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Abstract  
A class of multilayer modular neural networks with self-similar structure is considered. The 

paper introduces the concept of morphogenesis and network regularity. Conditions for 

morphogenesis of the multilayer network are determined. The theorem on morphology of the 

weakly connected multilayer networks is proved, and invariants of system graphs for the 

regular self-similar networks are obtained. A rule for graph construction of the self-similar 

multilayer networks is proposed. It is noted that self-similar networks describe the structure 

of fast Fourier transform algorithms. 

 

Keywords 1 
Neural network, modularity, neocortex, self-similarity, morphogenesis, self-similar graph  

1. Modularity of biological neural networks 

It is known that a biological neuron does not function in isolation, but forms neural ensembles, 

neural modules, or nerve centers of various sizes and amount of neural cells. For the first time, the 

principle of neural networks modular organization was described by R. Lorente de No [1]. In 1933, 

R. Lorente de No established that neurons of brain cortex are united in vertical columns of cells, 

which are functional units connected by commonality of theirs receptor fields. Perhaps his most 

significant contribution was the first description of the columnar organization of the cortex (long 

before Vernon Mountcastle and half a century before David Hubel and Torsten Wiesel were awarded 

the Nobel prize in physiology or medicine in 1981). 

Direct physiological results confirming the modular brain cortical structures were obtained by 

V. Mountcastle in 1957-59 [2]. Studies of new cortex (neocortex) in mammals conducted by 

J. Edelman and V. Mountcastle [3, 4] showed that the neocortex has the high degree of uniformity in 

its structural organization. The neocortex is present only in mammals, and the rapid increase the 

neocortex in humans occurred only a couple of million years ago. Any significant evolutionary 

changes that occur in a short period of time are provided by reiteration of existing structures. 

Starting in the late 50s of the XX century, David Hubel and Swedish scientist Torsten Wiesel 

recorded impulses of nerve cells located in various layers of the visual cortex. In their studies of the 

visual cortex, Hubel and Wiesel showed that cortical cells are usually grouped in columns (columns), 

and that within each column, neurons perform the same functions in interpreting the pulse signal from 

the eyes. The columns in turn form so-called super columns, each of which occupies an area of 

approximately 2 x 2 mm in the cortex of the brain. the analysis takes place in a strict sequence from 

one cell to another, and each nerve cell is responsible for a specific detail in the whole picture [5]. 

In humans, the new cortex has six horizontal layers of neurons that differ in type and nature of 

connections. Vertically, the neurons are grouped into so-called cortex columns. At the beginning of 

the XX century, the German neurologist Brodman showed that in all mammals, the new cortex has 6 

horizontal layers of neurons. The main structural and organizing unit of the cortex is the cortical 

column, which forms a neural module, whose afferent cells share a common receptor field. The 

number of neurons in the column is constant and for primates is about 110 [6]. The column is 
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connected by 10-30 connections with other parts of the cortex. Columns are grouped into more 

complex formations – macro columns that preserve a certain topological order and form strictly 

connected distributed systems. The human neocortex contains about 600,000 macro columns. 

“According to many neuroscientists, in the end, it will be proved that the unique properties of each 

person  the ability to feel, think, learn and remember  are contained in strictly organized networks 

of synaptic relationships between the neurons of the human brain” [7]. 

2. Self-similarity and morphogenesis 

By definition, a compact topological space X  is self-similar if there exist a finite set S  that 

indexes non-surjective homeomorphisms         for which  

           . 

For example, let the compactum X is a segment of unit length. Position of a point in the segment 

is determined by the number from the interval [0, 1). In decimal notation, the number is expressed 

in positional form                 with an infinite amount of digits in general case, where 

            . Let's limit the amount by a value n in the positional representation, and assume that 

number 0.z-1 corresponds to a segment of length 10
-n

, and value of the number indicates position of 

the segment in the interval [0, 1). In particular, for n=1 the number 0.z-1 will correspond to a segment 

with length 0.1, and the digit value z-1 indicates the segment position at X. Let's introduce for this 

level a set of functions     
    which map the compactum X to all segments with length 0.1 at z=0.z-1 

positions. It is obvious that 

      
    

   . 

In this example, we can replace the union symbol by direct sum symbol, since the segments do not 

intersect under mappings. Thus, we can write: 

      
    

   . 

The process can be iteratively continued by selecting already the constructed segments as 

compactums of next level. Then for level n we obtain: 

      
    

      
 〈          〉    . 

In this expression, the tuple 〈          〉 defines a multidimensional index for the set of non-

surjective maps which in sequence separate the compactum X  into not intersected parts. For a 

positional number notation, correspondence between the value of a number z and its positional 

representation   〈          〉 is one-to-one. 

