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Abstract  
Meta-heuristic population algorithms for continuous global optimization, inspired by 

collective processes in living and inanimate nature, in human society, are considered. 

The method of the expressive means these algorithms formalization is proposed. It 

allows to create their patterns –concise and easy-to-read formalized descriptions of the 

algorithm structure and main features. 
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1. Introduction 

In various publications, meta-heuristic population algorithms for global search optimization (MEP-

algorithms) are called behavioral, intellectual, inspired by nature and human society, swarming, multi-

agent, etc. [1]. Population algorithms are based on the concept of a population – a finite set of 

candidates for a solution. The population consists of individuals and evolves during generation 

changes (i.e. during algorithm iterations). At each iteration, all individuals in the population move, 

possibly excluding only some of them (for example, the "best" individuals). 

Modern population algorithms are meta-heuristic and stochastic [2]. There are numerous examples 

of successful solutions to complex practical problems of global optimization by using MEP-

algorithms, for example, computer-aided design problems. MEP-algorithms are numerous and very 

varied, so the book [2] introduced more than 130 such algorithms, not counting their numerous 

modifications. The diversity of MEP-algorithms creates a problem of classification and formalization 

of their expression means. This causes the problem of developing concise and easy-to-read formalized 

descriptions of these algorithms structure and main features, called patterns. 

To solve this problem, a classification and formalization of the MEP-algorithms entities and the 

evolutionary operators are proposed. Rules for developing MEP-algorithm patterns using formal 

descriptions of these entities and operators are presented. An example of a the widely known MEP-

algorithm PSO (Particle Swarm Optimization) pattern is given [3]. 

2. Problem statement, MEP-algorithms basic designations and classification 

Deterministic static problems of global conditional and unconditional minimization are considered 

min
𝑋∈𝑅|𝑋|

𝑓(𝑋) = 𝑓(𝑋∗) = 𝑓∗, 

min
𝑋∈Ω⊂𝑅|𝑋|

𝑓(𝑋) = 𝑓(𝑋∗) = 𝑓∗, 
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where |𝑋| – is the vector of variable parameters 𝑋 dimension; 𝑓(𝑋) – is an object function with 

values in space 𝑅|𝑋|; 𝑋∗, 𝑓∗ – the desired optimal solution and the object function value, respectively; 

Ω – a convex set of acceptable vector 𝑋 values defined by the set of limiting functions Г(𝑋). 

The approach to the problem solution (the candidate for the solution) is called an individual and 

denoted 𝑠𝑖, 𝑖 ∈ [1: |𝑆|]. Here 𝑆 – is a set of individuals called a population; |𝑆| – population capacity 

(number of individuals). 

The state of an individual is usually determined by the vectors of its position 𝑋𝑖, speed ∆𝑋𝑖, and 

acceleration ∆2𝑋𝑖, so the state vector of this individual is equal to 

𝑉𝑖 = 𝑋𝑖 ∪ ∆𝑋𝑖 ∪ ∆2𝑋𝑖 

The fitness of an individual 𝑠𝑖 ∈ 𝑆 in its current position determined by the fitness function value 

𝜑𝑖 = 𝜑(𝑓(𝑋𝑖)) = 𝜑(𝑋𝑖). The fitness is the most important characteristic of the individual. It is an 

personal characteristic of the individual current quality (in other words, its "self-esteem"). It is 

considered that the fitness function 𝜑(𝑋) is also subject to minimization. 

The general scheme of the MEP-algorithm has the following form. 

1. Algorithm initialization. Sets the initial value of the iterations number  counter 𝑡 = 0, the initial 

states of individuals 𝑉𝑖(0), 𝑖 ∈ [1: |𝑆|], i.e. the initial population is generated, and the values of the 

free parameters of the algorithm are also set. 

2. The evolutionary operators of this algorithm are executed, own for the each vector 𝑉𝑖 = 𝑉𝑖(𝑡) 

components. As a result, the individual get a new position in the search area 𝑋𝑖(𝑡 + 1) = 𝑋′𝑖, a new 

speed ∆𝑋𝑖(𝑡 + 1) = ∆𝑋′𝑖 and a new acceleration ∆2𝑋𝑖(𝑡 + 1) = ∆2𝑋′𝑖, 𝑖 ∈ [1: |𝑆|]. 
3. Checks whether the conditions for completing the evolutionary process are met. If these 

conditions are not met, 𝑡 = 𝑡 + 1 is assumed and the transition to the step 2 is implemented. 

