fuzzy linear temporal logic. Also we describe a

query answering method over knowledge bases written in the logics E-Z and E-FLTL.

Keywords 1
Fuzzy logics, inference methods, analytical tableaux, knowledge bases, fuzzy ontologies and

fact bases, query answering

1. Introduction. Main Definitions

Let L be any fuzzy logic. An estimate for L sentence (formula) φ is an expression of the form φ ≥ a or

φ ≤ a where a is a number from the unit interval [0, 1]. Estimates are interpreted naturally: for any fuzzy

interpretation “•” of L formulas, we set the estimates φ ≥ a and φ ≤ a to be true (i.e., “φ ≥ a” = 1 and

“φ ≤ a “ = 1) if and only if “φ” ≥ a and “φ “ ≤ a. Let B be the set of all Boolean combinations of

estimates, i.e., (i) every estimate belong to B; (ii) ~ α, α ∧ β, α ∨ β, α→β ∈ B if α, β ∈ B.

We define the logic of estimates E-L assuming that B is the set of its sentences, and extending

interpretations “•” of L formulas to B in accordance with the meaning of Boolean operations:

“~ α” = ~ “α”, “α ∧ β” = “α”∧ “β”, “α ∨ β” = “α”∨ “β”, “α→β” = “α”→“β”.

As each logic, E-L induces the relation ‘|=’ of logical consequence. Let E be a set of E-L sentences

and α be a E-L sentence. Then α is the logical consequence of the set E (E |= α) if and only if there is

no interpretation “•” such that α is false in this interpretation and all sentences from E are true

(“β” = 0 for all β ∈ E).

In this paper we consider two fuzzy logic L: the Zadeh’s fuzzy propositional logic Z and the fuzzy

linear temporal logic FLTL. We will build a complete and sound inference system for the logics of

estimates E-Z and will describe briefly how to build such a system for the logic E-FLTL. The

inference systems consist of the rules acting in the style of analytic tableaux [1]. Let us remind that an

inference system is complete if the logical consequence relation ‘|=’ implies the inference relation ‘|–’.

An inference system is sound if ‘|–’ implies ‘|=’

Remark 1. By Zadeh’ logic we mean the fuzzy proposition logic with the Boolean operations and

with the usual meaning of these operations: ‘~ x’ = 1– x, ‘x ∧ y’ = min{x,y}, ‘x ∨ y’ = max{x,y},

‘x → y’ = max{1– x, y}. Zadeh’s logic relates to fuzzy sets in the same way Boolean logic relates to

crisp sets [7].

Russian Advances in Fuzzy Systems and Soft Computing: selected contributions to the 8-th International Conference on Fuzzy Systems, Soft

Computing and Intelligent Technologies (FSSCIT-2020), June 29 – July 1, 2020, Smolensk, Russia
EMAIL: salve777@mail.ru

©️° 2020 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

Remark 2. Earlier, the logic of estimates for Zadeh’s logic has been considered by J. Chen and

S. Kundu [2, 4]. They have built a sound and complete inference system for this logic. The system of

Chen-Kundu is based on generalized resolution.

One of the applications of logics of estimates E-L is related to query answering over knowledge

bases. Estimates of the forms p ≥ a and p ≤ a with propositional variables p are called elementary.

Elementary estimates are considered as facts. A finite set F of facts is called fact base. A finite set O of

non-elementary estimates from E-Z is called ontology. A finite set F of facts is called a fact base.

A knowledge base consists in an ontology plus a fact base: Kb = O ∪F.

We will consider queries to a knowledge base. We write a query to Kb in the following form:

? (max x, min y) -- x ≤ φ ≤ y, where φ is E-Z formula The query reads as follows: “Find the maximum

value of the variable x and the minimum value of the variable y such that the estimates φ ≥ x and φ

≤ y follow from Kb”. We show, by example, how to evaluate queries to a knowledge base written in the

logic E-Z. For this the inference system for the logic E-Z is used.

2. Inference in the logic E-Z

The following lemma contains basic equivalences of the logic E-Z. They will be used in proving

soundness of the inference system for the logic E-Z.

