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Abstract  
The article presents the results of the study of the upper assessment of the sensitivity of solving 

the second problem of local posterior inference in algebraic Bayesian networks to variations in 

probability estimates in the knowledge pattern. The result is the top estimate found. The 

theoretical and practical significance of the study is to determine the permissible error in the 

data when working with algebraic Bayesian networks. Note that this task is considered for the 

first time. 
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1. Introduction 

One of the problems solved in the framework of studying various models of machine learning, in 

particular, belonging to the class of probabilistic graphic models, is the problem of studying the 

sensitivity of the model to variations in input data [1]. The reasons for the special attention to this task 

lie in the means and time that must be spent on obtaining the information on the basis of which the 

model is formed. For example, often its production is associated with the purchase and development of 

more high-tech equipment, conducting a large number of experiments, interviewing experts, etc. [2]. 

All this, as a rule, leads to the consumption of available resources. Given the limitations of these 

resources, the sensitivity of the model can play a large role in planning the budget and allocating time 

for the implementation of its stages [1]. Knowing the sensitivity of the model to input data, it is possible 

to estimate in advance the required accuracy of the obtained data and allocate the necessary resources 

for it [1]. Therefore, the task of studying sensitivity is very important in the study of models working 

with data [1]. Some of these models are algebraic Bayesian networks belonging to the class of logic-

probabilistic graphic models [2, 3, 4, 5, 6]. They are a non-directional graph, at the vertices of which 

are knowledge patterns [2]. The mathematical model of the latter is the ideal of conjuncts, each of which 

is assigned some estimate of the probability of their truth, and the estimates can be both scalar and 

interval [2, 7]. Interval estimates are an advantage of algebraic Bayesian networks, since they allow you 

to work with data that may be inaccurate, non-numerical or incomplete [12]. 

Due to various reasons, information about the subject area in the process of working with algebraic 

Bayesian networks will change. The data come into the knowledge pattern in the form of a certificate 

with updated estimates of the probability of truth of conjuncts [2, 6, 8]. After that, estimates of the 

probabilities of the truth of conjuncts in knowledge pattern are updated by solving the second problem 

of local posterior inference [2]. Often changing information can, for example, arise when studying 

socioengineering attacks when work is done with people [9, 10, 11, 12]. 
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As part of the study of the model of algebraic Bayesian networks, the task of studying the sensitivity 

of the second set local posteriori inference to variations in estimates of the probability of truth of 

conjuncts in a knowledge pattern appears. In other words, the effect of probability estimates errors in 

the knowledge pattern on the result of updating the probability estimates of the truth of the conjuncts 

included in it is investigated. The solution of this problem will allow, if inaccuracies in the estimates in 

the knowledge pattern are detected, to predict in advance the errors in the estimates obtained after the 

solution of the second posterior output problem, and, depending on the result of forecasting and the 

tasks set, to decide on the allocation or non-allocation of additional resources for the elimination of 

errors. In the present work, the upper estimate of the norm of the difference of the vectors of the 

estimates of the probability of the truth of the conjuncts of the final knowledge patterns after solving 

the second problem of local posterior inference for various knowledge patterns is investigated. 

The purpose of the work is to find empirical upper estimates of the sensitivity of the second task of 

posteriori inference in a knowledge pattern to errors in estimates of the probabilities of the truth of 

conjuncts in the initial knowledge pattern. Obtaining empirical estimates allows now to assess the 

permissible error in estimates of conjuncts in a knowledge pattern, as well as to make assumptions about 

theoretical estimates of sensitivity. 

2. Assessments in the Knowledge Pattern 

Algebraic Bayesian networks, as mentioned earlier, are a non-directional graph, at the vertices of 

which are knowledge patterns [2, 6]. We formulate the definitions and approvals necessary to describe 

the work done. 

Definition. The alphabet is called the set of atomic propositional formulas [13]. 

Definition. Conjunct is the conjunction of a number of atomic variables [13]. 

Definition. The literal  means that in its place in the formula can be either , or  [13]. 

Definition. A quant over an alphabet  is a conjunct that for any atomic formula of the alphabet 

contains either this formula or its negation. 

Definition. The mathematical model of the knowledge pattern is the ideal of conjuncts built over 

the alphabet [2, 6]. Each conjunct is compared with an estimate of the probability of the truth of this 

conjunct, which can take both scalar and interval values [2, 6]. 

Thus, the knowledge pattern is written in the form of a pair 〈𝐶, 𝑃𝑐〉, where C={c1, c2, … , cm} is the 

alphabet over which the knowledge pattern is built, Pc and the vector of estimates of the probabilities 

of the truth of conjuncts in the knowledge pattern [6]: 

Pc=(p(ω), p(c1),…, p(cm), p(c1c2), … , p(c1c2…cm))T. 

Definition. To determine the consistent knowledge pattern, we define the matrix  [13]: 

𝐼 = (
1 −1
0 1

). 

By defining a matrix I, we can define a matrix In=I[n]
 where the degree means the Kronecker degree, 

wherein the matrix In is reversible [13]. 

Definition. A knowledge pattern 〈𝐶, 𝑃𝑐〉 with scalar estimates is called consistent if it satisfies the 

condition [13]: 

𝐼𝑛 × 𝑃𝑐 ≥ 〈0〉2𝑛
,  

where 〈0〉2𝑛
 is a height 2n vector consisting of 0 [13]. 