Otherwise, the best of the found positions of individuals is taken as an approximate solution to the 

problem. 

From a fairly general point of view, the evolution of an individual 𝑠𝑖 ∈ 𝑆 in the course of iterations 

is determined by the function Е(∙) (evolutionary operator) which has the following type  

 ]:1[],:1[)),(()),((),()1( tSjXXXtX jjji   .   

The sense of this formula is that the new position of an individual 𝑠𝑖 ∈ 𝑆 determines, in general, all 

previous positions of all individuals in the population, including current individual, as well as the 

corresponding values of fitness and limiting functions. 

Most MEP-algorithms are iterative, so the function Е(∙) remains the same for all iterations, 

excluding perhaps only a small number of initial "overclocking" iterations. 

Generally speaking, MEP-algorithms can be classified by a large number of features, the main 

ones being the following [2]: 

 single-and multi-population algorithms; 

 algorithms with and without adaptation, self-adaptation  algorithms; 

 stationary and non-stationary algorithms;  

 synchronous and asynchronous algorithms;  

 uniform and non-uniform algorithms; 

 single-step and multi-step algorithms; 

 non-sequential and trace algorithms; 

 non-composite (simple) and composite (hybrid) algorithms; 

 single-stage and multi-stage algorithms. 

Among the evolutionary MEP-algorithms, there are still algorithms based on different models of 

evolution (Darwin, Lamarck, Baldwin, Etc.) [4]. 

  



3. MEP-algorithms entities and their specifications 

For a formalized description of MEP-algorithm entities, the following descriptors are used: 

𝑠𝑦𝑠𝑡𝑒𝑚 ∈ {𝑑𝑒𝑡, 𝑠𝑡𝑜𝑐ℎ, 𝑐ℎ𝑎𝑜𝑡𝑖𝑐}; 
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∈ {𝑠𝑡𝑎𝑡, 𝑝𝑟𝑜𝑔, 𝑎𝑑𝑎𝑝𝑡, 𝑝𝑟𝑜𝑔 − 𝑎𝑑𝑎𝑝𝑡, 𝑠𝑒𝑙𝑓 − 𝑎𝑑𝑎𝑝𝑡}; 

ID. 

The descriptor system determines whether an entity is deterministic, stochastic, or chaotic, 

respectively. The control descriptor identifies static, program-changing, adaptive, program-adaptive, 

and self-adaptive entities, respectively. ID details the nature of an entity's dependency on the values of 

its arguments. The set of possible values for the system and control descriptors for some entities can 

be reduced. The concept of adaptation and self-adaptation mechanisms is understood in accordance 

with [5, 6]. 

One or more characteristics of this entity can be associated with each of the MEP- algorithm 

entities. Static entities are entities that have static characteristics. The characteristics of dynamic 

entities are dynamic. 

One of the important MEP-algorithms features is that they have free parameters, the values of 

which are set by the Decision Maker (DM) based on the preferences and/or features of the 

optimization problem. Meta parameters are auxiliary free parameters that define the values of the 

main free parameters. Meta parameters are always deterministic static user-defined parameters. The 

General format of the parameter set specification is 

parameters|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝐼𝐷

P : <conditions>. -- <comments> 

where for meta-parameters ID = 𝑚𝑒𝑡𝑎, and for free parameters –  ID = 𝑓𝑟𝑒𝑒. 

Next, for writing ease, omit conditions and comments in the specifications. 

 General specification formats for individuals and populations: 

individual|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝐼𝐷

)}(,,{ iVVs  .  

population|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝐼𝐷

SSisi  }]:1[;{ . 

 The format specification of an entity  characteristics: 

characteristic|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝐼𝐷

),( AName  . 

Here Name – is the name of the entity; A – is a set of arguments that may include free parameters of 

the algorithm. 

