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Abstract  
In the article, a model of a minimal risk portfolio under conditions of hybrid uncertainty of 

possibilistic-probabilistic type is developed and studied. In this model, the interaction of 

fuzzy parameters is described by both the strongest and weakest triangular norms. Models of 

acceptable portfolios are based on the principle of expected possibility or on the basis of 

fulfilling the restriction on the possibility/necessity and probability of the level of portfolio 

return that is acceptable to an investor. Equivalent deterministic analogs of the models are 

constructed. 
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1. Introduction 

The article presents the architecture of some models for optimization problems under conditions of 

hybrid uncertainty of possibilistic-probabilistic type and some indirect methods for their solving, 

complementing the results previously obtained in [1-6]. 

In our work attention is paid to the study of situations when the interaction of fuzzy model factors 

is described by both the strongest and weakest t-norms, which allows us to assess the range of risk 

changes and the behavior of a set of acceptable portfolios, that is, to manage uncertainty when making 

investment decisions. In order to remove probabilistic uncertainty from acceptable portfolios model, 

the principle based on the expected possibility is used. Uncertainty of possibilistic (fuzzy) type is 

removed by imposing requirements for the possibility/necessity of fulfilling restrictions on the 

acceptable level of expected profitability of the portfolio. The relationship between models of 

acceptable portfolios of different architectures is established and investigated. In a number of relevant 

papers devoted to the problem of portfolio selection, only the situation when the interaction of fuzzy 

factors is described by the strongest triangular norm (t-norm) is studied (see, for example, [7]). 

Theoretical results and conclusions are confirmed by numerical calculations. 

2. Necessary concepts and notations 

In the context of works [8-16], we introduce a number of definitions and concepts from the theory 

of possibilities. Let further (Γ, P(Γ), τ) and (Ω, B, P) be possibility and probability spaces, 

respectively, in which Ω is the space of elementary events   Ω, Γ is the model space with elements 

γ  Γ, B is the σ-algebra of events, P(Γ)  is the set of all subsets of Γ, τ  {π, ν}, π and ν are measures 

of possibility and necessity, respectively, and P is the probability measure; 𝔼1 is the number line. 

We define a fuzzy random variable and its distribution as follows [9, 17]. 
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Definition 1. Fuzzy random variable 𝑌(𝜔, 𝛾) is a real function 𝑌:𝛺 × 𝛤 → 𝔼1 σ-measurable for 

each fixed 𝛾, and 

𝜇𝑌(𝜔, 𝑡) = 𝜋{𝛾 ∈ 𝛤: 𝑌(𝜔, 𝛾) = 𝑡}, ∀𝑡 ∈ 𝔼
1 

is called its distribution function. 

From definition 1 it follows that the distribution function of a fuzzy random variable depends on a 

random parameter, i.e. it is a random function. 

Definition 2. Let Y(ω, γ) – be a fuzzy random variable. Its expected value E[Y] is a fuzzy value 

that has a possibilities distribution function 

𝜇𝐄[𝑌](𝑡) = 𝜋{𝛾 ∈ 𝛤: 𝐄[𝑌(𝜔, 𝛾)] = 𝑡}, ∀𝑡 ∈ 𝐸
1, 

where E — is a mathematical expectation operator 

𝐄[𝑌(𝜔, 𝛾)] = ∫𝑌(𝜔, 𝛾)𝐏(𝑑𝜔).
Ω

 

The distribution function of the expected value of a fuzzy random variable is no longer dependent 

on the random parameter and therefore is fuzzy. 

We define, following [10], second-order moments. Let X and Y be fuzzy random variables. 

