
 

Inference method for miso-structure systems with fuzzy inputs 
using parallel computing techniques 

Vasilii Sinuka, Vladimir Polyakova and Maxim Panchenkoa 

 

a Belgorod State Technological University named after V.G. Shukhov, Belgorod, Russian Federation 
 

Abstract  
The paper is devoted to the problem of computational complexity of fuzzy inference in the case 

of systems with fuzzy inputs. The application of parallel computing is considered in order to 

accelerate these processes. The paper proposes an algorithm to efficiently perform fuzzy infer-

ence based on fuzzy truth values on a GPU. The relevance of this algorithm is shown, including 

a computational experiment that compares the time characteristics in a sequential operation 

mode and when performing calculations on a GPU in parallel mode. 

 
Keywords 1 
Fuzzy systems of MISO structure, fuzzy truth value, parallel computing, fuzzy inference 

1. Introduction 

In the absence of sufficiently accurate knowledge about the control object, traditional methods of 

solving control problems are ineffective or may not be applicable at all. In this case, you can build a 

fuzzy control system using the fuzzy sets theory and fuzzy logic. Fuzzy control based on fuzzy model-

ing, the types of which are determined by methods of fuzzy inference. The most popular in control is 

the inference method presented by E. Mamdani [1,2].  

In modern packages of fuzzy modeling [3], the inference is computed only at crisp values of the 

input variables of the control system. However, in some applications, input data may contain either non-

numeric (linguistic) values [4, 5], or noisy input signals [6]. As in the first and in the second case, they 

are formalized by membership functions and called fuzzy inputs. 

Mamdani's approach is reduced to interpretation of expression “if X is A, then Y is B”, where X and 

Y are linguistic variables, and A and B linguistic values of X and Y respectively. The source of uncer-

tainty is that “if X is A, then Y is B” can be interpreted in two different ways. The first, and most obvious 

way, is to treat such an expression as “if X is A, then Y is B” or as “(X, Y) is A × B”, where A × B is a 

cartesian product of fuzzy sets A and B. So in this interpretation “if X is A, then Y is B” is a joint con-

straint on X and Y. An alternative way is understanding of “if X is A, then Y is B” as a conditional con-

straint or, equivalently, implication. This direction was investigated for systems with many fuzzy inputs 

into [7]. This paper is devoted to the development of the Mamdani approach. 

In [6], inference is considered for such systems with fuzzy inputs, which are based on operations of 

max−min or max−product composition with linear complexity. Operator min (and product (arithme-

tic product) are t-norms [8] and correspond to Mamdani’s [1] and Larsen’s [9] inference rules. But for 

other t-norms, need to change of which occurs in the training of fuzzy systems, it is not possible to 

realize an inference with the polynomial computational complexity in systems with many fuzzy inputs. 

This article discusses methods that solve this problem regardless of the t-norms that are changed. 
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The second one considers the inference for one rule based on the fuzzy truth value. The third section 

shows the inference for fuzzy rule base and construction of the corresponding network structures based 

on center of sums defuzzification method. The last section is considered parallel implementation of the 

above method 

2. Statement of the problem 

Define the linguistic model as a base of fuzzy rules 𝑅𝑘, 𝑘 =  1, 𝑁̅̅ ̅̅ ̅: 

 𝑅𝑘: 𝐼𝑓 𝑥1 𝑖𝑠 𝐴1𝑘#𝑥2 𝑖𝑠 𝐴2𝑘#…# 𝑥𝑛 𝑖𝑠 𝐴𝑛𝑘, 𝑡ℎ𝑒𝑛 𝑦 𝑖𝑠 𝐵𝑘 ,  (1) 

where N is a number of fuzzy rules, 𝐴𝑖𝑘 ⊆ 𝑋𝑖, 𝑖 = 1, 𝑛̅̅ ̅̅̅, 𝐵𝑘 ⊆ 𝑌 are fuzzy sets that are described by mem-

bership functions 𝜇𝐴𝑖𝑘(𝑥𝑖) and 𝜇𝐵𝑘(𝑦) respectively. 𝑥1, 𝑥2, … , 𝑥𝑛 are input variables of the linguistic model, 

and [𝑥1, 𝑥2, … , 𝑥𝑛]
𝑇 = 𝒙 ∈ 𝑋1 × 𝑋2…× 𝑋𝑛. Characters 𝑋𝑖, 𝑖 = 1,𝑁̅̅ ̅̅ ̅ and Y denoted respectively domain 

range of the input and output variables. In (1), linguistic bindings "AND" or "OR", denoted by «#». 

