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Abstract  
A method for analysis of the fuzzy Bayesian model and using it for the analysis of 

multifactorial phenomena in conditions of uncertainty is considered, based on the preliminary 

identification of stable patterns of the impact of phenomena on target indicators, as well as on 

setting unified types of indicators of the impact of phenomena on target indicators, depending 

on the events corresponding to these phenomena and intended to assess the frequency and 

magnitude of the impact of the corresponding phenomena. 
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1. Introduction 

The tasks of analysis of the complex multifactorial phenomena and processes are becoming 

increasingly important in various fields. Such tasks are characterized by:  

• complex structure and interconnection of many factors;  

• uncertainty, incompleteness, variability and inaccuracy of data;  

• the complexity of building and using traditional models and methods to analyze such 

phenomena and processes; 

• the ability to type multifactorial phenomena and processes depending on the properties of the 

corresponding factors and their impact on the target indicators [1, 2, 3]. 

To analyze such phenomena and processes, it is advisable to use fuzzy Bayesian models, the 

advantages of which are: 

• the visibility of presentation and interpretation of factors based on the cause-and-effect relations 

between them; 

• the ability to work in a small amount of data; 

• the accounting for the complexity and uncertainty of information by introducing fuzziness in 

the description and calculation of model parameters [4, 5, 6]. 

The introduction of fuzziness into Bayesian models is the result of supplementing the probabilistic 

uncertainty characteristic of the Bayesian approach with fuzzy estimates of the probabilities of the 

relationships of its vertices. However, this approach entails some difficulties, namely, the correct 

calculation of fuzzy probabilistic estimates and their interpretation. 

There are several ways to introduce fuzziness into Bayesian networks [7]: 

• supplementing the Bayesian rule with membership functions of the corresponding variable 

values; 

• replacement of the probabilities of the values of network variables with fuzzy sets (terms of 

linguistic variables), and operations on crisp values with operations of S- and T-norms over fuzzy sets; 
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• replacement of probabilities of values on variables with fuzzy numbers, and operations with 

extended operations on fuzzy numbers. 

This paper proposes to use the third method of introducing fuzziness. The article presents a method 

for the analysis of fuzzy Bayesian models and its use for the analysis of multifactorial phenomena, 

considered on the example of modeling and analysis of the impact of climatic phenomena on the 

vulnerability of the urban environment of Moscow. 

2. The way of analysis of the multifactorial phenomena based on fuzzy 
Bayesian model 

The specificity of the analysis of multifactorial phenomena, which, as a rule, consists in studying 

the effect of a set of factors on target indicators, creates the basis for a typification of the approach to 

the construction of fuzzy Bayesian models intended for this.  

The proposed approach to the construction of fuzzy Bayesian models for the analysis of multivariate 

phenomena is based on: 

• firstly, the identification of stable patterns of the impact of phenomena on target indicators, 

which are ternary combinations of the type: “phenomenon”, “type of impact”, “event”; 

• secondly, the assignment of unified types of indicators of the impact of phenomena on target 

indicators depending on the events corresponding to these phenomena and designed to assess the 

frequency and scale of the impact of the corresponding phenomena. 

A method for analysis of multivariate phenomena based on fuzzy Bayesian models using the 

example of the problem of analysis of the impact of climatic phenomena on the vulnerability of the 

urban environment of Moscow is to consider. 

Stage 1. Determination of climatic phenomena that make a significant contribution to the 

vulnerability of objects in the urban environment.  

The expert survey identified climate phenomena that significantly contribute to the vulnerability of 

Moscow's urban environment (table 1) [1]. 

Table 1 
Climate phenomena that significantly contribute to the vulnerability of Moscow's urban environment 

Objects of the urban 

environment 
Climate phenomena 

O1 – natural 

environment 

P1 – sleet, heavy ice and frost deposits, freezing rain; P2 – tornado; P3 – very 

strong wind, squall; P4 – hurricane wind; P5.1 – abnormally hot weather 

O2 – population P5.2 – extremely high temperature; P5.3 – extremely low temperature; P7 – 

sudden temperature changes; P8 – increased level of air pollution 

O3 – power supply 

system 

P1 – sleet, heavy ice and frost deposits, freezing rain; P5 – extreme 

temperatures (P5.1, P5.2, P5.3) 

O4 – buildings and 

constructions 

P5 – extreme temperatures (P5.1, P5.2, P5.3); P7 – sudden temperature 

changes; P9 – air temperature transition through 0оС 

O5 – water supply 

and sewerage system 

P2 – tornado; P3 – very strong wind, squall; P4 – hurricane wind; P5 – 

extreme temperatures (P5.1, P5.2, P5.3); P6 – prolonged heavy rain or 

downpour 

O6 – heat supply 

system 

P5 – extreme temperatures (P5.1, P5.2, P5.3) 