Definition 3. The covariance of fuzzy random variables X and Y is defined as follows: 

𝑐𝑜𝑣(𝑋, 𝑌) =
1

2
∫ (𝑐𝑜𝑣(𝑋𝜔

−(𝛼), 𝑌𝜔
−(𝛼)) +  𝑐𝑜𝑣(𝑋𝜔

+(𝛼), 𝑌𝜔
+(𝛼)))𝑑𝛼,

1

0

 

where 𝑋𝜔
−(𝛼), 𝑌𝜔

−(𝛼), 𝑋𝜔
+(𝛼), 𝑌𝜔

+(𝛼) – are boundaries of α-level sets of fuzzy variables 𝑋𝜔 , 𝑌𝜔, 

respectively. 

Definition 4. The variance of a fuzzy random variable Y is 

 𝐃[𝑌] = 𝑐𝑜𝑣(𝑌, 𝑌).   (1) 

The mathematical expectation, variance, and covariance of fuzzy random variables determined in 

accordance with the considered approach inherit the main properties of similar characteristics of real 

random variables. 

An LR-type distribution is often used for modeling fuzzy variables [11], which for a fuzzy variable 𝑌(𝛾) 

is usually written as 𝜇𝑌(𝑡) = [𝑚,𝑚, 𝑑, 𝑑]𝐿𝑅 . Further we will simply write 𝑌(𝛾) = [𝑚,𝑚, 𝑑, 𝑑]
𝐿𝑅

. Here 

𝑚,𝑚 are left and right boundaries of the tolerance interval, 𝑑, 𝑑 are the coefficients of fuzziness, while 

𝑚 ≤ 𝑚 and 𝑑 > 0, 𝑑 > 0, 𝐿(𝑡) and 𝑅(𝑡) are left and right shape functions for the possibility 

distribution. 

We will use triangular norms (t-norms) to aggregate fuzzy information. These norms generalize 

"min" operation inherent in operations on fuzzy sets and fuzzy variables [12]. The following t-norms 

are of particular interest: 

𝑇𝑀(𝑥, 𝑦) = min{𝑥, 𝑦}  𝑎𝑛𝑑  𝑇𝑊(𝑥, 𝑦) = {
min{𝑥, 𝑦} , 𝑖𝑓 max{𝑥, 𝑦} = 1,

0, 𝑒𝑙𝑠𝑒,
 

𝑇𝑀 is called the strongest, and 𝑇𝑊 is called the weakest t-norm. 

3. Mathematical models of a minimal risk portfolio under hybrid uncertainty 
3.1. Portfolio return under hybrid uncertainty of possibilistic-probabilistic 
type 

Under conditions of hybrid uncertainty of possibilistic-probabilistic type, the return on an 

investment portfolio can be represented by a fuzzy random function 

 𝑅𝑝(𝓌,𝜔, 𝛾) = ∑ 𝑅𝑖(𝜔, 𝛾)𝓌𝑖
𝑛
𝑖=1 ,   (2) 



which is a linear function of equity shares 𝓌 = (𝓌1, … ,𝓌𝑛)  in the portfolio. Here 𝑅𝑖(𝜔, 𝛾) are 

fuzzy random variables that model the returns of individual financial assets with the help of shift-

scale representation [9]: 

 𝑅𝑖(𝜔, 𝛾) = 𝑎𝑖(𝜔) + 𝜎𝑖(𝜔)𝑍𝑖(𝛾).   (3) 

Further we assume that fuzzy variables 𝑍𝑖(𝛾) = [𝑚𝑖, 𝑚𝑖 , 𝑑𝑖, 𝑑𝑖]𝐿𝑅 in representation (3) are mutually 

T-related, where 𝑇 ∈ {𝑇𝑀, 𝑇𝑊}, and 𝑎𝑖(𝜔), 𝜎𝑖(𝜔)  are shift and scale coefficients – random variables 

defined on a probability space (Ω, B, P), with  𝜎𝑖(𝜔) ≥ 0. Then possibilities distribution of the 

portfolio return (2) takes the following form 

𝑅𝑝
𝑇(𝓌, 𝜔, 𝛾) = [𝑚𝑅𝑝

(𝓌,𝜔),𝑚𝑅𝑝
(𝓌,𝜔), 𝑑𝑅𝑝𝑇(𝓌,𝜔), 𝑑𝑅𝑝𝑇(𝓌,𝜔)]

