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Abstract  
A stratified model is proposed for self-similar modular neural networks includes 

morphological, structural, topological and parametric levels. Without loss of functionality, 

simplification of modular neural network models is achieved using transitive connections. It 

is shown that the morphogenesis of the structural model is determined on the population of 

graded spaces of the terminal layers of the network. Structurally regular neural networks are 

considered. It is shown that fast transformation algorithms (including FFT) can be described 

by a topological model of a structurally regular self-similar network. A linguistic model for 

describing the topologies of regular self-similar networks is presented. An algorithm for 

constructing topological models of fast algorithms is proposed. The sufficiency of the 

topological model for describing the complete set of fast algorithms is shown. Examples are 

given. 
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1. Stratification of neural networks model representations 

Mathematical models serve as a tool for studying and designing neural networks. The model is 

required to be simple, but functionally sufficient. The main problem of mathematical modeling is 

finding an acceptable compromise between detail and simplicity of description. One way to solve this 

problem is to form hierarchically nested model families, where each level of the hierarchy 

corresponds to a level of reasonable abstraction of system properties, which leads to simplification of 

each particular model. This multi-level model representation is called as stratification [1], and each 

level of the model representation is called as strata. Morphological level models were constructed for 

self-similar networks in [2].  

 
Figure 1: Levels of stratified model 
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In this article, models of the structural, topological, and parametric levels will be considered. 

Strata of model representations are ordered by degree of abstraction (see Figure 1). The highest level 

of abstraction corresponds to a morphological representation, and the lowest level corresponds to a 

parametric representation. In the mathematical formulation, stratification is associated with the 

extraction of equivalent relations at each level of the hierarchy and the transition to factor models that 

describe the next level. 

2. Structural model of a modular neural network 

We introduce structural characteristics for modules and intermodule connections of multi-layer 

neural network. In further the neural module of the layer m with the number z
m
 is denoted    

 . For 

the module    
 , we denote by     dimensionality of its receptor field, and by     dimensionality of 

its axon field. The module performs data processing and is generally described by a non-linear 

operator. The operator is characterized by an operator rank. When the module's data processing 

capabilities are fully used (i.e. the module does not have “hanging” receptors or axons that are not 

connected to other modules), its maximum rank is determined by the expression.  

    (   
 )               . 

We will call such module as complete module. We assume that for the neural network, the 

connection between neural modules   
  and   

    of adjacent layers is a linear operator that connects 

the axon and receptor fields of two neighboring modules. It is advisable to simplify the neural 

network model, assuming that all processing is concentrated in neural modules, and connections only 

transmit data without internal processing and distortion. This leads to the need to reject branching 

connections in the neural network and assume that all intermodule connections are injective and 

identity. The latter simplification does not reduce the network's data processing capabilities, since 

data branching and scaling can be organized inside neural modules. Under the assumptions made all 

matrices of the connection operators are unit: 

    (

    
    
    
    

)   

and the operator rank in this case is equal to the dimensionality of the unit matrix. Injective non-

distorting connections will be further called as transitive. An example of a structural model of a 

modular self-similar neural network with one rank transitive connections is shown in Figure 2. The 

modules in the input layer have the dimensionalities  3,2  and other layers,  2,2 . The structural 

model differs from the morphological one by the presence of weights of vertices and arcs on the 

model graph. 
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Figure 2: Structural model of a self-similar modular neural network with one rank transitive 
connections 



3. Morphogenesis of the structural level 

The morphogenesis conditions [2] of a self-similar multilayer network at the morphological level 

were determined through vertex projections on the terminal fields of the network. According to the 

proven theorem “on the morphology of  weakly connected networks”, the graph of a self-similar 

network can be expressed by a linguistic sentence in which each word represents a bit-by-bit 

representation of the layer vertex number    in an alphabet with two types of indexes i  and j . 

   〈                      〉  

We will show how these morphogenesis conditions are transformed to the structural level. We 

associate the linear vector spaces       and       with each module   
 , which we call 

associative spaces to the input and output of the module. The dimensionalities of the associative 

spaces are defined by the dimensionalities of the terminal fields of the neural module so that 

       (     )         (     ). Since the intermodule connections for a self-similar 

network are injective [2], the same-named associative spaces of the layer do not intersect with each 

other. Therefore, the vector space equal to the direct sum of the input associative vector spaces of the 

zero layer will be associated with the afferent of the network: 

        
  

       

and the vector space equal to the direct sum of the output associative vector spaces of the final layer 

of the network will be associated with an efferent of the network: 

        
    

         

Recall [2] that afferent of a multilayer neural network is a set of vertices of the input (zero) layer 

network, and efferent is the set of vertices of the last layer. The input and output layers of the network 

are called terminal layers. Assuming that the dimensionality of the network in the input is equal toN, 

and in the output, is equal to M we can write: 

  ∑   

  

   ∑      

    

  

The module associative spaces from the layer m  are projected onto the terminal spaces of the network 

via chains of transitive connections. Modules of the layer that have coinciding projections form domains. 