O7 – transport system P1 – sleet, heavy ice and frost deposits, freezing rain; P2 – tornado; P3 – very 

strong wind, squall; P4 – hurricane wind; P5 – extreme temperatures (P5.1, 

P5.2, P5.3); P6 – prolonged heavy rain or downpour 

O8 – gas supply 

system 

The impact of climate phenomena is not significant 

O9 – ecosystem 

services 

The influence of climatic phenomena is being specified 



Stage 2. Formation of a generalized model structure for analysis of the impact of climate events on 

the vulnerability of the urban environment. 

The generalized structure of the model for analysis of the impact of climate events on the 

vulnerability of the urban environment is presented in figure 1, where for each object of the urban 

environment O1–O9, the corresponding models “M1”– “M9” for assessing the impact of specific 

climate events were allocated. 

By aggregating vulnerability assessments VulOk of all objects of the urban environment Ok, 

k = 1, …, K a final assessment Vulrez of the impact of significant climate events on the vulnerability of 

the urban environment is obtained (1) 

                                                 Vulrez = F(VulO1, … , VulOK). (1) 

Stage 3. Forming the model structures in accordance with the identified patterns and typified 

indicators of the impact of climatic phenomena on the vulnerability of urban environment objects. 

As an example of forming the model structure, the "M1" model for assessing the impact of climate 

events on the vulnerability of an O1 object – the natural environment is to consider 

Step 1. Definition of sustainable patterns of the impact of phenomena on targets. 

In the course of research [8], stable patterns of the impact of climatic phenomena on the vulnerability 

of the corresponding objects of the urban environment are determined, the general view of which is 

represented by ternary combinations of the type: “climate phenomenon”  “type of vulnerability”  

“event”. 

The natural environment as an object of study O1 has the following patterns: 

 “sleet, heavy ice-frost deposition, freezing rain”  “snow load”  “snowbreaker”; 

 “tornado”  “wind loading”  “windfall, windbreak”; 

 “very strong wind, squall”  “wind loading”  “windfall, windbreak”; 

 “hurricane wind”  “wind loading”  “windfall, windbreak”; 

 “abnormally hot weather”   “the lack of humidity”  “drying of the soil”. 

Step 2. Definition for models «M1»–«M9» of sets of component models that correspond to the 

identified patterns. 

So, for example, for the model «M1» (for object O1) the following set of the component models is 

defined “M1-Pi”, i = 1, …, NO1: 

 “M1-P1”: “sleet, heavy ice-frost deposition, freezing rain”  “snow load”  “snowbreaker”; 

 “M1-P2”: “tornado”  “wind loading”  “windfall, windbreak”; 

 “M1-P3”: “very strong wind, squall”  “wind loading”  “windfall, windbreak”; 

 “M1-P4”: “hurricane wind”  “wind loading”  “windfall, windbreak”; 

  “M1-P5.1”: “abnormally hot weather”   “the lack of humidity”  “drying of the soil”. 

Step 3. Setting unified indicators of the impact of climate events on the vulnerability of objects from 

the corresponding event. 

Input unified indicators for each of the models “M1-Pi”, i = 1, …, NO1 are:  

 FrPi – frequency of climate phenomenon Pi; 

 ScPi –scale of the impact of this climate phenomenon Pi. 

The output indicator for each of these models «M1-Pi», i = 1, …, NO1 is an indicator of vulnerability 

𝑉𝑢𝑙𝑃𝑖
(𝑂1)

 from an event corresponding to this climate phenomenon. 

Step 4. Setting an indicator for an aggregate assessment of an object's vulnerability to all climate 

events affecting it (2) 

𝑉𝑢𝑙𝑂1 = 𝑓1(𝑉𝑢𝑙𝑃1
(𝑂1), … , 𝑉𝑢𝑙𝑃𝑁𝑂1

(𝑂1) )  (2) 

The structure of the model “M1” of the impact assessment of the climate phenomena on the 

vulnerability of the object O1 (of the natural environment) is presented in figure 2. 
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Figure 1: Generalized structure of the model for analysis of the impact of climate events on the 
vulnerability of the urban environment 
 

Stage 4. Forming of the structure of a fuzzy Bayesian model. 

For the object O1 (of the natural environment) is formed the structure of the fuzzy Bayesian model 

(Figure 3). 