The classical concept of the self-similarity discussed above is focused on servicing mathematical 

models for fractals, and it is not quite suitable for representing of self-similar non-fractal objects, so 

there is a need for introduce a generalizing definition which includes the fractals as a special case. If 

we turn to biology, then morphogenesis of living systems can serve as a suitable concept. In biology 

the morphogenesis refers to the process of new generations organisms and changing of their forms 

during individual evolution. It is an inherent property of the self-organizing systems that have a 

property of integrity. 

In applied areas of biology, the narrower definition is used: morphogenesis is generation and 

directed development of a population which consists of taxonomic groups of individual organisms. 

Here the taxonomic group (τάξις from the Greek is “order, arrangement, organization”) is a strata in a 

hierarchical classification consisting of discrete ordered objects that are combined on the basis of 

common properties and features. Without setting ourselves the task of constructing strict 

mathematical model of the morphogenesis, we introduce a working definition which is sufficient for 

the morphological synthesis of self-similar networks. 

Definition 1. We will say that morphogenesis is set on a population of indexed objects, if for each object 

of the population there exist an exact "parent-child" mapping which uniquely indexes its child objects. 



For example, let         
   

 is the initial indexed population of objects, then directed 

evolution of the population along generations is determined by a sequence of the indexed child objects: 

      
   

       
   

 〈    〉          
    

    
   

 〈         〉     

If X is a compact topological space defined by a segment of unit length and objects of the 

population are represented as parts of the segment, then all generations of the population coincide 

with this space, so that 

X = X0 = X1 = … = Xn-1 = … 

and besides that if we require finiteness of rule set for indexing population objects, then the concept of 

the morphogenesis is transformed to the definition of self-similarity on a compactum. Note now that if 

we restrict ourselves only to the finiteness condition for choosing the number of the indexing rules, 

this leads us to self-similar growing populations which are not related with fractals. If now you 

remove the condition of finiteness under the choice of indexing rules, the process of population 

growth due to morphogenesis, in general case, will not be already self-similar. 

In given uncertainty of generation number, it is difficult to answer on the question about the 

finiteness of the rule set for indexing. In this case, it is necessary to introduce additional restrictions to 

garantee the self-similar process, for example, if for all morphogenesis generations, the "parent-child" 

mappings are coincided, then obviously morphogenesis is trivially self -similar. However, the class of 

populations generated by the trivial self-similar morphogenesis is rather narrow, and for practical 

purposes it is advisable to expand. 

Definition 2. Morphogenesis is called as regular if the parent-child mappings in each generation 

are coincided for all objects and are uniquely determined by the order number of the generation. 

Obviously, trivial self-similar morphogenesis is a special case of regular one, when the "parent-

child" mappings for all generations coincide. Further discussion will be mainly related to regular 

morphogenesis. There is a clear auto-simulation in mathematical description of regular and trivial 

self-similar morphogenesis, so for regular morphogenesis therefor we will also use the term self-

similar, making the necessary explanations in cases where it is necessary to highlight differences. 

3. Morphogenesis of multi-layer networks 

Let a multi-layer network graph   has n layers. Denote by    
   set of the vertices in layer m, 

where m = 0, 1, … , n-1. The vertex set for input (zero) layer is called as network afferent and is 

denoted Eff(Г), and the set of vertices of final layer is called as network efferent and denoted Eff(Г). 

Let   
  be some vertex of the network in layer m. Let's call as afferent of the vertex (hereinafter 

denoted as Aff   
  ) the vertex subset of the network afferent are connected by arcs to the vertex   

 , 

thus Aff   
    Aff(Г). Similarly, we introduce concept efferent of the vertex Eff   

   as a subset of 

network efferent vertices are connected by arcs to the vertex   
 , thus Eff   

    Eff(Г). The afferents 

and efferents of vertex will also be called as terminal vertex projections. 

Denote as       
   receptor neighborhood of vertex   

 , and as     
   its axon neighborhood. 

We set graph construction rule using the following expressions: 

      
    

  
       (  

 )
   (  

   )  

      
    

  
       (  

 )
   (  

   ) 
(1) 

These rules were called as network weak connectivity conditions [8] because their implementation 

generates the weakly connected networks. The direct sum symbol in (1) emphasizes that for any 

vertex in the network, the terminal projections of vertices its graph neighborhood do not intersect. In 

this case, the populations are the afferent and efferent projections of the network vertices on the 

terminal layers of the network graph. In fact, both the expressions (1) are dual to each other, and if 

one of them is true, the other is bound to be true as well. Let's prove this statement. 