Lemma 1. Let φ and ψ are sentences of the logic E-Z. and a, b ∈ [0,1]. The following equivalences

are true :
~φ ≥ a ≡ φ ≤ 1– a,

~φ ≤ a ≡ φ ≥ 1– a, (2.1)

φ ∧ ψ ≥ a ≡ (φ ≥ a) ∧ (ψ ≥ a),

φ ∧ ψ ≤ a ≡ (φ ≥ a) ∨ (ψ ≥ a),

φ ∨ ψ ≥ a ≡ (φ ≥ a) ∨ (ψ ≥ a),

φ ∨ ψ ≤ a ≡ (φ ≤ a) ∧ (ψ ≤ a), (2.2)

(φ ≥ a) ∧ (φ ≥ b) ≡ φ ≥ max{a,b}, (2.3)

(φ ≤ a) ∧ (φ ≤ b) ≡ φ ≤ min{a,b},

Here are the proofs of the equivalences (2.1), (2.2) и (2.3):

• “~φ ≤ a” = 1  “~φ” ≤ a  1–“φ” ≤ a  “φ” ≥ 1– a  “φ ≥ 1– a” = 1 for all interpretation “•”. Hence

~φ ≤ a ≡ φ ≥ 1– a.

• “φ ∨ ψ ≤ a” = 1  “φ ∨ ψ” ≤ a  “φ” ∨ “ψ” ≤ a  “φ” ≤ a and “ψ” ≤ a (since max{x,y} ≤ a 

x ≤ a and y ≤ b)  “φ ≤ a” = 1 and “ψ ≤ b” = 1  “φ ≤ a” ∧ “ψ ≤ b” = 1  “φ ≤ a” ∧ “ψ ≤ b”

“(φ ≤ a) ∧ (ψ ≤ a)” = 1 for all interpretation “•”. Hence φ ∨ ψ ≤ a ≡ (φ ≤ a) ∧ (ψ ≤ a).

 • “(φ ≥a) ∧ (φ ≥b)” = 1  “φ ≥a” = 1 and “φ ≥b” = 1  “φ” ≥a and “φ” ≥b  “φ” ≥ max{a, b}

“φ ≥ max{a, b}” = 1 for all interpretation “•”. Hence (φ ≥ a) ∧ (φ ≥ b) ≡ φ ≥ max{a,b},

The tables Table 1, Table 2 and Table 3 show the inference rules by analytic tableaux method for

the logic E-Z.

Propositional connectives in E-Z sentences are on two levels: external and internal. Table 1 gives

the rules for dealing with connectives on the external level. In the rules of Table 2, the connectives are

at the internal level. At the external level, formulas are supplied with ‘+’ or ‘–’ signs. When a formula

is marked with a “+”, this means that it is true (in the intended interpretation); the “–” sign indicates its

falsity.

Table 1
Inference rules for signed sentences

Rule number Antecedent Consequents

1

2

3

4

5

6

 + ~ φ

 – ~ φ

 + φ ∧ ψ

 – φ ∧ ψ

 + φ ∨ ψ

 – φ ∨ ψ

 – φ

 + φ

 + φ and + ψ

 – φ or – ψ

 + φ or + ψ

– φ and – ψ

7 + φ → ψ – φ or + ψ

8

9

10

11

12

 – φ → ψ

 + ρ

 – ρ

 + λ

 – λ

 + φ and – ψ

 ρ ≥ 1

 ρ ≤ 0

λ

 ~ λ

 φ and ψ are E-Z sentences, λ is an estimate, ρ is a Z sentence

Table 2
Inference rules for sentences with inequlities signs

Rule number Antecedent Consequents

 1

2

3

4

5

6

~ φ ≥ a

 ~ φ ≤ a

 φ ∧ ψ ≥ a

 φ ∧ ψ ≤ a

 φ ∨ ψ ≥ a

 φ ∨ ψ ≤ a

 φ ≤ 1– a

 φ ≥ 1– a

 φ ≥ a and ψ ≥ a

 φ ≤ a or ψ ≤ a

 φ ≥ a or ψ ≥ a

 φ ≤ a and ψ ≤ a

7 φ → ψ ≥ a φ ≤ 1– a or ψ ≥ a

8 φ → ψ ≤ a φ ≤ 1– a and ψ ≥ a

Table 3
Inference rules for sentences with negations

Rule number Antecedent Consequents

 1

2

3

4

5

6

 ~ (~ φ ≥ a)