In following notation 𝑿 = 𝑋1 × 𝑋2…× 𝑋𝑛 and 𝑨𝒌 = 𝐴1𝑘 × 𝐴2𝑘 × …× 𝐴𝑛𝑘, the rule (1) represented 

as a fuzzy implication 

𝑅𝑘:  𝑨𝒌
            
→   𝐵𝑘 , 𝑘 = 1,𝑁̅̅ ̅̅ ̅. 

𝑅𝑘 can be formalized as a fuzzy relation defined on a set 𝑿 × 𝑌, that is 𝑅𝑘 ⊆ 𝑿 × 𝑌 is fuzzy set with 

membership function: 

𝜇𝑅𝑘(𝒙, 𝑦) = 𝜇𝑨𝒌
            
→    𝐵𝑘(𝒙, 𝑦). 

The Mamdani model defines the function assignment like 𝜇𝑨𝒌
            
→    𝐵𝑘(𝒙, 𝑦) based on known mem-

bership functions 𝜇𝐴𝑘(𝑥) and 𝜇𝐵𝑘(𝑦) in the following way [2, 6] 

𝜇𝑨𝒌
            
→    𝐵𝑘

(𝒙, 𝑦) = 𝑇1 (𝜇𝐴𝑘(𝑥), 𝜇𝐵𝑘(𝑦)) =  𝜇𝑨𝒌(𝑥) ∗
𝑇1
𝜇𝐵𝑘(𝑦) (2) 

where ∗
𝑇1

 is an arbitrary t-norm that is used as a parameter. 

The task is to determine the fuzzy inference 𝐵𝑘
′ ⊆ 𝑌  for the system represented as (1), if the inputs 

are fuzzy sets 𝑨′ = 𝐴′1 × 𝐴′2 ×. . .× 𝐴′𝑛 ⊆ 𝑿 or  𝑥1 𝑖𝑠 𝐴′1 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐴′2 𝑎𝑛𝑑 …  𝑎𝑛𝑑 𝑥𝑛 𝑖𝑠 𝐴′𝑛  with 

the corresponding membership function 𝜇𝑨′(𝑥). In accordance with the generalized fuzzy rule modus 

ponens [4], fuzzy set 𝐵′𝑘 determined by the composition of a fuzzy set 𝑨′ and relation 𝑅𝑘, such 

𝐵′𝑘 =  𝑨′ ∘ (𝑨𝒌 → 𝐵𝑘) 

or using the membership functions: 

𝜇𝐵′𝑘(𝑦) = 𝑠𝑢𝑝
𝑥∈𝑋
 {𝜇𝑨′(𝑥) ∗

𝑇2
(𝜇𝑨𝒌(𝑥) ∗

𝑇1
𝜇𝐵𝑘(𝑦))} (3) 

where ∗
𝑇2

 can be any t-norm. Complexity of the expression (2) is 𝑂(|𝑋|n ∙ |𝑌|). 

3. Inference method based on fuzzy truth value 

For fuzzy systems with one input, following (2), the inference is described by the relation: 

𝜇𝐵′𝑘(𝑦) = 𝑠𝑢𝑝
𝑥∈𝑋
 {𝜇𝑨′(𝑥) ∗

𝑇2
(𝜇𝑨𝒌(𝑥) ∗

𝑇1
𝜇𝐵𝑘(𝑦))} (3) 

Applying the rule of truth modification [5]: 

𝜇𝐴′(𝑥) = 𝜏𝐴𝑘/𝐴′(𝜇𝐴𝑘(𝑥)), 

where 𝜏𝐴𝑘/𝐴′(·) is a fuzzy truth value of a fuzzy set 𝐴𝑘 in relation to 𝐴′, representing the compatibility 

membership function  𝐶𝑃(𝐴𝑘 , 𝐴′) 𝐴𝑘 towards 𝐴′, and 𝐴′ is considered reliable [9]: 

