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Abstract  
Algebraic Bayesian networks are related to the class of probabilistic graphical models. As a 

machine learning model they are required to be trained on some data set. This work is 

dedicated to the frequentist approach to machine learning of a knowledge pattern as a local 

learning of the Algebraic Bayesian network. The theoretical explanation of approach is 

provided and the algorithm is described. The algorithm’s pseudocode is presented, its 

theoretical complexity is calculated. Then an experiment is conducted and real estimates of 

the algorithm's implementation time of work are received. 
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1. Introduction 

One of the main tasks of machine learning is the training of a model. This task is also applicable 

for Algebraic Bayesian networks (ABN), as one of the machine learning models. 

The goal of this work is to produce a frequentist approach to machine learning of Algebraic 

Bayesian network parameters. In this work, ABN is represented as a knowledge pattern. 

To reach the goal of the work, the next steps are provided. First of all, the short overview of 

researches in machine learning and Algebraic Bayesian networks is presented in part 2. After that, an 

alternative ABN learning approach is considered in part 3 in order to give a fuller picture of this task 

in Algebraic Bayesian network theory. The essence of a frequentist approach to ABN parameters 

machine learning is described in part 4, meanwhile the algorithm’s pseudocode for training is 

presented in part 5. The theoretical complexity of the provided algorithm is calculated in part 6 and 

estimates of algorithm’s implementation time of work are shown in part 7. 

2. Relevant works 

Neural networks [1, 2, 3, 4, 5] and probabilistic graphical models are one of the machine learning 

models. The last can be separated into Algebraic Bayesian networks [6, 7], which are the subject of 

research, Belief Bayesian networks [8, 9, 10] and Markov chains[11, 12, 13]. 

Decomposition is one of the main ideas of probabilistic graphical models construction [7]. Each 

model is a set of smaller parts, which stores some information. In Algebraic Bayesian networks theory 

these objects are knowledge patterns [7]. The example of two types of graphical representation of 

ABN is on Figure 1. 
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Figure 1: Algebraic Bayesian network: 
a) as a set of knowledge patterns 
b) as a set of conjuncts 

 

As mentioned above, each knowledge pattern is a part of information stored in ABN. It can be 

presented as an ideal of conjuncts, what is shown on Figure 1. Each conjunct has scalar or interval 

estimates of its probabilities [6]. There are other representations of knowledge patterns, such as ideals 

of conjuncts or sets of quants, and matrices, which allows to convert the probability estimates of one 

representation to another [14].  

The main operations in Algebraic Bayesian networks are maintaining consistency, a priori and a 

posteriori inference [15]. Maintaining consistency is the checking and correction of probability 

estimates in ABN [16]. A priori inference is a receipt of probabilistic formula probability, based on 

information in a network [6]. A posteriori inference is an update of probabilities in an Algebraic 

Bayesian network based on some new received information (evidence) and the calculation of 

probability of this evidence receipt. The paper [17] is dedicated to the sensitivity of this process. 

During the creation of an Algebraic Bayesian network it is necessary to receive the probabilities of 

its elements. Most sets for network training have empty values. The work [18] describes the approach 

for receiving the ABN with interval probability estimates based on a set of data with missing values. 

This work is dedicated to receiving of the Algebraic Bayesian network with scalar probability 

estimates based on a similar data set. 

3. Interval probabilities estimates and local training  

The goal of machine learning of an Algebraic Bayesian network is to receive the probability 

distribution which represents the information in the data set as close as possible. 

But one distribution wouldn’t represent all of the information in case of missing values in the data 

set. They only allow you to get a particular, averaged information. One of the solutions in that case is 

to use the set of distributions. From the technical point of view that means the receipt of interval 

estimates of probabilities instead of saclar. 

As it was mentioned above, the approach to obtaining an Algebraic Bayesian network with interval 

estimates was described in [18]. Here we will show how it works. 

The data set is represented by the set of atoms, which has one of 0 (false), 1 (true) or * (missing 

value) values. On the first step all the values of conjuncts are received based on this set with the next 

logic: 

0 & 0 = 0; 

0 & 1 = 1; 

1 & 1 = 1; 

* & 0 = 0; 

* & 1 = *; 

* & * = *. 

On the next step all the missing values are replaced by interval [0;1], all the 0 are replaced by [0;0] 

and 1 are replaced by [1;1]. 

Then the mean value for left and right bounds of intervals are calculated for each conjunct. And 

this is the result of training. 

The example is on Figure 2. 



 
Figure 2: The example of receiving interval probability estimates 

4. The receiving of a scalar probabilities as a result of a training  

However it can be useful to receive the one probability distribution as a result of machine learning, 

which means the creation of an Algebraic Bayseian network with scalar probability estimates. The 

reason is that algorithms for analysing and processing ABN with scalar probability estimates have 

noticeably less computational complexity. 

This work is dedicated to the process of training of an Algebraic Bayesian network with scalar 

probability estimates based on a data set with missing values. The Algebraic Bayesian network in this 

work is represented as a knowledge pattern. 