 ~ (~ φ ≤ a)

 ~ (φ ∧ ψ ≥ a)

 ~ (φ ∧ ψ ≤ a)

 ~ (φ ∨ ψ ≥ a)

 ~ (φ ∨ ψ ≤ a)

 ~ (φ ≤ 1– a)

 ~ (φ ≥ 1– a)

 ~ (φ ≥ a) or ~ (ψ ≥ a)

 ~ (φ ≤ a) and ~ (ψ ≤ a)

 ~ (φ ≥ a) and ~ (ψ ≥ a)

 ~ (φ ≤ a) or ~ (ψ ≤ a)

7 ~ (φ → ψ ≥ a) ~ (φ ≤ 1– a) and ~ (ψ ≥ a)

8 ~ (φ → ψ ≤ a)

Table 4
Binary inference rules

Rule number Antecedent Consequents

 1

2

3

4

5

6

 + φ, – φ

 λ, ~ λ

 φ ≥ a, φ ≤ b if a > b

 φ ≥ a, ~ (φ ≥ b) if b ≤ a

 ~ (φ ≤ a), φ ≤ b if b ≤ a

 ~ (φ ≤ a), ~ (φ ≥ b) if b ≤ a

 X

 X
 X
 X

 X
 X

7 φ ≤ a, φ ≤ b φ ≤ min{a,b}

8 φ ≤ a, φ ≤ b φ ≥ max{a,b}

Semantics of the rules from Table 1 corresponds to the usual meaning of logical propositional

connectives. Each rule is sound in the sense that in any interpretation, if the antecedent of the rule is

true, then its consequents are also true in that interpretation. The inference rules from Table 1 coincide

with the standard rules of the analytical tableaux method for propositional logic, if we consider φ and

ψ to be formulas of classical propositional logic [1, 4]. But it is assumed that φ and ψ in Table 1 are

sentences of the logic E-Z.

When applying the method of analytical tableaux, inferences are presented in the form of trees, the

vertices of which are logical sentences with labels, and the edges are determined from the applied

inference rules.

Example 1. This is an example of building an inference tree for recognizing logical consequences

from knowledge bases.

Consider the knowledge base Kb = {p → (q ∨ r) ≥ a, ~ p ∨ ~ q ≥ b} and the estimate p → r ≥ c

with unknowns a, b and c. Let us decide the problem of finding such relations between these unknowns

that there is a logical consequence Kb |= p → r ≥ c. This is the case if and only if the extended

knowledge base Kb’= Kb ∪ {~ (p → r ≥ c)} is inconsistent.

 p → (q ∨ r) ≥ a [2, T2, 7]

 ~ p ∨ ~ q ≥ b [4, T2, 5]

 ~ (p → r ≥ c) [1, T3, 7]

 1: ~ (p ≤ 1– c) (3) (7)

 1: ~ (r ≥ c) (10)

 ________|___________________

 | |

 2: p ≤ 1– a (3, T4, 5) {a ≥ c} 2: q ∨ r ≥ a [8, T2, 5]

 3: X _____________|__________________

 | |

 4: ~ p ≥ b [5, T2, 1] 4: ~ q ≥ b [6, T2, 1]

 5: p ≤ 1– b (7, T4, 5) {b ≤ c} 6: q ≤ 1– b (9)

 7: X ___________________|_______

 | |
 8: q ≥ a (9, T4, 3) {a+b >1} 8: r ≥ a (10, T4, 3) {c ≥ a}

 9: X 10: X

Figure 1: Inference tree from Example 1

We begin to build the inference tree with an initial branch been the sequence of estimates from E

(see Figure 1). Then we may to apply some inference rule to any of member from the initial branch.

We take the estimate ~ (p → r) ≥ c (the third estimate in the initial branch) to which we add the label

[1, T3, 7] at right. The label indicates that at step 1, the rule number 7 from Table 3 was applied.