𝐿𝑅
,   (4) 

where 

𝑚𝑅𝑝
(𝓌,𝜔) =∑(𝑎𝑖(𝜔) + 𝜎𝑖(𝜔)𝑚𝑖)𝓌𝑖

n

i=1

, m𝑅𝑝
(𝓌,𝜔) =∑(𝑎𝑖(𝜔) + 𝜎𝑖(𝜔)𝑚𝑖)𝓌𝑖

n

i=1

, 

and the coefficients of fuzziness take the form depending on the type of T: 

𝑑𝑅𝑝𝑀(𝓌,𝜔) =∑𝜎𝑖(𝜔)𝑑𝑖𝓌𝑖

n

i=1

,   𝑑𝑅𝑝𝑀(𝓌,𝜔) =∑𝜎𝑖(𝜔)𝑑𝑖𝓌𝑖

n

i=1

, 

when 𝑇 = 𝑇𝑀, and 

𝑑𝑅𝑝𝑊(𝓌,𝜔) = max
𝑖=1…𝑛

{𝜎𝑖(𝜔)𝑑𝑖𝓌𝑖},   𝑑𝑅𝑝𝑊(𝓌,𝜔) = max
𝑖=1…𝑛

{𝜎𝑖(𝜔)𝑑𝑖𝓌𝑖}, 

in case of 𝑇 = 𝑇𝑊. Further we will denote 𝑅𝑝
𝑇(𝓌,𝜔, 𝛾) as 𝑅𝑝

𝑀(𝓌,𝜔, 𝛾) when 𝑇 = 𝑇𝑀 and 

𝑅𝑝
𝑊(𝓌,𝜔, 𝛾) when 𝑇 = 𝑇𝑊. 

To remove the uncertainty of probabilistic type in accordance with approach of [3] it is necessary 

to identify the possibilities distribution of the mathematical expectation of the function 𝑅𝑝
𝑇(𝓌,𝜔, 𝛾), 

that is, to calculate its parameters. Expected return in portfolio models is a fuzzy value for a fixed 𝓌. 

This follows from the results of the theorems. 

Theorem 1. Let 𝑇 = 𝑇𝑀. Then expected portfolio return �̂�𝑝
𝑀(𝓌, 𝛾) is characterized by the 

possibilities distribution function 

�̂�𝑝
𝑀(𝓌, 𝛾) = 𝐄[𝑅𝑝

𝑀(𝓌,𝜔, 𝛾)] = [𝑚�̂�𝑝
(𝓌),𝑚�̂�𝑝

(𝓌), 𝑑�̂�𝑝𝑀(𝓌), 𝑑�̂�𝑝𝑀(𝓌)]
𝐿𝑅
, 

where 

𝑚�̂�𝑝
(𝓌) =∑(�̂�𝑖 + �̂�𝑖𝑚𝑖)𝓌𝑖

𝑛

𝑖=1

,   𝑚�̂�𝑝
(𝓌) =∑(�̂�𝑖 + �̂�𝑖𝑚𝑖)𝓌𝑖

𝑛

𝑖=1

, 

𝑑�̂�𝑝𝑀(𝓌) =∑�̂�𝑖𝑑𝑖𝓌𝑖

𝑛

𝑖=1

,  𝑑�̂�𝑝𝑀(𝓌) =∑�̂�𝑖𝑑𝑖𝓌𝑖

𝑛

𝑖=1

,  �̂�𝑖 = 𝐄[𝑎𝑖(𝜔)], �̂�𝑖 = 𝐄[𝜎𝑖(𝜔)]. 