Example. Population characteristics used by the Evolution Strategy (ES) algorithm [7]: 

characteristic|
𝑑𝑒𝑡. 𝑎𝑑𝑎𝑝𝑡
𝐸𝑆

),( tS  . -- Percentage of successful mutations 

This refers to mutations produced by the corresponding evolutionary operator of the ES algorithm 

during iterations [(𝑡 − ∆𝑡): 𝑡], where ∆𝑡 – is free parameter of the algorithm. The characteristic is 

deterministic and adaptive. The ES algorithm determines the rules for calculating characteristic values.   

 The following neighborhood spaces are predefined: 𝑅𝜑 – target space ℜ1; 𝑅𝑋 – search space 

ℜ|𝑋|; 𝑅𝑇 – "topological" space. The elements of these spaces are (respectively): the values of the 

fitness function 𝜑(𝑋); the components of the variable parameters vector 𝑋; individuals 𝑠𝑖, 𝑖 ∈ [1: |𝑆|]. 
Space 𝑅𝜑 is one-dimensional continuous, 𝑅𝑋 – is |𝑋|-dimensional continuous, and 𝑅𝑇 – is a discrete 

dimension of |𝑆|. 
Various metrics of individuals proximity can be defined in listed spaces. The general format of 

metrics is as follows: 

metric|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑅. 𝐼𝐷

),,( Ass ji . 



where {𝑠𝑖, 𝑠𝑗} ∈ 𝑆; 𝑅 ∈ {𝑅𝜑, 𝑅𝑋, 𝑅𝑇}. 

For the specification of a topological space 𝑅𝑇, a neighborhood graph must be defined. It specified 

as 

graph|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑅. 𝐼𝐷

),( ANG  . 

Here Σ ⊆ 𝑆 – is the considered combination of individuals (population, subpopulation, etc.). 

Example. The Particle Swarm Optimization (PSO) algorithm can use a ring-type neighborhood 

graph. The specification of this graph has the form: 

graph|
𝑑𝑒𝑡. 𝑠𝑡𝑎𝑡
𝑅𝑡 . 𝑟𝑖𝑛𝑔

NG(S). 

This specification defines a deterministic static neighborhood graph of all individuals in population 𝑆 

in a topological space 𝑅𝑇. 

 The specification of the area 𝐷𝑖 of an individual 𝑠𝑖 ∈ 𝑆 in space 𝑅 ∈ {𝑅𝜑, 𝑅𝑋, 𝑅𝑇} has the 

form: 

area|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑅. 𝐼𝐷

),( AsD ii . 

Here, the arguments A necessarily include a parameter or parameters that determine the size of the 

area and its position relative to the current location of the individual 𝑠𝑖 (that is, relative to the point 

𝑋𝑖). In different MEP-algorithms, the area of an individual is called differently, for example, in the ant 

algorithm COAK, the surrounding area is called the search region [8]. 

 A population (subpopulation) may include a number of individuals unions. The specification 

of union 𝑈 in space 𝑅 has the form 

union|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑅. 𝐼𝐷

),( ASU . 

The uniion 𝑈(𝑆, 𝐴) can be constructed, in particular, based on a area 𝐷𝑖(𝑠𝑖, 𝐴) by a rule: 

SAsDsDSU iiiii j
 )},({),( . 

 An individual 𝑠𝑖 in the process of its evolution over the course of generations 

[0: 𝑡] consistently occupies positions 𝑋𝑖(0), 𝑋𝑖(1), … , 𝑋𝑖(𝑡) in the search space 𝑅𝑋. The set of these 

positions produce the track of the individual 𝑠𝑖: 

track|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑅𝑋. 𝐼𝐷

),,0,( AtsTr ii . 

 Some MEP-algorithms, primarily ant algorithms, use pheromone tracks, which are specified 

as 

 -track|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑅𝑋. 𝐼𝐷

),,( Atsii
 . 

Here 𝑡𝜙 ∈ [0: 𝑡] – the iteration number when the individual 𝑠𝑖 left a pheromone track. The 

specification defines a set {{𝑋𝑖(𝜏), 𝜙𝑖(𝜏)}; 𝜏 ∈ [1: 𝑡]}, where 𝜙𝑖(𝜏) – is the current intensity of the 

pheromone label at the point 𝑋𝑖(𝜏). The change in pheromone concentration over time is determined 

by the operator renovation (see below). 