As a result of this application, two vertices with estimates ~ (p ≤ 1– c) and ~ (r ≥ c) are added to

the initial branch, one after the other. These vertices are supplied by the left label ‘1:’ which indicate

that the estimates were obtained at the step 1. Our choice of the third estimate for rule application due

to the fact that the rule 7 is conjunctive (i.e. its consequents are linked by the connective “and”) while

the disjunctive rules are applicable to other vertices of the initial branch. (When building inference

trees, the priority of disjunctive rules is used, since this leads to more economical trees.)

Consider the vertex ‘2: p ≤ 1– a (3, T4, 5)’. It contains the right label (3, T4, 5) which indicates

that the binary rule 5 of Table 4 was applied to the estimate p ≤ 1– a and to other estimate (since rule

5 is binary). This other estimate is ~ (p ≤ 1– c) with right label (3). The result of the rule application is

‘X’ which means contradiction and is attached to the first current branch of the inference tree. Thus, all

four branches of the tree are inconsistent sets. Hence, the set E is inconsistent (due to soundness of the

inference rules of the tables (besides the rules 1– 6 of Table 4).

There is also the second form of inference trees (see Fig.2). For example, the second form of

inference trees is used in the book [3] for exposition of tableaux methods.

A branch of an inference tree is closed if it ends with the symbol X. An inference tree is closed if

all its branches are closed. A branch is completed if it closed or if some inference rule was applied to

each of non-atomic sentence of the branch. A tree is completed if all its branches are completed.

Theorem 1. The system of inference rules for the logic E-Z is sound and complete. The following

statements hold:

 If a knowledge base is inconsistent then every completed inference tree that for this knowledge

base is closed;

 A knowledge base is inconsistent if it has a closed inference tree built for this knowledge base.

The proof of this theorem is similar to the proof of the theorem about soundness and completeness

of the standard tableaux system for propositional logic [4]. In particular, the proof uses structural

inductions and Hintikka’s sets [2].

3. Query answering over knowledge bases in E-Z

Let's look at an example of how you can find by the method analytical tableaux answers to queries

to the knowledge base written in the logic E-Z.

 p → (q ∨ r) ≥ a

 ~ p ∨~ q ≥ b

 ~ (p → r ≥ c) [1]

 p → (q ∨ r) ≥ a [2]

 ~ p ∨ ~ q ≥ b

 1: ~ (p ≤ 1– c)

 1: ~ (r ≥ c)

 ~ p ∨ ~ q ≥ b ~ p ∨ ~ q ≥ b [4]

 1: ~ (p ≤ 1– c) (3) 1: ~ (p ≤ 1– c)

 1: ~ (r ≥ c) 1: ~ (r ≥ c)

 2: p ≤ 1– a (3){c ≤ a} 2: q ∨ r ≥ a

 3: X ______________________

 1: ~ (p ≤ 1– c) 1: ~ (p ≤ 1– c)

 1: ~ (r ≥ c) 1: ~ (r ≥ c)

 2: q ∨ r ≥ a 2: q ∨ r ≥ a

 4: ~ p ≥ b [5] 4: ~ q ≥ b [6]

 1: ~ (p ≤ 1– c) (7) 1: ~ (p ≤ 1– c)

 1: ~ (r ≥ c) 1: ~ (r ≥ c)

 2: q ∨ r ≥ a 2: q ∨ r ≥ a [8]

 5: p ≤ 1– b (7){c ≤ b} 6: q ≤ 1– b

 7: X _________________________

 1: ~ (p ≤ 1– c) 1: ~ (p ≤ 1– c)

 1: ~ (r ≥ c) 1: ~ (r ≥ c) [10]

 6: q ≤ 1– b 6: q ≤ 1– b
 8: q ≥ a [9]{a+b}> 1} 8: r ≥ a [10] {c ≤ a}

 9: X 10: X

Figure 2: The second form of inference tree

Example 2. Consider the problem of medical diagnosis in a situation where there are 2 diseases q1,

q2 and 3 symptoms p1, p2, p3. Suppose the following knowledge establishes the relation between these

diseases and symptoms:

(a) if the disease q2 occurs, then with a degree of confidence ≤ 0.5 there can be no disease q1.

(b) the disease q1 is uniquely determined with the confidence degree ≥ 0.6 by the presence of the

symptoms p3, p4, and by the absence of symptom p1;

(c) if the disease q2 occurs, then the symptom p1 is observed but there is no symptom p3.