Frequency FrPi and scale ScPi indicators of the climate phenomena impact Pi on the vulnerability of 

urban objects are presented at the 1st level of the model. The fuzzy values of these indicators are strictly 

typified in the form of term sets {L – low, M – middle, H – high}.  



The next level of the model contains indicators VulPi of objects’ Ok, k = 1, …, K o climate events. 

Indicators also have fuzzy values described by term sets {L – low, M – middle, H – high}. A feature of 

the representation of fuzzy conditional probabilities is the way of their obtaining, namely, in the form 

of a task by an expert or using an automatic generation procedure according to expert rules. 
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Figure 2: Structure of the model for assessing the impact of climate events on the vulnerability of 
the natural environment 
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Figure 3: Structure of fuzzy Bayesian model for analysis of the impact of climate events on 
environmental vulnerabilities 



The final indicator Vulrez of the vulnerability of the urban environment to the impact of climatic 

phenomena is located at the 3rd level of the model. 

Stage 5. Setting fuzzy a priori probabilities for all indicators of the first level of the model, namely, 

indicators of the frequency FrPi and scale ScPi indicators of climate phenomena Pi on the vulnerabilities 

of the corresponding objects of the urban environment. 

The generated fuzzy a priori probabilities for the P2 tornado are presented in tables 2, 3. 

 

Table 2 
Fuzzy a priori probability FrP2 

FrP2 P(FrP2) 

L  [0.2; 0.2; 0.6] 

M  [0.2; 0.6; 1] 

H  [0.6; 1; 1] 

 

Table 3 
Fuzzy a priori probability ScP2 

ScP2 P(ScP2)  

L  [0; 0; 0.5] 

M  [0; 0.5; 1] 

H  [0.5; 1; 1] 

 

Graphical interpretation of indicators of the frequency and scale of the impact of a climate 

phenomenon P2 is presented in figures 3 and 4, respectively. 

 

 
Figure 3: Indicator FrP2 
 

 
Figure 4: Indicator ScP2 
 

Stage 6. Forming fuzzy conditional probabilities for indicators of vulnerability VulPk of vulnerability 

of the corresponding objects of the urban environment Ok, k = 1, …, K. 



Tables of fuzzy conditional probabilities for nodes-descendants of the second level of the model 

4P , VulP2, …, VulP5.1 are built by automatic filling taking into account preliminary expert settings. 

Flexible configuration of obtaining tables of fuzzy conditional probabilities is achieved by the following 

algorithm. 

Stage 1. Drawing up a table of the degree of significance of factors. 

The table of the degree of significance of climate phenomena is based on expert assessment in order 

to identify parameters that make a significant contribution to the outcome of the model. The values 

range from [0, 1]. The table is also used to exclude certain parameters from consideration if it is 

necessary to evaluate the performance of the model without taking into account their impact. To do this, 

it is enough to assign a zero value to the selected parameter. In this way, a change in the model operation 

is achieved while preserving the initial structure. 

An example of disabling some climate phenomena in the original model is presented in table. 4. 

 

Table 4 
Degree of significance of factors 

 1P  2P  3P  4P  5.1P  

k  0 1 0 0 1 

 

Step 2. Filling in the table for evaluating the influence of parameters depending on the selected term. 

Tables for evaluating the influence of parameters depending on the selected term are also filled in 

by experts in order to level the subsequent subjective change in factors during the filling of tables of 

conditional probabilities of huge sizes, where the monotonous process of work prevails, which increases 

the degree of fatigue of experts. 

As an example, the table for evaluating the influence of a parameter for a factor P2 is presented 

(table 5). 

 

Table 5 

Evaluating the influence of parameters for factor P2 

 
*

2PFr  
*

2PSc  
*

2PVul  

L  0,3 0,2 0,2 

M  0,5 0,4 0,4 

H  0,7 0,8 0,8 

 

Step 3. Multiplication the values of the corresponding variables. 

Multiplication the values of the corresponding variables allows to automatically take into account 

the degree of significance of a particular factor and the influence of its parameters, calculated by the 

formula (3):  

𝑉𝑢𝑙𝑃𝑖
𝑘 = 𝑘𝑃𝑖 ∙ 𝑉𝑢𝑙𝑃𝑖{𝐿𝑀𝐻}. 

The exclusion of one of the variables of the first layer, as well as its complete removal from the 

model is not possible due to the peculiarities of the considered problem of analysis of climate 

phenomena. 

Step 4. Entering of the received works in the table of active factors, taking into account the exclusion 

of zero factors. 

Creating a table of active factors makes it easier to exclude factors that are not taken into account in 

the further work of the model, without having to manually change the conditional probability tables. 