A domain's own space is the direct sum of the associative vector spaces of its representatives. Projections 

of own domain spaces in terminal layers do not intersect and are equal to the direct sum of associative 

input or output module spaces of terminal layers. 

If a vector space has a fixed expansion into a direct sum of subspaces, then it is said that the vector 

space is graded [3]. Thus, morphogenesis of the morphology level induces morphogenesis on a population 

of graded subspaces of terminal layers. For a structural model, you must set the ranks of intermodule 

relationships. Since the connections are transitive, the following conditions are met for each module: 

    ∑           

    

     ∑            

    

 

where            and            are ranks of connections between adjacent modules. We call a 

network structurally regular if all vertices within a layer have the same dimensionalities and the same 

operator ranks for input and output connections. If the structural regularity conditions are met, the 

dimensionalities of modules for a layer network can be set as following tables: 

(
      
         

)    (
      
         

)  

The left table defines the dimensionalities of the receptor fields of the neural modules by layers, 

and the right table defines the dimensionalities, of axon fields. For structurally regular networks, the 

index tuple can be considered as a positional representation of a number in a mixed-radix number 



system with radixes {pm, gm}, for example, assuming that the left digit of the tuple of the vertex 

number is the highest one can write: 

   〈                      〉                             
                                            

Figure 2 shows a self-similar neural network in which all connections have unity rank and all 

modules have equal dimensionalities. As already noted in [2], this is a fairly narrow class of multilayer 

self-similar networks. It is advisable to expand it to include structured regular networks. The basis for 

this is the auto-simulation of the linguistic description of graphs of this class of networks to the graph of 

trivial self-similar network, so we will also call the structurally regular network as self-similar. A great 

advantage of regular self-similar networks is the ability to obtain analytical expressions for algorithms 

for structural synthesis and training of neural networks. Structural regularity is correlated with the 

concept of graph regularity. For one rank self-similar networks, both concepts are the same. The 

structural synthesis of irregular self-similar networks is considered by the author in the paper [4] 

4. Topological model of a modular neural network 

Inputs and outputs of the structural model in Figure 2 are shown as three-and two-coordinate 

vectors without reference to the coordinate numbers. To describe the algorithm, you must enter a 

topological model. In the topological model, the elements of consideration are the physical contacts of 

the neural modules; either input receptors or output axons of a module. 

Let’s consider a modular network where all modules are complete and all connections are 

transitive. Let's denote                     the local number of the receptor for the module 

  of the layer m , and                    , the local number of the axon of the module. The 

positional number of a receptor within the neural layer is denoted by U
m
, and the positional number of 

a axon is denoted by V
m
. Set of mappings: 

{   }  ⋃   

  

    {   }  ⋃   

  

    

are projections, since all modules in the model under consideration are complete. Therefore, for the 

networks of this type, the union mappings are one-to-one. 

Let's now consider a structurally regular self-similar network (in which all modules within each 

layer have the same structural characteristics [pm, gm]). In this case, you can simplify the notation for 

the receptor number and axon number of the neural module by writing: 

um = [0, 1, … , (pm – 1)],   vm = [0, 1, … , (gm – 1)]. 

We will also assume that all connections in the network are one rank. Then the topological 

mappings of the layer can be expressed as tuples: 

   〈〈  〉   〉       〈〈  〉   〉  

In these expressions the symbol   emphasizes that the placement of additional digits   and    in 

the tuple    〈                      〉 can be arbitrary. For unity rank connections, each arc 

in the structural model graph one-to-one corresponds to the arc of the topological model, for example, 

you can choose the following one-to-one concordances:            , then there is the 

following variant of topological mappings: 

   〈                    〉  

   〈                    〉  

   〈                  〉 

(1) 

The graph of the topological model is constructed according to the same rules [2] as the graph of 

the morphological model i.e. arcs connect vertices that have the same values of bit digits in adjacent 

layers. The graph of the topological model for this example is shown in Figure 3. 
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Figure 3: Topological model of the decimation-in-frequency FFT 
 

It is not difficult to make sure that this model corresponds to the fast Fourier transform (FFT) 

graph in the Cooley-Tukey topology with “decimation-in-frequency” [5]. Another variant of 

topological mappings can be set as: 

   〈                            〉  

   〈                            〉  

   〈                          〉 

(2) 

This model corresponds to the FFT graph in the “decimation-in-time” Cooley-Tukey topology. 

The graph of this topological model is shown in Figure 4. 
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Figure 4. Graph of the topological model of the FFT algorithm with “ decimation-in-time” 

 

From the obtained results, we can conclude that the fast Fourier transform algorithm is a 

topological implementation of a self-similar modular network, where the modules are basic operations 

of the ‘butterfly’ type. For fast neural networks, the term ‘neural kernel’ is used instead of the basic 

operation. From the topological model (1) for terminal layers, we get: 

   〈             〉     
    〈             〉   

If N is the dimension of the receptor field, and M is the dimension of the axon field of the network, 

then from the latter expressions directly follow: 

N = pn-1 … p1p0,   M = gn-1 … g1g0.  