Suppose symptom p1 is observed. We are interested in the following queries:

(d1) Find the best lower and upper estimates for disease q1;

(d2) Find the best lower and upper estimates for disease q1.

In the logic of E-Z, this knowledge and queries are represented by the following E-Z sentences:

 ~ q3 → (~q1 ≥ 0.5) for (a);

 q1 → ~p1 ∧ p3 ∧ p4 ≥ 0.6 and ~p1 ∧ p3 ∧ p4→ q2 ≥ 0.6 for (b);

 q2 → p1 ∧ ~p2 ≥ 0.3 for (c);

 Q1: ? (max x, min y) – x ≤ q1 ≤ y for (d1);

 Q2: ? (max x, min y) – x ≤ q2 ≤ y for (d2).

It is obvious that this two queries can be replace on fourth queries:

Q11: ? max x – q1 ≥ x, Q12: ? min y – q2 ≤ y, Q21: ? min x – q2 ≥ x, we Q12: ? min y – q2 ≤ y.

So, we have the knowledge base

Kb = {~ q3 → ~q1 ≥ 0.5, q1 → ~p1 ∧ p3 ∧ p4 ≥ 0.6, ~p1 ∧ p3 ∧ p4→ q2 ≥ 0.6, q2 → p1 ∧ ~p2 ≥ 0.3}

Suppose we observed the symptom p1. Then we have the fact p1 ≥ 1, and we f the fact base F = {p1 ≥ 1}.

If we address to Kb ∪ F with the query Q11 then the answer to that query will be the estimate q1 ≥ a

such that Kb ∪ F |= q1 ≥ a and Kb ∪ F |≠ q1 ≥ b if b > a. To obtain this answer, we build the inference

tree for the set +Kb = {+ α | α ∈ Kb} (see Figure 3).

 + q2 → (~q1 ≤ 0.5) [1]

 + q1 → ~p1 ∧ p3 ≥ 0.6 [2]

 + ~p1 ∧ p3 → q1 ≥ 0.6 [3]

 + q2 → p1 ∧ ~p2 ≥ 0.3 [4]

 1: q2 → (~q1 ≤ 0.5) [5]

 2: q1 → ~p1 ∧ p3 ≥ 0.6 [9]

 3: ~p1 ∧ p3 → q1 ≥ 0.6sed [15]

 4: q2 → p1 ∧ ~p2 ≥ 0.7 [19]

 ___________________|_______________

 | |

 5: – q2 [6] 5: + (~ q1 ≤ 0.5) [7]

 6: q2 ≤ 0 7: ~ q1 ≤ 0.5 [8]

 _______________|_______ 8: q1 ≥ 0.5 (12)

 | | __________|______

 9: q1 ≤ 0.4 (16) 9: ~p1 ∧ p3 ≥ 0.6 [10] (17) | |

 ___________|______ 10: ~p1 ≥ 0.6 [11] 9: q1 ≤ 0.4 (12) 9: ~p1 ∧ p3 ≥ 0.6 [13] (18)

 | | 10: p3 ≥ 0.6 12: X 13: ~p1 ≥ 0.6 [14]

 15: ~p1 ∧ p3 ≤ 0.4 [26] 15: q1 ≥ 0.6 (16) 11: p1 ≤ 0.4 (23) 13: p3 ≥ 0.6

 _______|__________ 16: X _______|_________ 14: p1 ≤ 0.4 (25)

 | | | | ________|_____

19: q2 ≤ 0.3 19: p1 ∧~p2 ≥ 0.7 [20] 15: ~p1 ∧ p3 ≤ 0.4 (17) 15: q1 ≥ 0.6 | |

 * 20: p1 ≥ 0.7 17: X _____________|___ 15: ~p1 ∧ p3 ≤ 0.4 (18) 15: q1 ≥ 0.6

 20: ~p2 ≥ 0.7 [21] | | 18: X __________|___

 20: p2 ≤ 0.3 19: q2 ≤ 0.3 19: p1 ∧~p2 ≥ 0.7 [22] | |

 _______|_________ B5 22: p1 ≥ 0.7 (23) 19: q2 ≤ 0.3 19: p1 ∧~p2 ≥ 0.7 [24]

 | | 22: ~p2 ≥ 0.7 B6 24: p1 ≥ 0.7 (25)