 MEP-algorithms widely use attractors – points in the search space, generally speaking, that 

do not coincide with the position of any individual or the point of its track, which determine the 

direction of this individual or individuals movement. In the general case, the specification of the 

attractor has the form: 

attractor|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑡𝑜/𝑓𝑟𝑜𝑚. 𝐼𝐷

),( AO  . 

where   – the entity that the attractor O is based on. There are attractive, repulsive, 

attractive/repulsive attractors (to, from, to/from, respectively). 



Example. The attractor used by the Monkey Algorithm (MA) and many other MEP-algorithms [9] 

can be specified as 

attractor|
𝑑𝑒𝑡. 𝑎𝑑𝑎𝑝𝑡
𝑡𝑜. 𝐶𝐺

)(SX c .  

The specification defines the attracting attractor 𝑋𝑐 ∈ 𝑅𝑋 of the population 𝑆, which has the 

meaning of the current coordinates |𝑋|-dimensional vector – the Center of Gravity (CG) – of all |𝑆| 
individuals in this population. 

 MEP-algorithms can use a number of other entities: memory; tunnel between two individuals 

or their aggregates; event in a population or association of individuals; channel for exchanging 

information between individuals or their aggregates; message, etc. 

4. MEP-algorithms operators and their specifications 

The main groups of operators are as follows. 

 Initialization and completion of the algorithm:  

init|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝐼𝐷

)(A ; 

stop|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝐼𝐷

)(t . 

Here, the first operator initializes the entity Ξ, the second operator initializes the completion of the 

individuals combination Σ evolution process. 

 Creating, calculating and updating entity attributes. Operators that implement these actions with 

respect to an entity Ξ have the same format: 

creation (calculation, renovation) |
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝐼𝐷

 )(A .      

 Evolution (movement) of the individuals in the search space 𝑅𝑋. The operator is the main 

evolutionary operator of MEP-algorithms. The first of the following specifications 

motion|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑛. 𝐼𝐷

)(A ;   

try_motion|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑛. 𝐼𝐷

)(A ; 

means that the combination Σ = Σ(t) will be transformed into the combination Σ′ = Σ(t + 1) as a 

result of executing the operator. Each individual in the combination Σ is moved using information 

about other 𝑛 individuals in the combination. 

MEP-algorithms often use virtual (trial) movements of individuals. These movements are defined 

by the second of the presented above specifications. 

 Local and global search. Often, MEP-algorithms are hybridizations based on the use of known 

or original local optimization algorithms [1]. Also, MEP-algorithms often include original global 

optimization algorithms. The specifications below describe these algorithms in relation to the 

combination of individuals Σ. 

local_search|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝐼𝐷

)(A . 

global_search|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝐼𝐷

)(A . 

 Managing combinations of individuals. In MEP-algorithms, a large group is formed by 

operators for managing populations of individuals. Examples of operator specifications for this group 

are provided below. The meaning of operators follows from their names and comments. 

association|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑛. 𝐼𝐷

)(},...,,{ 21 An  : ,...},{ 21   . 

deleting|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑛. 𝐼𝐷

),...,(
1 nii ss :  ; n . 



expansion|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑛. 𝐼𝐷

),...,(
1 nii ss : n . 

compression|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑛. 𝐼𝐷

)(A :  ; n . 

ordering|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝐼𝐷

)(A :  . 

shake-up|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝐼𝐷

)(A :  .  

selection|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑛. 𝐼𝐷

)(A :  ; n . 

splitting|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑛. 𝐼𝐷

)}(),...,(),({ 21 AAA n : },...,,{ 21 n  . 

replacement|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝐼𝐷

})(),({},{ 2121 AA  : 1221 ,  . 

replication|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑛. 𝐼𝐷

)(A : };...,;{  ;  n . 

 Other operators can be used in the patterns of MEP-algorithms, including the following: 

comeback|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
Ω. 𝐼𝐷

)( :  . --   - search area 

send|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝐼𝐷 jii sXX )}(,{  . 

receive|
𝑠𝑦𝑠𝑡𝑒𝑚. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝐼𝐷 ijj MXX )}(,{  .-- iM  - "memory" of an individual is  

Operator comeback returns individuals of the combination 𝚺 to a valid area 𝛀 if they go beyond the 

boundaries of this area. Operator send causes the sending of a message {𝑿𝒊, 𝝋(𝑿𝒊)} by individual 𝒔𝒊 to 

other individual 𝒔𝒋, and the operator receive – receiving by individual 𝒔𝒊 the same messages from 

individual 𝒔𝒋. The message may also contain other information. 