Definition. Another way to represent a consistent knowledge pattern is a pair 〈𝐶, 𝑃𝑐〉, where  

C={c1, c2, … , cm} is the alphabet over which the knowledge pattern is built, and Pq the vector of 

probability estimates of all quanta over the alphabet C [13]: 

𝑃𝑞 = (

𝑝(𝑐1𝑐2 … 𝑐𝑛)
𝑝(𝑐1𝑐2 … 𝑐�̅�)

…
𝑝(𝑐1̅𝑐2̅ … 𝑐�̅�)

). 



Definition. The vector Pq is constrained by [13]: 

(∀𝑘 ∈ 1. . 2𝑛)𝑃𝑞[𝑘] ≥ 0, (1) 

∑ 𝑃𝑞[𝑘] = 1

2𝑛

𝑘=1

. 

(2) 

Statement. Estimates of quant probabilities can be expressed through estimates of conjunct 

probabilities as follows [13]: 

𝐼𝑛 × 𝑃𝑐 = 𝑃𝑞 . 

Remark. Since the matrix In is reversible, we can express conjunct estimates through quant 

estimates multiplying both parts on the left by 𝐼𝑛
−1. 

Having formulated the necessary statements and definitions, you can go to setting the task. 

2.1. Problem statement 

Consider the setting of the problem to be solved. 

Let be given two consistent knowledge patterns 〈𝐶, 𝑃𝑐
(1)〉 and 〈𝐶, 𝑃𝑐

(2)〉 over the alphabet 

C={c1, c2, … , cm}: 

Pc
(1)=(p1(ω), p1(c1),…, p1(cm), p1(c1c2), … , p1(c1c2…cm))T, 

Pc
(2)=(p2(ω), p2(c1),…, p2(cm), p(c1c2), … , p2(c1c2…cm))T, 

There is also a certificate above the alphabet X={x1, x2, … , xn}, such that 𝑋 ⊂ 𝐶: 

𝐸𝑉 = (

𝑝(𝑥1𝑥2 … 𝑥𝑛)
𝑝(𝑥1𝑥2 … �̅�𝑛)

…
𝑝(�̅�1�̅�2 … �̅�𝑛)

). 

which are subject to the following conditions [13]: 

(∀𝑘 ∈ 1. . 2𝑛)𝐸𝑉𝑖
[𝑘] ≥ 0, (1) 

∑ 𝐸𝑉𝑖
[𝑘] = 1

2𝑛

𝑘=1

. 

(2) 

The problem consists in finding the upper estimate of the norm of the difference of the vectors of 

estimates of the probability of truth of conjuncts of knowledge patterns obtained from the initial ones 

by solving the second problem of posteriori inference after receiving a given certificate. 

3. Finding empirical estimates 

A common method used for primary sensitivity studies of models is to find empirical sensitivity 

estimates by starting the model multiple times with a change in input data [1]. The results of the model 

launch are then compared to each other and the results of the comparisons are analyzed [1]. 

To find empirical estimates of the sensitivity of the second problem of local posterior inference, a 

consistent knowledge pattern 〈𝐶, 𝑃𝑐
(0)〉 was fixed over the alphabet C={c1, c2, c3}, such that  

𝑃𝑐
(0)

= (0.125, 0.125, … ,0.125). This knowledge pattern 𝐼3 × 𝑃𝑐
(0)

= 𝑃𝑞
(0)

 was chosen so that the truth 

of all quanta over the alphabet C was equal. Then a certificate was recorded Ev: 

𝐸𝑉 = (

𝑝(𝑐1𝑐2)
𝑝(𝑐1𝑐2̅)
𝑝(𝑐1̅𝑐2)
𝑝(𝑐1̅𝑐2̅)

) = (

0.30
0.15
0.23
0.32

). 



 

𝑃𝑐
′(0)

 result of solving the second problem of local posterior output for selected knowledge patterns and 

evidence. 

Then, for comparison, a set of m=100000 consistent knowledge patterns 𝑖 = 1𝑚{𝑃𝑐
(𝑖)

} was generated, 

for each of which there was also a second local posterior inference task. The result was a set 𝑖 = 1𝑚{𝑃𝑐
(𝑖)

}. 

For each knowledge pattern from the resulting sets, the following values were found: 

‖𝑃𝐶
(0)

− 𝑃𝐶
(𝑖)

‖
2

                                                    (𝑑𝑖𝑓𝑥) 

‖𝑃𝐶
′(0)

− 𝑃𝐶
′(𝑖)

‖
2

                                                    (𝑑𝑖𝑓𝑝) 

Figure 1 shows the plotting of the relationship between 𝑑𝑖𝑓𝑥 and 𝑑𝑖𝑓𝑝. 

 

 

Figure 1: Results of the experiment. 

 

In addition, the maximum ratio was found: 

max
𝑖

[
‖𝑃𝐶

(0)
− 𝑃𝐶

(𝑖)
‖

2

‖𝑃𝐶
′(0)

− 𝑃𝐶
′(𝑖)

‖
2

] = 1.9. 

As a result, it can be seen that the variation of probability estimates in the knowledge pattern after 

solving the second problem of local posterior inference is no more than 2 times the variation of 

probability estimates in the original knowledge pattern. 

4. Conclusion 

In the work, an experiment was proposed and conducted to find empirical estimates of the sensitivity 

of the second problem of local posteriori inference to variation in estimates of the probabilities of 

conjuncts in a knowledge pattern. The obtained estimates suggest that the variation of probability 

estimates in the knowledge pattern after solving the second problem of local posterior inference is no 

more than 2 times the variation of probability estimates in the original knowledge pattern. This result 

will make it possible now to assess errors in the estimates of knowledge patterns after solving the second 

problem of local posterior inference, and can also set the direction of studying theoretical evaluation. 
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