 26: ~p1 ≤ 0.4 [28] 26: p3 ≤ 0.4 23: X 24: ~p2 ≥ 0.7

 28: p1 ≥ 0.6 B4 * 25: X

 B3 ______|_________

 | |

 26: ~p1 ≤ 0.4 [27] 26: p3 ≤ 0.4

 27: p1 ≥ 0.6 B2

 B1

Figure 3: Inference tree from Example 1

The tree has 5 closed branches and 6 open branches: Bi (1 ≤ i ≤6). From each branch Bi we write

out all elementary estimates and form the conjuncts:

C1 = (p1 ≥ 0.6) ∧ (q1 ≤ 0.4) ∧ (q2 ≤ 0),

C2 = (p3 ≤ 0.4) ∧ (q1 ≤ 0.4) ∧ (q2 ≤ 0),

C3 = (p1 ≥ then 0.7) ∧ (p2 ≤ 0.3) ∧ (q1 ≤ 0.4) ∧ (q2 ≤ 0),

C4 = (p1 ≥ 0.7) ∧ (p2 ≤ 0.3) ∧ (p3 ≤ 0.4) ∧ (q1 ≤ 0.4) ∧ (q2 ≤ 0),

C5 = (p1 ≤ 0.4) ∧ (p3 ≥ 0.6) ∧ (q1 ≥ 0.6) ∧ (q2 ≤ 0.3),

C6 = (p1 ≥ 0.4) ∧ (p3 ≤ 0.4) ∧ (q1 ≥ 0.6) ∧ (q2≤ 0.3).

For any set E of sentences, we denote E∧ the conjunction of all members of E: E∧ = ∧{α | α ∈ E}. It

is easy to understand that the E-Z sentence Kb∧ is equivalent to DNF C1 ∨ C2 ∨ C3 ∨ C4 ∨ C5 ∨ C6. Since

C1 ∨ C3 ≡ C1 and C2 ∨ C4 ≡ C2 we may delete C3 and C4 from the DNF. So, Kb∧ is equivalent to DNF

C1 ∨ C2 ∨ C5 ∨ C6. If we take the fact base F = {p1 ≤ 0, p3 ≥ 1} then we will have for q1

(Kb ∪ F)∧ = Kb∧ ∧ F∧ = (C1 ∨ C2 ∨ C5 ∨ C6) ∧ (p1 ≤ 0) ∧ (p3 ≥ 1) = C5 ∧ (p1 ≤ 0) ∧ (p3 ≥ 1) =

(p1 ≤ 0.4) ∧ (p3 ≥ 0.6) ∧ (q1 ≥ 0.6) ∧ (q2 ≤ 0.3) ∧ (p1 ≤ 0) ∧ (p3 ≥ 1),

Kb ∪ F |= q1 ≥ x  (Kb ∪ F)∧ |= q1 ≥ x  (Kb ∪ F)∧ ∧ ~ (q1 ≥ x) ≡ 0 

(p1 ≤ 0.4) ∧ (p3 ≥ 0.6) ∧ (q1 ≥ 0.6) ∧ (q2 ≤ 0.3) ∧ (p1 ≤ 0) ∧ (p3 ≥ 1) ∧ (q1 < x) ≡ 0 

(q1 ≥ 0.6) ∧ (q1 < x) ≡ 0.

Hence, max{x | Kb ∪ F |= q1 ≥ x} = max{ | (q1 ≥ 0.6) ∧ (q1< x) ≡ 0} = 0.6. Also we have

Kb ∪ F |= q1 ≤ y  (Kb ∪ F)∧ |= q1 ≤ y  (Kb ∪ F)∧ ∧ ~ (q1 ≤ y) ≡ 0 

(p1 ≤ 0.4) ∧ (p3 ≥ 0.6) ∧ (q1 ≥ 0.6) ∧ (q2 ≤ 0.3) ∧ (p1 ≤ 0) ∧ (p3 ≥ 1) ∧ (q1 > y) ≡ 0.

The last expression is false for any y ∈ [0, 1]. Hence, min{y | Kb∪F |= q1 ≤ y} = min{x | 0}= min ∅ = 1.

