
Asymptotic Analysis of a Direct Algorithm for Synthesizing a
Minimal Joint Graph

Anatolii Maksimova, Arseniy Zavalishinb and Alexander Tulupyevb

a St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), St. Petersburg Institute

for Informatics and Automation of the Russian Academy of Sciences, 14-th Linia, V.I., No. 39, St. Petersburg,

199178, Russian Federation
b St Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg, 199034, Russian Federation

Abstract
Joint graphs are currently the primary way to define the global structure of algebraic

Bayesian networks. In this paper, we give an overview of a direct algorithm for the synthesis

of a minimal joint graph and carry out its asymptotic analysis. We also describe ways to

achieve maximum efficiency. From a theoretical point of view, the problem has not been

discussed previously.

Keywords 1
Algebraic Bayesian networks, joint graphs, labeled graph, complexity of algorithms,

algorithms on graphs, depth-first search

1. Introduction

Currently, the amount of data being accumulated is increasing rapidly. One effective method of

working with their increasing volume is the application of machine learning models [Jasenin et al.

2018]. Algebraic Bayesian networks (ABN) are one such model. They are represented by an

undirected graph whose vertices contain knowledge patterns. The mathematical model of the

knowledge pattern is the ideals of conjunctions, each element of which is given scalar or interval

estimates of the probability of truth. The ability to work with the interval estimates makes the ABN a

suitable tool for processing incomplete, inaccurate or not-numerical information.

In machine learning, the ABN is distinguished by several steps, including the stap of constructing

a global structure or joint graph. One of the questions in this line of research is the computational

complexity of the algorithms involved. They need to be reasonably computational. The aim of this

work is to evaluate the asymptotics of the algorithm for constructing the minimal joint graph proposed

by Oparin and Tulupyev [1].

2. Minimal joint graph

Before describing the algorithm and studying its complexity, it is necessary to define the joint

graphs themselves.

Set the finite alphabet A and the finite set of vertices V. The set of vertices has a labeling function

W:V→2A which compares each vertex 𝑣 ∈ 𝑉 with its load Wv.

Definition: Two vertices u, v are main connected [2] if 𝑊𝑢 ∩ 𝑊𝑣 = ∅ or there is a way of P out of

u in v that

 ∀𝑝 ∈ 𝑃 𝑊𝑢 ∩ 𝑊𝑣 ⊆ 𝑊𝑝

Definition: A graph is the joint graph [2] if any two of its vertices are main connected.

Russian Advances in Fuzzy Systems and Soft Computing: selected contributions to the 8-th International Conference on Fuzzy Systems,
Soft Computing and Intelligent Technologies (FSSCIT-2020), June 29 – July 1, 2020, Smolensk, Russia

©️ 2020 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

Multiple joint graphs can be constructed over the same set of vertices with a fixed labeling

function. For example, if all vertex loads coincide, the joint graph will be any tree (and generally any

connected graph). For logic-probability inference purposes, acyclic joint graphs [2], therefore, ABN

theory pays particular attention to the minimal joint graphs.

Definition: The joint graph is minimal [2] if it is minimal by inclusion.

In [3], it was shown that the minimal by inclusion and minimal by number of edges are achieved at

the same time.

3. Minimal joint graph algorithm

Definition: A restriction of Gq graph G on a load of q is a pair of 〈𝑉𝑞 , 𝐸𝑞〉:

𝑉𝑞 = {𝑣 ∈ 𝑉|𝑞 ⊆ 𝑊𝑣},

𝐸𝑞 = {(𝑢, 𝑣) ∈ 𝐸|𝑢, 𝑣 ∈ 𝑉𝑞},

where Wv is the load on the vertex v.

The algorithm that generates the minimal joint graph was described in [1]. Its pseudocode is

shown below. The delegate(S) function returns an arbitrary representative of the set S. The

component(G,v,q) function returns the connectivity component of a vertex v in the restriction of graph

G to the load of q.

Table 1

Algorithm 1. Minimal joint graph algorithm.

Require V,W

Ensure 𝐺 = 〈𝑉, 𝐸〉
 1: Q=∅

 2: 𝐺 = 〈𝑉, ∅〉
 3: for all 𝑢, 𝑣 ∈ 𝑉, 𝑢 ≠ 𝑣 do

 4: if 𝑊𝑢 ∩ 𝑊𝑣 ≠ ∅ & 𝑊𝑢 ∩ 𝑊𝑣 ∉ 𝑄 then

 5: 𝑄 ← 𝑊𝑢 ∩ 𝑊𝑣

 6: end if

 7: end for

 8: while 𝑄 ≠ ∅ do

 9: 𝑞 ← 𝑄

10: 𝑆 = ∅

11: for all 𝑣 ∈ 𝑉 do

12: if 𝑞 ⊂ 𝑊𝑣 & 𝑣 ∉ 𝑆 then

13: if 𝑆 ≠ ∅ then

14: d = delegate(S)

15: S = S ∪component(G,v,q)

16: 𝐺. 𝐸 ← (𝑑, 𝑣)

17: else

18: S = component(G,v,q)

19: end if

20: end if

21: end for

22: end while

The algorithm sequentially traverses all possible pairwise intersection of loads of q (called

separators). For each such intersection, an empty set of S is created. For each vertex of v, the load of

which contains the current separator q, but which is not yet in the set S, the set S is combined with the

connectivity component of the graph G, which contains v, in restriction to the load q. If the S was not

empty, then in the graph G adds an edge between the vertex v and the arbitrary vertex of the set S. As

a result, G will contain a minimal joint graph.