𝜏𝐴𝑘 𝐴′⁄ (𝑣) = 𝜇𝐶𝑃(𝐴𝑘,𝐴′)(𝑣) = sup
𝜇𝐴′(𝑥)=𝑣
𝑥∈𝑋

{𝜇𝐴𝑘(𝑥)}, 𝑣 ∈ [0,1] 



 

Moving from variable x to variable v, denoting 𝜇𝐴𝑘(𝑥) = 𝑣: 

𝜇𝐴′(𝑥) = 𝜏𝐴𝑘
𝐴′
(𝜇𝐴𝑘(𝑥)) = 𝜏𝐴𝑘

𝐴′
(𝑣) (4) 

Then the generalized modus ponens rule for systems with one input (3) can be written as follows: 

𝜇𝐵′𝑘(𝑦) = 𝑠𝑢𝑝
𝑣∈[0,1]

{𝜏𝐴𝑘
𝐴′
(𝑣) ∗

𝑇2
(𝑣 ∗

𝑇1
𝜇𝐵𝑘(𝑦))} (5) 

4. Calculation of an output value for the rule base based on center of sums 
defuzzification method 

When the condition of the Decomposition theorem of the multidimensional membership function 

(2) is satisfied and using the linguistic binding "AND", (3) takes the form: 

𝜇B𝑘
′ (𝑦) = min  

𝑖=1,𝑛̅̅̅̅̅
 {sup  
𝑥𝑖∈𝑋𝑖

{𝜇𝐴𝑖
′(𝑥𝑖) ∗

𝑇2
𝑇1 (𝜇𝐴𝑖𝑘(𝑥𝑖) ,  𝜇𝐵𝑘(𝑦))}} , 𝑘 = 1, N

̅̅ ̅̅ ̅ (6) 

An expression (6) can be written through the fuzzy truth value as follows from (5), and (6) takes the 

form: 

𝜇B𝑘
′ (𝑦) = min  

𝑖=1,𝑛̅̅̅̅̅
{ sup  
𝑣𝑖∈[0,1]

{𝜏𝐴𝑖𝑘 𝐴𝑖
′⁄ (𝑣𝑖) ∗

𝑇2
(𝑣𝑖 ∗

𝑇1
 𝜇𝐵𝑘(𝑦))}},  𝑘 = 1, N

̅̅ ̅̅ ̅ (7) 

An expression (7) characterized by complexity of order 𝑂(|𝑣𝑖| ∙ |𝑌| ∙ 𝑛) and corresponds to a poly-

nomial. 

If 𝑇1 = 𝑇2 = 𝑇, then considering the t-norm property of associativity, (7) can be converted to: 

𝜇B𝑘
′ (𝑦) = min  

𝑖=1,𝑛̅̅̅̅̅
{ sup  
𝑣𝑖∈[0,1]

{𝜏𝐴𝑖𝑘 𝐴𝑖
′⁄ (𝑣𝑖) ∗

𝑇
(𝑣𝑖∗

𝑇
 𝜇𝐵𝑘(𝑦))}} = 

= min  
𝑖=1,𝑛̅̅̅̅̅

{ sup  
𝑣𝑖∈[0,1]

{(𝜏𝐴𝑖𝑘 𝐴𝑖
′⁄ (𝑣𝑖) ∗

𝑇
𝑣𝑖)∗

𝑇
 𝜇𝐵𝑘(𝑦)}} = 

= min  
𝑖=1,𝑛̅̅̅̅̅

{ sup  
𝑣𝑖∈[0,1]

{𝜏𝐴𝑖𝑘 𝐴𝑖
′⁄ (𝑣𝑖) ∗

𝑇
𝑣𝑖} ∗

𝑇
 𝜇𝐵𝑘(𝑦)} = min  𝑖=1,𝑛̅̅̅̅̅

{∏  𝐴𝑖𝑘 𝐴𝑖
′⁄  ∗
𝑇
 𝜇𝐵𝑘(𝑦)}, 

𝑘 = 1, 𝑛̅̅ ̅̅̅ 

(8) 

 

∏  
𝐴𝑖𝑘/𝐴𝑖

′
= sup  
𝑣𝑖∈[0,1]

{𝜏𝐴𝑖𝑘 𝐴𝑖
′⁄ (𝑣𝑖) ∗

𝑇
𝑣𝑖} 

(9) 

∏  𝐴𝑖𝑘/𝐴𝑖
′  is a scalar value, according to the definition [11] is a possibility measure of 𝐴𝑖𝑘 corresponds 

to the input 𝐴𝑖
′  [10]. 