 

Theorem 1. About duality. 



Proof. Let the first condition from (1) be met for all vertices of the network, but the second 

condition is not met, then there are at least a pair of vertices C1, C2 (Figure 1) belonging to the axon 

neighborhood of the vertex B, such that                  . But this means that in some layer 

M, located between the vertex B and the efferent layer, there is a vertex M’, that is connected by arcs 

with the vertices C1, C2 Let N1, N2 be the vertices of the receptor neighborhood for M’, then it is 

obvious that                  . This contradicts the accepted assumption that the first 

condition of the expression (1) is fulfilled, it proves the duality of the conditions. 
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Figure 1: Parallel paths in modular network 

 

The following theorem justifies the use of the term “weakly connected network”.  

Theorem 2. There are no parallel paths in weakly connected networks.  

Proof. Let's assume the opposite. Let two parallel paths converge at the vertex B , passing through 

its neighboring vertices A1 and A2. By the condition of parallelism, the paths have an intersection 

point at some vertex A’ that precedes the vertices A1 and A2. Hence, the afferents of the vertices and 

intersect so that                        , but this contradicts the condition of weak 

connectedness. Since the statement is true for any vertex, including terminal ones, it follows that 

parallel paths are not possible for the entire network. 

In general, the entered conditions (1) are not limited only by regularity. We will keep the term 

"weak connectivity conditions" for them, but for generality we will sometimes refer to them as the 

conditions of multi-layer network morphogenesis.  

For multilayer weakly connected networks, the number of the layers depends on the number of 

vertices in the layers. Let's explain nature of this dependency using а example of regular network. We 

will assume that the network consists of one component graph. Any projection relation of layer 

vertices on the terminal afferent field of the network, splits the set of the layer vertices into classes. 

Each class includes the layer vertices that have a common afferent set. let's call these classes as 

afferent domains and denote,     (   
 )     

  here    
  one of the domain vertex representatives, 

i
m
is ordinal number of the domain in layer m. The vertices of an afferent domain have a projection on 

the input layer of the network. To indicate the projection of the layer domains on network afferent we 

will use the left directed arrow above the symbol of the afferent domain: 

 ⃖  
          

The iterative process from layer n-1 to layer 0 generated by morphogenesis conditions (1) 

sequentially splits domain projections of each layer into smaller parts, indexing the partition in the 

layer by means of bit number im. The network will be regular if the numbers of generated parts 

depends only on layer number. For the last layer of the one-component network, there is only one 

afferent domain, so  ⃖          . Union of afferent projections of domains from each layer 

always forms the full afferent of the network , so we have: 

        ⃖     
    

 ⃖    

     
    

 
    

 ⃖〈        〉
       

    

 
    

  
  

 
  

 ⃖〈           〉
  

where the transition rule from the positional-digit form      〈               〉 to the number 

establishes a one-to-one correspondence of the domain ordinal number to the tuple of indexes. In zero 

layer, the domains coincide with their afferent projections, and each domain consists of only one 

vertex: 



    (   
 )   ⃖ 〈           〉

     
  

 
Any vertex number of zero layer is determined by the tuple    〈           〉. Suppose that for 

all m, the index im takes only two values 0 and 1, then the terminal afferent layer has to N=2
n-1

 

vertices. 

Similarly. The projection relation of the vertices from layer m to terminal efferent field of the 

network, splits the vertices into efferent domain classes, which we denote as     (   
 )     

 , 

where j
m
 is the ordinal number of a efferent domain in layer m. The terminal projection of the efferent 

domain in output layer  ⃗   
         is denoted by the right directed arrow above the domain 

symbol. There exist only one efferent domain for the zero layer  ⃗         . Due to the expression 

(1) the iterative process from zero layer to n-1 layer sequentially splits the terminal domain 

projections of from each layer into smaller parts, indexing the partition in the layer by bit number jm. 

Union of the domain projections from each layer to output layer always forms the full efferent of the 

network, so we have: 

        ⃗       ⃗   
         ⃗ 〈    〉

                
     

 ⃗ 〈             〉
   . 

In output layer, the efferent domains coincide with their projections, and each domain consists of 

only one vertex: 

    (     
   )   ⃗ 〈             〉

         
   . 