4. Introduction

Let’s settle first with a known upper estimate of complexity, and then try to improve it.

Let us have sets of A and B. Mark for 𝛼, 𝛽 and 𝛾 the time necessary to perform a check of 𝐴 ⊂ 𝐵,

to perform a check of 𝑎 ∈ 𝐴 and to perform the operation of 𝐴 ∪ 𝐵 respectively. The number of

vertices and the number of edges, respectively, are also given for n and m.

Estimate the cycle time in rows 8-22 then. The outer cycle while makes |𝑄| iterations. Since the

set Q contains pairwise interceptions vertex loads of no more than
(𝑛−1)

2
, asymptotically this cycle can

be estimated as 𝑂(𝑛2).

The inner cycle for is iterated over all vertices, that is, makes n worth of iterations. The checks

from line 12 are for 𝛼 + 𝛽. The check from line 13 is done in constant time. The delegate(S) function

is knowingly performed for O(n) by supporting a vector of the logical type that contains information

about ith vertex is included in S or not. The component(G,v,q) function can be performed for

𝑂((𝑛 + 𝑚)𝛼) by modifying the depth first search [4] with an additional check of 𝑞 ⊂ 𝑊𝑣. The

operation of union in the accepted notation is performed for 𝛾. Finally, adding an edge to the graph is

performed in constant time. The resulting estimate is 𝑂(𝑛2 ∙ 𝑛 ∙ (𝛼 + 𝛽 + 𝛾 + 𝑛 + 𝛼(𝑛 + 𝑚))).

Now let’s start improving this score. First of all, get rid of the summand of 𝛽, 𝛾 and n. We can use

the disjoint-set-union (DSU) data structure [4], [5]. Tarjan showed [5] that queries of the species «to

choose a representative» and «to unite sets» are executed for O(a(n)), where a(n) is the inverse

Ackermann function (this estimate, however, is discussed [6], [7]). This function grows so slowly

that, for example, its value from the Shannon number [8] is less than five, allowing DSU to be

neglected in the assessment of asymptotics. Now the estimate is 𝑂(𝑛2 ∙ 𝑛 ∙ (𝛼 + 𝛼(𝑛 + 𝑚))).

Asymptotically it is the same as 𝑂(𝑛2 ∙ 𝑛 ∙ 𝛼(𝑛 + 𝑚)).

The next step is to show that not every iteration of the cycle requires a depth-first search of the

entire graph. Fix a separator of q. The connectivity components in a graph do not intersect. Similarly,

the connectivity components in a restriction of q do not intersect. This means that we do not need to

make a series of n search for 𝑂(𝑛 ∙ 𝛼(𝑛 + 𝑚)), but only 𝑂(𝛼(𝑛 + 𝑚)). In fact, if the search

conditions are completed, then the current vertex is not yet in S, which means that the connectivity

component of the current vertex is not yet in S. In turn, the latter means that no vertex or edge will be

viewed twice in a series of depth-first searches, meaning that it is necessary to do nothing more than

one depth-first search of the entire graph. This is for 𝑂(𝛼(𝑛 + 𝑚)). Thus, the asymptotic with

𝑂(𝑛2 ∙ 𝑛 ∙ 𝛼(𝑛 + 𝑚)) decreased to 𝑂(𝑛2 ∙ 𝛼(𝑛 + 𝑚)).

Let we give you a little bit of a distraction here. Any permutation can be represented as a product

of disjoint cyclic permutations - such a representation is called a cyclic decomposition. The more

cycles this decomposition contains, the more of them have a single length. That is, the more elements

in a cyclic decomposition, the less transpositions are needed to obtain the identical from the current

permutation. This statement is formalised as follows: the minimum number of transpositions required

to produce an identical permutation is equal to the difference in permutation length and the number of

cycles in the cyclic decomposition [9].

This approach can also be applied in the case under study. Note that in depth-first search for an

edge corresponding to the separator counts exactly as many times as the ancestors (not only in the

first generation) in the Hasse diagram [10] relative to the «contained» constructed over the set of

separators. Vertices are slightly more common: the number of occurrences is the sum of the number

of ancestors of all separators in the load of the vertex. The following theorem holds:

Theorem: The height of the Hasse diagram over the set of pairwise intersection of set from

multiset the power of n is strictly less than n.