So, taking into account the model with two climate phenomena, the values of the active factors, taking 

into account the influence of parameters, are presented in table 6. 

  



Table 6 
Current factors taking into account the influence of parameters 

 𝑉𝑢𝑙𝑃2
𝑘

 𝑉𝑢𝑙𝑃5.1
𝑘

 

L  0,2 0,2 

M  0,4 0,4 

H  0,8 0,8 

 

Step 5. Choosing a rule for the interaction of parameters. 

Choosing a rule for the interaction of parameters makes it possible, depending on the search over 

term sets, to present an objective assessment of the change in parameters. To obtain the general 

conditional probability for a variable VulPi is used the rule (4):  

𝑉𝑢𝑙𝑃𝑖
′ = 𝑝𝑟𝑜𝑑(min(𝐹𝑟𝑃𝑖

∗ , 𝑆𝑐𝑃𝑖
∗ ) , 𝑉𝑢𝑙𝑃𝑖

𝑘 ). 

Step 6. Setting fuzzy numbers and entering them in the table of fuzzy conditional probabilities. The 

final step is to generate fuzzy numbers that will be displayed in the table of fuzzy conditional 

probabilities necessary for the correct operation of the fuzzy Bayesian model. The calculated fuzzy 

conditional probabilities of the climate phenomenon "tornado" for assessing the vulnerability of urban 

objects are presented in table 7. 

 

Table 7 
Fuzzy conditional probability VulP2 

n  FrlP2 ScP2 P(VulP2'=L)  P(VulP2'=M)  P(VulP2'=H)  

1 L  L  [0.04; 0.04; 0.08] [0.04; 0.08; 0.16] [0.08; 0.16; 0.16] 

2 L  M  [0.06; 0.06; 0.12] [0.06; 0.12; 0.24] [0.12; 0.24; 0.24] 

3 L  H  [0.06; 0.06; 0.12] [0.06; 0.12; 0.24] [0.12; 0.24; 0.24] 

4 M  L  [0.04; 0.04; 0.08] [0.04; 0.08; 0.16] [0.08; 0.16; 0.16] 

5 M  M  [0.08; 0.08; 0.16] [0.08; 0.16; 0.32] [0.16; 0.32; 0.32] 

6 M  H  [0.1; 0.1; 0.2] [0.1; 0.2; 0.4] [0.2; 0.4; 0.4] 

7 H  L  [0.04; 0.04; 0.08] [0.04; 0.08; 0.16] [0.08; 0.16; 0.16] 

8 H  M  [0.08; 0.08; 0.16] [0.08; 0.16; 0.32] [0.16; 0.32; 0.32] 

9 H  H  [0.14; 0.14; 0.28] [0.14; 0.28; 0.56] [0.28; 0.56; 0.56] 

 

This approach allows to configure flexibly the model depending on the influencing factors and the 

degree of their influence on the outcome, as well as to turn off nodes if necessary. The structure of the 

model does not change. This significantly reduces the time required to prepare the model, simplifying 

the work of experts. 

Stage 7. Calculation of fuzzy unconditional probabilities. 

Based on the obtained tables of fuzzy conditional probabilities, fuzzy unconditional probabilities of 

each indicator of the model are calculated. Below are expressions (4)-(6) in general form for obtaining 

fuzzy unconditional probabilities of the indicator VulPi: 

 𝑃(𝑉𝑢𝑙𝑃𝑖 = 𝐿) =̃ ⨁̃
𝐹𝑟𝑃𝑖,𝑆𝑐𝑃𝑖

𝑃(𝐹𝑟𝑃𝑖, 𝑆𝑐𝑃𝑖, 𝑉𝑢𝑙𝑃𝑖 = 𝐿), (4) 

 𝑃(𝑉𝑢𝑙𝑃𝑖 = 𝑀) =̃ ⨁̃
𝐹𝑟𝑃𝑖,𝑆𝑐𝑃𝑖

𝑃(𝐹𝑟𝑃𝑖, 𝑆𝑐𝑃𝑖, 𝑉𝑢𝑙𝑃𝑖 = 𝑀), (5) 

 𝑃(𝑉𝑢𝑙𝑃𝑖 = 𝐻) =̃ ⨁̃
𝐹𝑟𝑃𝑖,𝑆𝑐𝑃𝑖

𝑃(𝐹𝑟𝑃𝑖, 𝑆𝑐𝑃𝑖, 𝑉𝑢𝑙𝑃𝑖 = 𝐻), 
(6) 

As a result, fuzzy unconditional probabilities of operating indicators are obtained. The calculation 

results of the assessment of the vulnerability of the natural environment from the factor P2 are entered 

in table 8 and for P5.1 in table 9. 