5. Example. Particle Swarm Optimization (PSO) algorithm and its pattern [3] 

The problem of multidimensional global unconditional minimization in the initial parallelepiped 

П = (𝑋−;  𝑋+) is considered. 

5.1. Algorithm 

1. Initialization 

1.1. User initialization of free parameters 𝑃𝑓𝑟𝑒𝑒 = {|𝑆|, |𝑋|, 𝑋−, 𝑋+, ∆𝑋−, ∆𝑋+, 𝑏𝐼 , 𝑏𝐶 , 𝑏𝑆}. 

Recommended value: 𝑏𝐼 = 0,7298, 𝑏𝐶 = 𝑏𝑆 = 1,49618. 

1.2. Population initialization. Evenly randomly distributed individuals of the population in the 

region П, and the vectors of their initial “speeds” ∆𝑋𝑖 , 𝑖 ∈ [1: |𝑆|] in the area П∆ = [∆𝑋|∆𝑋− ≤
∆𝑋 ≤ ∆𝑋+] where the inequalities are understood piecemeal. 

2. Population evolution 

The scheme of the individual 𝑠𝑖, 𝑖 ∈ [1: |𝑆|] evolution algorithm has the following form. 

2.1.In the track of the individual 𝑠𝑖, the best point 𝑋𝑖
ℎ𝑏𝑒𝑠𝑡 is chosen such that 

min
𝜏∈[0:𝑡]

𝜑(𝑋𝑖
 (𝜏)) = 𝜑(𝑋𝑖

ℎ𝑏𝑒𝑠𝑡). 

2.2. According to the neighborhood topology used for individuals in the population, the best 

individual 𝑠𝑖∗
𝑁𝐵𝑏𝑒𝑠𝑡 is selected from the nearest current neighbors 𝑁𝐵𝑖

 ⊆ 𝑆 of an individual 𝑠𝑖: 

min
𝑠𝑗∈𝑁𝐵𝑖

𝜑(𝑋𝑗
 ) = 𝜑(𝑋𝑖∗

𝑁𝐵𝑏𝑒𝑠𝑡). 

  



2.3. A randomizing three step operator for moving an individual 𝑠𝑖 is used: 

𝑋′𝑖 = 𝑋𝑖 + ∆𝑋𝑖;                                                           (1) 

∆𝑋𝑖 = 𝑏𝐼∆𝑋𝑖
− + 𝑈|𝑋|(0; 𝑏𝐶)⨂(𝑋𝑖

ℎ𝑏𝑒𝑠𝑡 − 𝑋𝑖) ++𝑈|𝑋|(0; 𝑏𝐶)⨂(𝑋𝑖∗
ℎ𝑏𝑒𝑠𝑡 − 𝑋𝑖).                                           

(2) 

Here ∆𝑋𝑖
− = ∆𝑋𝑖

 (𝑡 − 1); 𝑈|𝑋|(𝑎; 𝑏) – |𝑋|-dimensional vector of random numbers evenly 

distributed in the interval [𝑎, 𝑏]; ⨂ – symbol of the direct multiplication of vectors. 

3. The evolutionary process completion 

Search end conditions are not fixed. 

5.2. Algorithm pattern 

Algorithm Particle Swarm Optimization, PSO  

specifications 

parameters|
𝑑𝑒𝑡. 𝑠𝑡𝑎𝑡
𝑓𝑟𝑒𝑒

{ ,,,,  XXXS   XX , , freeSCI Pbbb },, : ,7298,0Ib   SC bb

1,49618. 

individual|
𝑑𝑒𝑡. 𝑠𝑡𝑎𝑡
 

sXXX  )}(,,{  . 

population|
𝑑𝑒𝑡. 𝑠𝑡𝑎𝑡
 

}]:1[;{ Sisi  S . 

graph|
𝑑𝑒𝑡. 𝑠𝑡𝑎𝑡
𝑅𝑇

)(SNG . -- graph of the individuals neighborhood in the space TR  

|𝑆|
𝑖 = 1

|union|
𝑑𝑒𝑡. 𝑠𝑡𝑎𝑡
𝑅𝑇

),( NGsNB ii . -- neighbors of the individual is   

|𝑆|
𝑖 = 1

|track|
𝑑𝑒𝑡. 𝑠𝑡𝑎𝑡
𝑅𝑇

),0,( tsTr ii . -- trace of an individual is  in space XR  

initialization 

init|
𝑑𝑒𝑡. 𝑠𝑡𝑎𝑡
𝐷𝑀 freeP . 