Theorem 2. Let 𝑇 = 𝑇𝑊. Then expected portfolio return �̂�𝑝
𝑊(𝓌, 𝛾) is characterized by the 

possibilities distribution function 

�̂�𝑝
𝑊(𝓌, 𝛾) = 𝐄[𝑅𝑝

𝑊(𝓌,𝜔, 𝛾)] = [𝑚�̂�𝑝
(𝓌),𝑚�̂�𝑝

(𝓌), 𝑑�̂�𝑝𝑊(𝓌), 𝑑�̂�𝑝𝑊(𝓌)]
𝐿𝑅
, 

where 

𝑑�̂�𝑝𝑊(𝓌) = 𝐄 [ max
𝑖=1…𝑛

{𝜎𝑖(𝜔)𝑑𝑖𝓌𝑖}] ,  𝑑�̂�𝑝𝑊(𝓌) = 𝐄 [ max
𝑖=1…𝑛

{𝜎𝑖(𝜔)𝑑𝑖𝓌𝑖}]. 



3.2. Models of acceptable portfolios under hybrid uncertainty of 
possibilistic-probabilistic type 

In accordance with the classical Markowitz [18] approach, we need to construct a portfolio risk 

function in the minimal risk portfolio model. The expected return or portfolio return can be entered 

into a system of restrictions. Since the expected return of a portfolio in the case of fuzzy random data 

is a fuzzy value, in order to remove the uncertainty of possibilistic type in a system of restrictions that 

defines the set of acceptable portfolios, one can introduce a restriction on possibility/necessity of the 

level of expected return acceptable to an investor. Then the generalized Markowitz model of 

acceptable portfolios can be represented as 

𝐹𝑝
𝜏𝐄(𝓌) =

{
 
 

 
 𝜏{�̂�𝑝

𝑇(𝓌, 𝛾)  ℛ  𝑚𝑑} ≥ 𝛼,

∑ 𝓌𝑖

𝑛

𝑖=1
= 1,

𝓌 ∈ 𝔼+
𝑛 ,

 

where 𝔼+
𝑛 = {𝑥 ∈ 𝔼𝑛 ∶ 𝑥 ≥ 0}, �̂�𝑝

𝑇(𝓌, 𝛾) – expected return, ℛ – crisp relation {≥, =}; α  (0, 1],  

𝑚𝑑 – level of profitableness, acceptable to an investor, 𝑇 ∈ {𝑇𝑀 , 𝑇𝑊}. 
The following theorems allow us to construct equivalent deterministic analogs of acceptable 

portfolio models. 

Theorem 3. Let in the constraint model 𝐹𝑝
𝜏𝑬 𝜏 = ′𝜋′, ℛ = '≥'. Then the equivalent deterministic 

model of acceptable portfolios has the form: 

𝐹𝑝
𝜋𝐄(𝓌) =

{
 
 

 
 ∑(�̂�𝑖 + �̂�𝑖𝑚𝑖)𝓌𝑖

𝑛

𝑖=1

+ 𝑑�̂�𝑝𝑇(𝓌) ∗ 𝑅−1(𝛼) ≥ 𝑚𝑑 ,

∑ 𝓌𝑖

𝑛

𝑖=1
= 1,

𝓌 ∈ 𝔼+
𝑛 .

 

In case when portfolio return (2) is included in the system of restrictions, the hybrid uncertainty 

can be removed by imposing a limit on the possibility/necessity and probability of an acceptable level 

of return. Formally, the mathematical model of such a constraint can be written as: 

𝐹𝑝
𝜏𝐏(𝓌) =

{
 
 

 
 𝜏{𝐏{𝑅𝑝(𝓌,𝜔, 𝛾) ℛ 𝑚𝑑} ≥ 𝑝0} ≥ 𝛼0,

∑ 𝓌𝑖

𝑛

𝑖=1
= 1,

𝓌 ∈ 𝔼+
𝑛 ,

 

where 𝐏 – probability measure, 𝑝0 ∈ (0,  1] – probability level. 