Thus, the dimensionalities of the terminal fields of the network are determined by the product 

dimensionalities of neural modules by layers. The examples of self-similar networks discussed above 

were constructed for dimensionalities pi = gi = 2. Figure 5 shows the graph of the ‘decimation-in-

frequency’ topology for dimensionalities: 

(
      

   
)    (

      

   
)   

Topological sentences for this example have the form: 

   {  }   〈      〉〈      〉〈      〉   

   {  }   〈      〉〈      〉〈      〉   

{  }   〈    〉〈    〉〈    〉    

(3) 
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Figure 5: Topological graph of fast transformation of dimensionalities 12×8 

 

This graph is an example of a topological model of a fast neural network [6]. The structural model 

for this network is shown in Figure 2. For this structural model, there are many other variants for 

constructing topological models, any one-to-one mappings {   }     {   }     are acceptable, 

but not all of them are represented as digit tuples. Topological models that can be described by digit 

tuples are naturally to consider as topologically regular. 

5. Parametric models of fast transformations 

In the graph of the fast algorithm, the modules are basic operations (neural kernels), represented as 

matrices of small dimension. For the fast transformation algorithm, the basic operation    in the layer 

m  performs linear processing for the components of the input layer vector, following the rule: 

   
      ∑   

        
        

  

  

where    
  and    

  are coordinates of the input and output vectors of the base operation;    
 is 

matrix of weights of the base operation. To build the transformation algorithm, you need to switch 

from local kernel variables to external bit variables of the layer. This transition is implemented based 

on a topological model. The parametric description of basic operations together with the topological 

model forms a parametric model of fast transformation. Figure 6 shows the graph of the topological 

model (3) with the selected basic operations. 



 
Figure 6: Graph of a topological model with selected basic operations 

6. Conclusion 

A set of algorithms called fast Fourier transform algorithms (FFT) has been used in spectral 

analysis since the work of Cooley-Tukey in the 60s of the last century. The theoretical basis of fast 

algorithms has long been based on various factorization theorems, which proved the possibility of 

decomposing the spectral transformation matrix into a product of weakly filled matrices [5,8]. At the 

time, this generated a surge of work on factorization theorems. However, along the way, the 

researchers encountered the fact that there are many different decompositions for the same spectral 

transformation. When the number of theorems of all possible factorization theorems exceeded dozens, 

it became clear that this path of development of the theoretical foundations of fast algorithms is a 

dead end. 

The misunderstanding was purely methodological and consisted in mixing the concepts of 

structure and topology of the fast transformation algorithm. The structure is stable system invariant 

characteristic of the entire class of fast algorithms, and the topology is no more than a valid 

implementation of the system invariant in the relationships between the base operations. Each 

factorization theorem corresponds to one of the possible forms of topological implementation, and the 

number of them increases rapidly with the growth of the dimensionality of the transformation, so the 

flow of factorization theorems can be almost inexhaustible. Moreover, factorization theorems exist 

only for specific transformations with an analytically defined type of functions but there are no such 

theorems for tunable fast transformations and fast neural networks. 

Fast neural networks are variant of multilayer neural networks that have a fast algorithm for 

processing input data. In order to develop a new understanding of the principles of building fast 

algorithms, a system analysis was required [9] which led to the ideology of stratified models of 

weakly connected networks. The FFT algorithm turned out to be a special case of a weakly connected 

network. Later, the author proved that for the condition of weak connectivity of a regular network and 

the condition of self-similarity of the morphological structure of the network are equivalent. 

Strata of model representations are ordered by the degree of abstraction: the highest level 

corresponds to the morphological representation, and the lowest corresponds to the parametric one. 

Stratification allows us to explore the system at different knowledge stages and describe each level by 

adequate means. The structural model presents the dimensionalities of neural modules and operator 

ranks of intermodule connections, but there is no information about the data vector coordinate 

indexes. This model is intended for evaluating qualitative indicators of fast tunable transformation, 

such as performance and plasticity. 

Binding of input and output vectors to the structural model might have a lot of variants and 

generates a set of topological implementations of fast transformation. The topological model allows 

us to choose the form of the algorithm that is convenient for practical implementation. The 

topological model, supplemented with the values of the coefficients of the basic operations, forms a 



model of the parametric level. At the parametric level, methods for training and tuning neural 

networks based on specified quality indicators are implemented. 

The main conclusion is that stratification of model representations allows us to perform a 

hierarchical decomposition of models of self-similar neural networks and fast algorithms into 

relatively independent levels and use a specific method of research and design for each level. The 

self-similar structure of a fast neural regular network allows us to offer training methods that 

converge absolutely in a finite number of steps [7]. In addition, there is a variant of analytical 

extension of the topology of a self-similar network that leads to architectures of deep neural networks 

with fast absolute convergence learning algorithms [10] 
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