init|
𝑠𝑡𝑜𝑐ℎ. 𝑝𝑟𝑜𝑔
𝑢𝑛𝑖𝑓𝑜𝑟𝑚

),,,(   XXXXS )0(S . 

|𝑆|
𝑖 = 1

|creation t|
𝑑𝑒𝑡. 𝑠𝑡𝑎𝑡
𝐷𝑀

 ),( NGsNB ii .  

evolution 

|𝑆|
𝑖 = 1

|selection t|
𝑑𝑒𝑡. 𝑠𝑡𝑎𝑡
1. 𝜑_  𝑏𝑒𝑠𝑡

hbest
iii XtsTr ),0,( . -- the best position of an individual is  in its 

track  

|𝑆|
𝑖 = 1

|selection|
𝑑𝑒𝑡. 𝑠𝑡𝑎𝑡
1. 𝜑_  𝑏𝑒𝑠𝑡

)(* NGsNB NBbest

ii  . -- the best individual from among the neighbors of 

the individual is  

|𝑆|
𝑖 = 1

|















).1()(motion

).,,,,,(motion

.
11

.3 *

tXXXX

bbbXXXXX

iiii
statdet

SCI
NBbest

i

hbest
iiii

stoch.stat
uniform

 

termination 

 stop|
𝑎𝑛𝑦
 

)1( tS . 

5.3. ConclusionDiscussion 

The presented pattern allows, first, to get the most general information: the algorithm is a track, 

single-population, not hybrid. Second, the pattern allows to get the following detailed information 

about this algorithm.  



  The specifications section. The algorithm has a small number of deterministic static free 

parameters. The vector of state variables of individuals is composite: 𝑉 = (𝑋, ∆𝑋). The algorithm 

uses the neighborhood of individuals in space 𝑅𝑇. The neighborhood topology is defined by the 

neighborhood graph 𝑁𝐺(𝑆), so that the neighbors of an individual 𝑠𝑖 are the individuals of the 

association 𝑁𝐵𝑖(𝑠𝑖, 𝑁𝐺). Traces (not pheromone) of all individuals in the population have the form 

𝑇𝑟𝑖(𝑠𝑖, 0, 𝑡). 

  The initialization section. The algorithm uses the usual initialization procedures for any MEP-

algorithm for its free parameters and initial states of individuals in the population. In addition, at the 

initialization stage, the DM creates neighborhood graphs 𝑁𝐵𝑖(𝑠𝑖, 𝑁𝐺) for each individual 𝑠𝑖, 𝑖 ∈
[1: |𝑆|]. Free parameters initialization is performed by the DM, initialization of the initial states of 

individuals in the population is performed programmatically. 

  The evolution section. At the beginning of each iteration, the PSO-algorithm determines the 

"historically" best position 𝑋𝑖
ℎ𝑏𝑒𝑠𝑡 of the individual 𝑠𝑖

  in each tracks 𝑇𝑟𝑖(𝑠𝑖, 0, 𝑡), 𝑖 ∈ [1: |𝑆|]. Then, 

for each individual 𝑠𝑖
  𝑖 ∈ [1: |𝑆|], the algorithm finds the best neighboring individual 𝑆𝑖∗

𝑁𝐵𝑏𝑒𝑠𝑡, and 

thus a point 𝑋𝑖∗
𝑁𝐵𝑏𝑒𝑠𝑡 in the search space. The last group of the pattern consisting of two operators 

implements the movement of each individual in the spaces 𝑅𝑋 and 𝑅∆𝑋 by formulas (1), (2). 

  The termination section. The stop operator specifier shows that the PSO-algorithm does not fix 

the iterative optimization process end criteria. 

6. Acknowledgements 

Systematization and formalization of the MEP-algorithms expressive means allows to put in 

practice flatness the problem of automated structural-parametric synthesis of algorithms that are in 

some sense the best for a given class of global optimization problems. 
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