3.3. Assessment of portfolio risk with hybrid uncertainty 

In accordance with the indicated approach to determining second-order moments, we can 

determine the variance of the portfolio to assess its risk. We now define the variance for the t-norm 

TW. To do this, we will use formula (1) to find the covariance of two fuzzy random variables. If all 

random parameters of distributions are independent, then after series of simplifications we get: 



𝐷𝑝
𝑊(𝓌) =

1

2
∑𝓌𝑖

2 (2𝐃[𝑎𝑖(𝜔)] + 𝐃[𝜎𝑖(𝜔)](𝑚𝑖
2 +𝑚𝑖

2
))

𝑛

𝑖=1

+
1

2
𝐃 [ max

𝑗=1…𝑛
{𝜎𝑗(𝜔)𝑑𝑗𝓌𝑗}]∫ (𝑅−1(𝛼))

2
𝑑𝛼

1

0

+
1

2
𝐃 [ max

𝑗=1…𝑛
{𝜎𝑗(𝜔)𝑑𝑗𝓌𝑗}]∫ (𝐿−1(𝛼))

2
𝑑𝛼

1

0

+∑𝓌𝑖 (∫ 𝑅−1(𝛼)𝑑𝛼
1

0

𝑐𝑜𝑣 ((𝑎𝑖(𝜔) + 𝜎𝑖(𝜔)𝑚𝑖), max
𝑗=1…𝑛

{𝜎𝑗(𝜔)𝑑𝑗𝓌𝑗})

𝑛

𝑖=1

−∫ 𝐿−1(𝛼)𝑑𝛼
1

0

𝑐𝑜𝑣 ((𝑎𝑖(𝜔) + 𝜎𝑖(𝜔)𝑚𝑖), max
𝑗=1…𝑛

{𝜎𝑗(𝜔)𝑑𝑗𝓌𝑗})). 

 

For T=TM, the formula is obtained in the same way. 

3.4. Minimum risk portfolio models 

Based on the results presented in sections 3.1, 3.2, and 3.3, the minimum risk portfolio models can 

be written as: 

 𝐷𝑝
𝑇(𝓌) → 𝑚𝑖𝑛,     (6) 

 𝓌 ∈ 𝐹𝑝(𝓌),     (7) 

where 𝐹𝑝(𝓌) ∈ {𝐹𝑝
𝜇𝐄
, 𝐹𝑝

𝜈𝐄, 𝐹𝑝
𝜇𝐏
, 𝐹𝑝

𝜈𝐏}. Further we assume that the minimum risk portfolio models use 

the same t-norm in the criteria and constraints. Let's move on to their research. 

4. Minimal risk portfolio under hybrid uncertainty and numerical 
calculations 

We consider an example of two-dimensional portfolio (𝑛 = 2). Let 𝑍1 = [2.2, 2.2, 0.3, 0.3]𝐿𝑅, 

𝑍2 = [1.2, 1.2, 0.4, 0.4]𝐿𝑅, 𝐿(𝑡) = 𝑅(𝑡) = max{0, 1 − 𝑡} , 𝑡 ≥  0, 𝛼 = 0.75. Recall that all 

𝑎𝑖(𝜔), 𝜎𝑖(𝜔) are independent random variables with a uniform distribution on the segment [0,1]. We 

first specify the minimum risk portfolio models for the weakest t-norm. Under the assumptions made, 

the equivalent deterministic analog of the minimum risk portfolio (6)-(7) in the context of the 

possibility measure takes the form: 

73

150
𝓌1

2 +
61

300
𝓌2

2 +
1

3
(𝐸𝑀𝑎𝑥2(𝑑𝓌) − (𝐸𝑀𝑎𝑥(𝑑𝓌))