  



Table 8 
Fuzzy unconditional probability VulP2 

VulP2 P(VulP2) 

L  [0.212; 0.282; 0.422] 

M  [0.424; 0.564; 0.844] 

H  [0.848; 1.128; 1.288] 

 

Table 9 
Fuzzy unconditional probability VulP5.1 

VulP5.1 P(VulP5.1)  

L  [0.235; 0.298; 0.438] 

M  [0.457; 0.597; 0.877] 

H  [0.915; 1.195; 1.339] 

 

The indicators are presented in Figures 5 and 6, respectively. 

 

 
Figure 5: Fuzzy unconditional probability VulP2 

 
Figure 6: Fuzzy unconditional probability VulP5.1 

 

Stage 8. Forming fuzzy conditional probabilities for the final indicator Vulrez vulnerability of the 

urban environment. 

The construction of a table of fuzzy conditional probabilities for the indicator of the third level of 

the model Vulrez is performed according to the algorithm described in stage 6, taking into account some 

features. 

Thus, the algorithm for obtaining fuzzy conditional probabilities for assessing the vulnerability of 

the urban environment consists of the following steps. 

Step 1. Setting an assessment of the indicator impact Vulrez depending on the selected term. 

Step 2. The selection rules for the interaction parameters. 

Taking into account the previously obtained table of active factors, the rule of interaction of 

parameters for the indicator Vulrez has the form: 

𝑉𝑢𝑙𝑟𝑒𝑧
′ = 𝑝𝑟𝑜𝑑(min(𝑉𝑢𝑙𝑃1

𝑘 , 𝑉𝑢𝑙𝑃2
𝑘 , … , 𝑉𝑢𝑙𝑃5.1

𝑘 ) , 𝑉𝑢𝑙𝑟𝑒𝑧
∗ )  (7) 



Table 10 
Assessment of the indicator impact Vulrez 

 Vul*rez 

L  0,2 

M  0,4 

H  0,8 

 

Step 3. Setting fuzzy numbers and entering them in the table of fuzzy conditional probabilities. 

The obtained results of calculations are fuzzified and entered in the table of fuzzy conditional 

probabilities. 

In this example with the active factors P2 and P5.1, the generated table of fuzzy conditional 

probabilities looks as follows. 

 

Table 11 
Fuzzy conditional probability Vulrez 

n VulP2 VulP5.1 𝑃(𝑉𝑢𝑙𝑟𝑒𝑧
′ = 𝐿) 𝑃(𝑉𝑢𝑙𝑟𝑒𝑧

′ = 𝑀) 𝑃(𝑉𝑢𝑙𝑟𝑒𝑧
′ = 𝐻) 

1 L  L  [0.04; 0.04; 0.08] [0.04; 0.08; 0.16] [0.08; 0.16; 0.16] 
2 L  M  [0.04; 0.04; 0.08] [0.04; 0.08; 0.16] [0.08; 0.16; 0.16] 
3 L  H  [0.04; 0.04; 0.08] [0.04; 0.08; 0.16] [0.08; 0.16; 0.16] 
4 M  L  [0.04; 0.04; 0.08] [0.04; 0.08; 0.16] [0.08; 0.16; 0.16] 
5 M  M  [0.08; 0.08; 0.16] [0.08; 0.16; 0.32] [0.16; 0.32; 0.32] 
6 M  H  [0.08; 0.08; 0.16] [0.08; 0.16; 0.32] [0.16; 0.32; 0.32] 
7 H  L  [0.04; 0.04; 0.08] [0.04; 0.08; 0.16] [0.08; 0.16; 0.16] 
8 H  M  [0.08; 0.08; 0.16] [0.08; 0.16; 0.32] [0.16; 0.32; 0.32] 
9 H  H  [0.16; 0.16; 0.32] [0.16; 0.32; 0.64] [0.32; 0.64; 0.64] 

3. Conclusion 

The method for the analysis of a fuzzy Bayesian model and its use for the analysis of multifactor 

phenomena in conditions of uncertainty is proposed, based on the preliminary identification of stable 

patterns of the impact of phenomena on target indicators, as well as on setting unified types of indicators 

of the impact of phenomena on target indicators, depending on the events corresponding to these 

phenomena and intended to assess the frequency and magnitude of the impact of corresponding events. 

The created fuzzy Bayesian model is presented and the process and results of modeling and analysis 

of the impact of climatic phenomena on the vulnerabilities of the urban environment of Moscow using 

the constructed model are considered. 
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