The vertex number is determined by the tuple      〈         〉. The partitioning procedure ensures 

one-to-one correspondents the number of the efferent domain to the tuple of indexes    〈         〉 for 

each layer. Iterative process by m in the forward and reverse direction, associated with sequential 

indexing of domains in each layer. Below as example are shown symbolic formulas for indexing 

afferent and efferent domains for a four- layer network: 

  〈      〉    〈    〉    〈  〉      
     〈  〉    〈    〉    〈      〉   

Theorem 3. About morphology of weekly connected network. In each layer of a weekly connected 

network with single connectivity component, the afferent and the efferent domains intersect in all 

possible pair combinations at one vertex exactly. That is, for each pair combination of afferent and 

efferent domains, there exist a single vertex m

m

z
A  such that 

    (   
 )      (   

 )     
 . 

Proof. We need to prove that all paired combinations of different type domains of each layer have 

a non-empty intersection and that this intersection consist of only one vertex of the layer. 

Let's prove the first. Let's assume that a layer has a pair of domains of different types that do not 

intersect in the layer. In this case, for the afferent domain of the layer, there are vertices that are not 

connected to part of the network's efferent vertices, and so the network contains two right-hand vertex 

cones that are not connected to each other in all subsequent layers. On the other hand, the vertices of 

the layer's efferent domain are not connected to part of the network's afferent vertices, and the 

network has two left cones that are not connected in the previous layers. So if the domains do not 

intersect, then there are at least two unrelated components in the network, but this contradicts the 

condition about the one-component network theorem. 

Let's prove the second. Assume that the domains intersect at two vertices   
  and.   

 . Then this 

pair of vertices has a common afferent neighborhood. That is in layer m-1, there is at least one vertex 

  
    connected with the vertices and   

 ,   
  and by morphogenesis condition (1) its efferent must 

be equal to the direct sum of the efferents of the vertices of its axon neighborhood. This direct sum 

includes the vertices   
 and  

 , but since they are assumed to belong to the same efferent domain of 

the layer,       
         

     is performed for them (see Figure 2). Thus, we have come to a 

violation of the morphogenesis condition (1) for efferent vertices. Similarly, this position is proved 

using the efferent neighborhood for vertices   
  and   

 . 
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Figure 2: Theorem about the morphology of a weakly connected network 
 

From this theorem it follows that for any self-similar network, there is a one-to-one 

correspondence between the vertex order number within a layer and indexes of the layer’s pair of 

intersecting different type domains. The correspondence can be set by a tuple, for example: 

   〈                      〉.
 (2) 

Any index permutation is allowed in this tuple. 

4. Self-similar network graph 

From expression (2), for layer m-1 we have: 

     〈                    〉. 

Vertices of adjacent layers m and m-1 are connected by an arc if their afferents intersect. The 

afferent of vertex      is defined by bit numbers of the tuple 〈           〉, and vertex    is 

defined by bit numbers of the tuple 〈             〉, the intersection of afferents is possible only if 

the same named bits in the given tuples coincide. The same conclusion can be implied using the 

conditions for intersection of vertex’s efferents for adjacent layers m andm+1: vertices will be 

connected by an arc if in the tuples 〈         〉 and 〈           〉 the same named bits coincide. 

The resulting rules make it easy to build graphical image of a self-similar modular network. Figure 3 

shows an example of building the four-layer self-similar network for variant where all m  indexes take 

the values im={0, 1} and jm={0, 1}. 
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Figure 3: Four-layer self-similar modular network 

 

 

The constructed model is fully described by the linguistic sentence: 

 〈      〉〈      〉〈      〉〈      〉 .  



Here, each word of the sentence represents the tuple of the network vertex z
m
. Any letter 

permutation is allowed in the sentence words. Denote by Im and Jm the ordered subsets of indexes of 

each type in the tuple z
m
, then the rule for constructing a graphical image of any n-layer self-similar 

network can be formulated as follow 

                                    

                  

The resulting rule is not related with the network dimension, the structural characteristics of its 

modules, or topology of their links, this rule is an invariant of the morphological level of multilayer 

self-similar modular network [9]. 

5. Conclusion 

The paper shows that mathematical model of self-similarity can be extended to multilayer 

networks. It is proved that structure of any self-similar regular network can be expressed analytically 

and described by a linguistic sentence. It is easy to see that the graph of the self-similar network is 

analogous to the fast Fourier transform graph, which is a weakly connected network also. In works 

[9, 10, 11, 12] algorithms for construction of weakly connected networks for fast spectral 

transformations are presented. The generalized genesis of nonregular weakly connected networks was 

considered in [8].  

Self-similarity and regularity of weakly connected networks provide a unique opportunity for 

analytical representation of the topology for the implementing networks, which makes it possible to 

develop neural network training algorithms that absolutely converge in a finite number of steps. In 

addition, there is a variant of analytical extension of the topology of a self-similar network that leads 

to architectures of deep neural networks with fast absolute convergence learning algorithms [13]. 
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