Similarly, we obtain for q2: max{x | Kb ∪ F |= q2 ≥ x} = 0 and min{y | Kb∪F |= q1 ≤ y} = 0.3.

Thus, the answer to the query Q1 is 0.6 ≤ q1 ≤ 1, and answer to the query Q2 is 0 ≤ q2 ≤ 0.3.

4. Inference in the logic E-FLTL

Linear temporal logic LTL is the basic temporal logic intended for representing and analysis of state

transition systems [5]. LTL has founded extensive applications in many domains, especially, in

computer science.

4.1. Syntax of LTL

The syntax of LTL is defined like the syntax of propositional logic except for addition of three

unary operators ɳ, ɑ and ℮ which are read “next”, “always” and “eventually” (correspondingly), and

binary operator U which is read “until”.

LTL sentences are defines from atoms which are propositional variables and constants:

 At ⊆ LTL;

 ~ φ, ɳ φ, ℮ φ, ɑ φ ∈ LTL if φ ∈ LTL

 φ ∧ ψ, φ ∨ ψ, φ → ψ, φ U ψ ∈ LTL if φ, ψ ∈ LTL.

Here At denotes a set of atoms and LTL denotes the set of definable sentences of the logic LTL. Also

we denote by Lit the set of corresponding literals: Lit = {α, ~ α | α ∈ LTL}. If E is any set of LTL

sentences then the At(E) and Lit(E) denote the sets of atoms and literals entered the sentences of E.

Interpretations of LTL sentences are based on state transition diagrams. The intuitive meaning is

that each state represents a “world ” (or “state of affairs”) and a sentence can have different truth values

in different worlds. Transitions represent changes from world to another.

A state (for inferences from E) is any subset of Lit(E). For a state s and a literal λ, we write

s(λ) = 1 if λ ∈ s and s(λ) = 0 if λ ∈ s. A state transition graph is a directed graph Γ whose vertices are

states and edges are pairs of states denoting transitions. A track σ is an infinite path in graph Γ: σ = s0

s1 s2… . (Tracks exist in Г if and only if there are cycles in Г.) For any track σ and integer i ≥ 0, we

denote σi = si si+1s i+2… . Let T(Γ) denote the set of all tracks in the graph Г. We call a box any finite

set of LTL sentences. (We choose the name ‘box’ due its use in pictures of inference trees as in

Figure 2.) Thus, states are particular cases of boxes.

A valuation is a function “•”: LTL X T(Г) →{0,1}. Interpretations are defined as an extension of

valuations:

 “φ, σ” = s0(φ) if φ is an atom, φ ∈ At;

 “~φ, σ” = ~“φ”;

 “ɳ φ, σ” = “φ, σ1”;

 “℮ φ, σ” = ∃i▪ “φ, σi ”;

 “ɑ φ, σ” = ∀i▪ “φ, σi ”;

 “φ ∧ ψ, σ” = “φ, σ” ∧ “ψ, σ”;

 “φ ∨ ψ, σ” = “φ, σ” ∨ “ψ, σ”;

 “φ → ψ, σ” = “φ, σ” → “ψ, σ”;

 “φ U ψ, σ” = sup[“ψ, σi” ∧ (∀k: 0 ≤ k < i) “φ, σk”]

The inference rules for LTL are those in Table 1 but without ‘+’ and ‘–’ signs, and five rules with

number 1 – 5 in Table 5 . The soundness of the rules 1-5 are follows from the equivalences:

ɳ ɑ φ ≡ φ ∧ ɳ ɑ φ, ℮ φ ≡ φ ∨ ɳ ℮ φ, φ U ψ ≡ ψ ∨ (φ ∧ ɳ (φ U ψ)).
It easy to show that these equivalences are true.

There is a peculiarity of applying the first and second rules from Table 5 (i.e., the rules with the sign

‘ɳ’). Formulas of the form ɳ p and ~ ɳ p (where p is a propositional variable from At) are called

X-formulas. If the rule 1 is applied to the formula ɳ p when it belongs to some box α in the inference

tree such that (α \ {~ ɳ p}) ∪ {p} is coincide with other box β in the current inference tree, then we

connect α with β by an edge.

Remark. The described inference method proposed by Ben-Free in the book [2].