Consider the fuzzy systems introduced in section 2, and taking into account the above transfor-

mations, obtain a crisp output value using the center of sums defuzzification method [6]. In this case, 

the output value can be calculated as: 

𝑦̅ =

∑ 𝑦̅𝑘 ∙ 𝜇𝐵𝑘
′ (𝑦̅𝑘)

𝑘=1,𝑁̅̅ ̅̅ ̅

∑ 𝜇𝐵𝑘
′ (𝑦̅𝑘)

𝑘=1,𝑁̅̅ ̅̅ ̅

 (10) 



where  𝑦̅ is a crisp output value of system consisting of N rules (1); 𝑦̅𝑘 are centers of membership 

functions 𝜇𝐵𝑘(𝑦), 𝑘 = 1, N
̅̅ ̅̅ ̅: 

𝜇𝐵𝑘(𝑦̅𝑘) = 𝑠𝑢𝑝
𝑦∈𝑌
{𝜇𝐵𝑘(𝑦)} = 1 (11) 

Following to (7) and (10): 

𝑦̅ =

∑ 𝑦̅𝑘𝑚𝑖𝑛
𝑖=1,𝑛̅̅̅̅̅

{ 𝑠𝑢𝑝
𝑣𝑖∈[0,1]

{𝜏𝐴𝑖𝑘 𝐴𝑖
′⁄ (𝑣𝑖) ∗

𝑇2
(𝑣𝑖 ∗

𝑇1
 𝜇𝐵𝑘(𝑦̅𝑘))}}

𝑘=1,𝑁̅̅ ̅̅ ̅

∑ 𝑚𝑖𝑛
𝑖=1,𝑛̅̅̅̅̅

{ 𝑠𝑢𝑝
𝑣𝑖∈[0,1]

{𝜏𝐴𝑖𝑘 𝐴𝑖
′⁄ (𝑣𝑖) ∗

𝑇2
(𝑣𝑖 ∗

𝑇1
 𝜇𝐵𝑘(𝑦̅𝑘))}

𝑘=1,𝑁̅̅ ̅̅ ̅

}

 (12) 

Considering (11): 

𝑠𝑢𝑝
𝑣𝑖∈[0,1]

{𝜏𝐴𝑖𝑘 𝐴𝑖
′⁄ (𝑣𝑖) ∗

𝑇2
(𝑣𝑖 ∗

𝑇1
1)} = 𝑠𝑢𝑝

𝑣𝑖∈[0,1]
{𝜏𝐴𝑖𝑘 𝐴𝑖

′⁄ (𝑣𝑖) ∗
𝑇2
𝑣𝑖} (13) 

Since t-norms by definition satisfies the boundary condition 𝑇(𝑎; 1) = 𝑎, then substituting (13) into 

(12):  

𝑦̅ =

∑ 𝑦̅𝑘𝑘=1,𝑁  . 𝑚𝑖𝑛
𝑖=1,𝑛

{∏  𝐴𝑖𝑘 𝐴𝑖
′⁄  }

∑ 𝑚𝑖𝑛
𝑖=1,𝑛

𝑘=1,𝑁 {∏  𝐴𝑖𝑘 𝐴𝑖
′⁄  }

 (14) 

So the result 𝑦̅ obtained using the center of sums defuzzification method with fuzzy inputs does not 

depend on t-norm T1.  

Consider inference when the input data is crisp [12]: 

𝜏𝐴𝑖𝑘/𝐴𝑖
′(𝑣𝑖) = 𝛿(𝑣𝑖) = {

1 𝑖𝑓 𝑣𝑖 = 𝑣𝑖𝑘
0 𝑖𝑓 𝑣𝑖 ≠ 𝑣𝑖𝑘

 , 

 where 𝑣𝑖𝑘 = 𝜇𝐴𝑖𝑘(𝑥𝑖),  𝑘 = 1, N
̅̅ ̅̅ ̅;   𝑖 = 1, n̅̅ ̅̅̅;  𝑥̅𝑖,  𝑖 = 1, 𝑛 are crisp input values, then 

П𝐴𝑖𝑘/𝐴𝑘
′ = 𝑠𝑢𝑝

𝑣𝑖∈[0,1]
{𝛿(𝑣𝑖) ∗

𝑇2
𝑣𝑖} = 𝑣𝑖𝑘   

taking into account that 𝑇2 (1; 𝑣𝑖𝑘  ) = 𝑣𝑖𝑘.  