The goal of the training is the same: the receiving of ABN which represents information from a 

data set as close as possible. 

The main idea of a process is changing the estimates in the network step by step. For that the data 

set is presented as a set of quants. On each step the quant is taken from it and estimates are corrected 

based on this quant value. 

If a quant has missing information, it is replaced by the subset of inconsistent quants. Each 

element in that subset receives the weight based on probabilities from the network. After that, the 

probabilities in networks are changed depending on the element's weights. 

The algorithm is presented in pseudocode below. 

5. The pseudocode of the knowledge pattern training algorithm 

The input data for a training is a set of quants, which can be presented as an array. This set is 

divided in two parts: one part with quants which has missing values, and the second part is others. 

The first part is used to receive the first knowledge pattern iteration. The probability of quant in 

knowledge pattern is a frequency of its occurrence in this sub data set. 

For each quant in the second part all the quants which are not consistent to it are taken. Then 

weight is calculated and probability of quant in the knowledge pattern is changed. 

 
//reading of input vector of quants 

set = ReadInput()  

 

// dividing input in two parts: 

// with and without missing value 

setWithMissVal, setWithoutMissVal = divide(input)  

 

// Creating of Knowledge pattern with zeroes prob 

//n - number of atoms 

KP = arrayOfZeroes(n^2)  

for q in setWithoutMissVal do  

    // index(q) - index of q,  

    // equal to binary representation of q 

    KP[index(q)] += 1  

KP = KP/len(setWithoutMissVal) 

 

 

count = 0 

for q in setWithMissVal do  

    //taking all non-consistent quants to given 



    quants = takeNonConsistentQuants(q) 

    //array of 0 with len(KP) 

    weigths = [len(KP)]{0}  

    for i in len(KP) 

        weigths[i] = KP[i]/sumProb(KP, quants) 

    for i := len(KP)  

        KP[i] = (count*KP[i]+weigths[i])/(count+1) 

return KP 

     

sumProb(knowledge pattern, quants) - sum of probabilities of given quants from given knowledge pattern 

6. The algorithm’s complexity 

Let us consider the algorithm’s complexity. 

The first part of the algorithm (creating an initial knowledge pattern) has a linear time of work. 

This time is proportional to the number of quants in the data set without missing values. 

In the second part of the algorithm each quant with missing values aligns 2^k quants without 

missing values, where k is a number of missing values. 

Let us assume that all the types of quants with missing values in the data set have equal 

probabilities of occurrence (except quants without missing values — they are used in the first part, or 

quants with only missing values — they are non-informative for training). 

Let n be the number of atoms in quant. The probability to gave k missing values in this quant is 

Figure 3: 

 

Figure 3: Probability to gave k missing values in this quant 
 

The denominator is a count of quants with k missing values. The numerator is a sum of these 

counts for all quants with at least one missing and one non-missing value.  

Then the mean count of quants which are matched to quant with missing value is Figure 4: 

 

Figure 4 

 

The value of this formula for n = 2..10 is in the table 1. 

 

Table 1 
The mean count of quants matched to the quant with missing value 

n 2 3 4 5 6 7 8 9 10 

Value 2 4 7 12.6 22 38.4 66.4 114.4 196 

 

The table 1 shows that the mean count of quants which are matched to the quant with missing 

values increases with the increasing number of atoms in quant. 

In the theory of Algebraic Bayesian networks knowledge patterns with 2-4 atoms are considered. 

The complexity of analysing and processing of knowledge patterns increases exponentially with the 

increasing number of atoms. So, the best approach to handle a large knowledge pattern is to divide it 

into smaller ones and to work with the received ABN. 



7. The algorithm’s implementation  time of work 

The goal of the experiment was to receive the dependency of the algorithm's implementation time 

of work from the number of atoms in quants..  

The input data for the algorithm was a set of 1000 quants with the random count of missing values. 

The training was run for 1000 times. The new training data set was created on each turn to minimize 

the influence of data set peculiarity. 

The result of an experiment is the dependency of training time on the number of atoms in data set 

quant. The result is shown in the form of a graph  on Figure 5. 

 
Figure 5: The example of receiving interval probability estimates 
 
As shown on Figure 5, the time of work increases exponentially. 
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9. Conclusion 

The frequentative approach to local machine learning of the Algebraic Bayesian network was 

provided in the work. The algorithm was described and pseudocode was provided. Then the 

algorithm’s theoretical complexity was calculated. The experiment was conducted and estimates of 

the algorithm's implementation time of work were received. 

The received result is related to the research in the area of machine learning of the Algebraic 

Bayesian networks structure. The next steps are the research of conjugate priors as an application to 

the machine learning of the Algebraic Bayesian networks and the use of the results in the imitation of 

trees of social-engineering attacks and synthesis over the space of such trees of summary indicators of 

the security/vulnerability of users [19, 20] with taking into account the usage of incomplete, 

inaccurate information and expert knowledge with uncertainty. 
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