Table 5
Inference rules for sentences with the operations ɑ, ℮ and U

Rule number Antecedent Consequents

 1

 2

 1

 ɳ φ

 ~ ɳ φ

 ɑ φ

 φ

 ~ φ

 φ and ɳ ɑ φ

 2 ~ ɑ φ ~ φ or ~ ɳ ɑ φ

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 ℮ φ

 ~ ℮ φ

 φ U ψ

 ~ φ U ψ

 ɑ φ ≥ a

 ɑ φ ≤ a

 ℮ φ ≥ a

 ℮ φ ≤ a

 φ U ψ ≥ a

 φ U ψ ≤ a

 φ or ɳ ℮ φ

 ~ φ and ~ ɳ ℮ φ

 ψ or φ ∧ ɳ (φ U ψ)

 ~ ψ and ~ φ ∨ ~ ɳ (φ U ψ)

 φ ≥ a and ɳ ɑ φ ≥ a

 φ ≤ a or ɳ ɑ φ ≤ a

 φ ≥ a or ɳ ℮ φ ≥ a

 φ ≤ a and ɳ ℮ φ≤ a

ψ ≥ a or φ ∧ ɳ (φ U ψ) ≥ a

 ψ ≤ a and φ ∧ ɳ (φ U ψ) ≤ a

4.2. Semantics of FLTL

Fuzzy linear temporal logic FLTL has the same syntax as LTL. Interpretations in FLTL differs

from ones in LTL in that {0,1} is replaced by [0,1]. Their definitions are the following:

 “φ, σ” = s0(φ) if φ is a literal, φ ∈ Lit;

 “~φ, σ” = 1– “φ, σ”;

 “ɳ φ, σ” = “φ, σ1”;

 “℮ φ, σ” = sup{“φ, σi” | i = 0, 1, 2,…};

 “℮ φ, σ” = inf{“φ, σi” | i = 0, 1, 2,…};

 “φ ∧ ψ, σ” = min{“φ, σ”, “ψ, σ”};

 “φ ∨ ψ, σ” = max{“φ, σ”, “ψ, σ”};

 “φ → ψ, σ” = max{1– “φ, σ”, “ψ, σ”};

 “φ U ψ, σ” = sup{min{“ψ, σi”, (∀k: 0 ≤ k < i) “φ, σk”}}.

4.3. Inference rules for the logic E-FLTL

The inference rules for E-FLTL are presented in Table 1 – Table 4 and Table 5 (rules 7-12).

Theorem 2. The system of inference rules for the logic E-FLTL is sound and complete. The

following statements hold:

 If a knowledge base is inconsistent then every completed inference tree that is bult for this

knowledge base is closed;

 A knowledge base is inconsistent if it has a closed inference tree built for this knowledge base.

5. Conclusions

Logics E-L of estimates are important because experts who use a fuzzy logic L in the development

of knowledge-based systems often do not know the exact values of the degrees of fuzziness for

modelled concepts but be able only to indicate some boundaries of these values. The logic E-L can be

used for manipulating the estimates to get new estimates for logically derived concepts. In this paper

we described the sound and complete inference systems for the logics E-Z and FLTL where Z is the

Zadeh’s fuzzy propositional logic and FLTL is the fuzzy linear temporal logic.

6. Acknowledgment

This work was supported by Russian Foundation for Basic Research (projects 20-07-00615, 18-29-

03088 and 20-07-00770).

7. References

[1] M. Agostino, D. Gabbay, R. Hahnle, J. Posegga (Eds.), Handbook of tableaux methods. Springer,

2001.

[2] M. Ben-Ari, Mathematical logic for computer science, Third edition, Springer, 2012.

[3] J. Chen, S. Kundu, A sound and complete fuzzy logic system using Zadeh’s implication operator,

in Z. W. Ras, M. Maciek (Eds.), Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin,

1996, 233-242.

[4] M. Fitting, First-order logic and automated theorem proving. Springer, 1996.

[5] F. Kroger, S. Merz, Temporal logic and state systems, Springer, 2008.

[6] S. Kundu, An Improved Method for Fuzzy-Inferencing Using Zadeh’s implication operator, in

Proceedings of IJCAL Workshop on Fuzzy Logic in Artificial Intelligence, 1995, 117-125.

[7] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353.