As a result an output value is calculated as 

𝑦̅ =

∑ 𝑦̅𝑘𝑘=1,𝑁 . min
𝑖=1,𝑛

{𝑣𝑖𝑘}

∑ min
𝑖=1,𝑛

{𝑣𝑖𝑘}𝑘=1,𝑁

 (15) 

Thus, with crisp input data and the center of sums defuzzification method, the system output does 

not depend on t-norms 𝑇1 and 𝑇2. Obtained result (15) is consistent with well-known results. [13]. The 

structure of the fuzzy system, which is described by the relation (14), is shown in Figure 1. 



 

 

Figure 1: The network structure of a fuzzy system described by expression (14) 
 

5. Parallel implementation 

The above algorithm was implemented using the OpenCL parallel programming standard. It includes 

a program interface (API) for coordinating parallel computing in a heterogeneous processor environ-

ment and a cross-platform language used in a specific computing environment [14]. 

The host organizes a queue of command execution. Finding the correspondence of each input to the 

terms of the corresponding linguistic variables is placed in the queue as well as necessary supporting 

calculations. Then, according to the structure described in Figure 1, the obtained data are processed and 

an output value of the system is calculated. 

For each input, it is necessary to find a measure of the possibility that this input corresponds to the 

terms of a linguistic variable. To do this, for a given membership function of the term on the interval, 

its numerical values are calculated with a given step. The obtained values are stored in a joint array for 

each variable on the GPU (Figure 2).  

 

 
Figure 2: The distribution of data in the memory of the GPU 
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The procedure of calculating the correspondence of an input variable to a given term is described 

by the flowchart shown in Fig. 3. Analytically, this procedure is described by expressions (4) and (9). 

The input of the procedure receives an array with the values of the membership function membershipAr-

ray, indices inInd and ind of the first elements of the input and given terms, respectively, step h, and n 

that is the size of the array that defines the membership function of one term. Initially, an empty array 

resArray is created in the procedure to save the appropriate results. Then a loop is created with the value 

i, which varies from 0 to 1 (inclusive) with a step h. The loop body begins with a call of the kernel 

function kernalCP with the size of the computational lattice equal to n. his kernel function returns an 

array of length n with nonzero values of the membership function of a given term if the value of the 

membership function of the input term at the same point with a given accuracy equal to i. From the 

obtained values, the maximum is selected using the kernelFindMax kernel function, which is transmited 

to the input of the tNorma function as the first parameter, and the second parameter is i. The result is 

stored in a resArray array. After that, the value of the variable i changes and the next iteration begins. 

At the end of the procedure, the maximum value is selected from the resArray, which is the result of 

the procedure. 

 

 
Figure 3: The flowchart of the algorithm for calculating the correspondence of the input term to a 
given 

 

To determine the effectiveness of the program, an algorithm was also implemented without the use 

of parallel computing technology. In addition, a testing system was developed that generates test data 

for given parameters, calculates the output value by programs with parallel implementation and without. 

The results are compared and the percentage of error in the results is determined. Comparison of the 

calculation time of the output value depending on the number of inputs is shown in Figure 4. An error 

in obtained results was about 1%. 

 

 



 

 
Figure 4: Graph comparing execution time serial and parallel variants 

 

6. Conclusion 

The inference based on the decomposition theorem makes it possible to extend the Mamdani ap-

proach for systems with many fuzzy inputs with polynomial computational complexity, regardless of 

the t-norms used, the change of which can be used in training of such systems. It must be taken into 

account that the decomposition theorem is satisfied when the t-norm MIN is applied in the antecedent 

of rule (1) when modeling the linguistic binding "AND", and the t-conorm MAX is applied to the lin-

guistic binding "OR". 

The output values for fuzzy systems of the Mamdani type are obtained using the middle center de-

fuzzification method. These results are used to build a network structure. When implementing an algo-

rithm for obtaining results using parallel computing and in developing algorithms for training parame-

ters, this structure will be transformed into a neuro-fuzzy system, which is the task of future research. 
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