Prove this by induction. This is true for two vertices simply because the set of separators contains

only one element. Now let’s make the statement fair for n, prove it for n+1. Let there be a set of loads

that the Hasse diagram has a height of n+1. Mark for t the end vertex of the path length of n+1. Since

it is a separator, there are at least two loads of tx and ty containingt. Consider a third s load such that

its crossing with ty lies in the path of the length of n+1 in the diagram. Mark this crossing with w.

Then 𝑤 ⊂ 𝑡𝑥 ∩ 𝑠. Then when you remove a load of ty, the height of the Hasse diagram will be

reduced by at most one, because the only separator in the n+1 length path that may cease to exist is

the t separator. Then we can construct Hasse’s diagram of height n over n vertex, and by induction

assumption, that’s impossible.

Because knowledge pattern loads consist of not many elements, the Hasse diagram comes out

sparse. This means that asymptotically the vertices and edges in the depth-first searches series are

counted O(n) times. This allows us to further improve the evaluation of the algorithm by reducing the

exponent from 𝑂(𝑛2 ∙ 𝛼(𝑛 + 𝑚)) to 𝑂(𝑛 ∙ 𝛼(𝑛 + 𝑚)).

Let’s estimate now the time of preprocessing 3-7. The cycle makes 𝑂(𝑛2) iterations, each of

which performs search for intersection of the sets, test the attachment of the set Q, add the set to the

set Q, and test the set for emptiness. The last operation can be performed in constant time, while other

operations on sets depend on their size. Limit their size to a constant of k. Then the intersection can be

found, for example, for 𝑂(𝑘 log 𝑘), supporting the sets as self-balancing search trees [11], or for

O(k+k) by two pointers, supporting the sets as ordered vectors. By supporting Q as a self-balancing

search tree, you can add and search items for 𝑂(𝑘 log|𝑄|), where a factor of k is responsible for

comparing the two sets. Since the size of Q is less than n2, you can replace 𝑂(log|𝑄|) with

𝑂(log 𝑛2) = 𝑂(2 log 𝑛) = 𝑂(log 𝑛). Once summed, we get 𝑂(1 + 2𝑘 + 2𝑘 log 𝑘), which is

asymptotically equivalent to 𝑂(𝑘 log 𝑘). Thus, the preprocessing can be performed for 𝑂(𝑛2𝑘 log 𝑘).

5. Conclusion

The work carried out an asymptotic analysis of the minimal joint graph synthesis algorithm and

specified implementation methods to achieve an optimal estimate. The main result is that the

algorithm runs for 𝑂(𝑛 ∙ 𝛼(𝑛 + 𝑚)) with a preprocessing of 𝑂(𝑛2𝑘 log 𝑘). The results lead to the

conclusion that computational complexity is acceptable. The algorithm seems appropriate.

6. Acknowledgements

The research was carried out in the framework of the project on SPIIRAS governmental

assignment No. 0073-2019-0003, with the financial support of the RFBR (project No. 18-01-00626).

7. References

[1] V. V. Oparin, A. L. Tulupyev, Sintez grafa smezhnosti s minimalnym chislom reber: formalizaciya

algoritma i analiz ego korrektnosti Tr. SPIIRAN, 11 (2009) 142-157.

[2] A. L. Tulupyev, S. I. Nikolenko, A. V irotkin, Osnovy teorii bajesovskih setej, Izd-vo S.-Peterb.

un-ta, 2019.

[3] V. V. Oparin, A. A. Filchenkov, A. V. Sirotkin, A. L. Tulupyev, Matroidnoe predstavlenie

semejstva grafov smezhnosti nad naborom fragmentov znanij, Nauchno-tekhnicheskij vestnik

informacionnyh tekhnologij, mekhaniki i optiki, 4 (68) (2010).

[4] T. H. Cormen, E. L. Charles, L. R. Ronald, S. Clifford, Introduction to Algorithms, MIT press, 2009.

[5] R. E. Tarjan, A class of algorithms which require nonlinear time to maintain disjoint sets, Journal

of computer and system sciences, 18, 2 (1979).

[6] M. Fredman, M. Saks, The cell probe complexity of dynamic data structures, Proceedings of the

twenty-first annual ACM symposium on Theory of computing, 1989.

[7] K. Wu, E. Otoo, A Simpler Proof Of The Average Case Complexity Of Union-Find With Path

Compression, Lawrence Berkeley National Laboratory, LBNL-57527 (2005).

[8] C. E. Shannon, Programming a computer for playing chess, The London, Edinburgh, and Dublin

Philosophical Magazine and Journal of Science, 41, 314 (1950).

[9] K. P. Bogart. Introductory Combinatorics. 2nd edition, San Diego: Harcourt, Brace, Jovanovich, 1990.

[10] G. Birkhoff, Lattice theory, American Mathematical Soc, 25 (1940).

[11] L. J. Guibas, R. Sedgewick, A Dichromatic Framework for Balanced Trees, Proceedings of the

19th Annual Symposium on Foundations of Computer Science, 1978.