2
) → 𝑚𝑖𝑛, 

𝐹𝑝
𝜋𝐄(𝓌) = {

1.6𝓌1 + 1.1𝓌2 + 0.25 ∗ 𝐸𝑀𝑎𝑥(𝑑𝓌) ≥ 𝑚𝑑 ,
𝓌1 +𝓌2 = 1,
𝓌1,𝓌2 ≥ 0,

 

and in the context of a necessity measure: 

73

150
𝓌1

2 +
61

300
𝓌2

2 +
1

3
(𝐸𝑀𝑎𝑥2(𝑑𝓌) − (𝐸𝑀𝑎𝑥(𝑑𝓌))

2
) → 𝑚𝑖𝑛,  

𝐹𝑝
𝜈𝐄(𝓌) = {

1.6𝓌1 + 1.1𝓌2 − 0.75 ∗ 𝐸𝑀𝑎𝑥(𝑑𝓌) ≥ 𝑚𝑑 ,
𝓌1 +𝓌2 = 1,
𝓌1,𝓌2 ≥ 0.

 

  



where 

𝐸𝑀𝑎𝑥(𝑑𝓌) ≔ 𝐄 [ max
𝑖=1…𝑛

{𝜎𝑖(𝜔)𝑑𝑖𝓌𝑖}] =∑
(𝑑𝓌)(𝑖)

𝑛−𝑖+1

(𝑛 − 𝑖 + 1)(𝑛 − 𝑖 + 2)(𝑑𝓌)(𝑖+1)⋯(𝑑𝓌)(𝑛)

𝑛

𝑖=1

, 

𝐸𝑀𝑎𝑥2(𝑑𝓌) ≔ 𝐄[( max
𝑖=1…𝑛

{𝜎𝑖(𝜔)𝑑𝑖𝓌𝑖})
2
] =∑

2(𝑑𝓌)(𝑖)
𝑛−𝑖+2

(𝑛 − 𝑖 + 2)(𝑛 − 𝑖 + 3)(𝑑𝓌)(𝑖+1)⋯(𝑑𝓌)(𝑛)

𝑛

𝑖=1

, 

and (d𝓌)(1), … , (d𝓌)(n) is an ascending permutation of elements {d1𝓌1, … , dn𝓌n}. 
For comparative analysis, the same problem was considered for the strongest t-norm. The results 

are shown in Figure 1. 

 
Figure 1: Sets of quasi-efficient portfolios depending on the measure of possibility/necessity and the t-
norm 

The first thing to note in Figure 1 is the behavior of quasi-efficient portfolios estimates in different 

contexts. In the context of possibility we have an optimistic decision making model, while in the 

context of necessity, we have a pessimistic one, which for a given level of expected return gives a 

significantly higher risk. 

Secondly, as one can see in the context of possibility measure the weakest t-norm which has the 

property of reducing the uncertainty [9], narrows the scope of feasible solutions and makes the model 

more "strict" or "cautious", i.e. the risk at a fixed rate of return is increased slightly. In the context of 

necessity, the model behaves in the "opposite" way. Thus, we can say that the weakest t-norm reduces 

the "level of optimism" in the optimistic model and reduces the level of "pessimism" in the 

pessimistic model. 

5. Conclusion 

In this paper, a comprehensive study of the architecture of mathematical models of the minimal 

risk portfolio is carried out. For extremal t-norms (weakest and strongest) in the context of 

possibility/necessity the properties of models of acceptable portfolios are studied depending on the 

decision-making principles used in conditions of hybrid uncertainty of possibilistic-probabilistic type. 

Based on the approach of Feng [10] formulas for assessing portfolio risk are specified in the 

contexts of the strongest and weakest t-norms. The obtained theoretical results and conclusions are 

consistent with numerical calculations. 

In terms of further research, we intend to generalize the results of the article to the case when the 

acceptable level of portfolio return for an investor is a fuzzy value associated with the portfolio return 

by a fuzzy relation [19]. This will allow more "soft" and adequate modeling of an investor 

preferences. 
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