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Abstract 
The article deals with the synthesis of algorithms for constructing an adaptive control system 

with a multilayer neural network in conditions of parametric uncertainty. To solve the 

problem of synthesizing an adaptive control system, an extended system of equations for the 

basic structure of a generalized custom object has been compiled. Stable iterative algorithms 

for calculating control actions based on the methods of minimal iterations and partitioning of 

matrices into blocks are presented. The above algorithms make it possible to produce stable 

pseudo-inversion of matrices and thereby increase the accuracy of adaptive control systems 

with a multilayer neural network under conditions of parametric uncertainty. 
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1. Introduction 

At present, a large number of methods for analysis and synthesis of nonlinear automatic control 

systems have been developed, but each of them gives a solution only for objects of a certain class. 

Taking into account the influence of nonlinearities in any automatic control system encounters great 

difficulties, since one has to deal with the solution of nonlinear differential equations of high orders. 

The choice of this or that method depends on the formulation of the research problem, the type of 

nonlinearity and the order of the differential equation describing the system [1,2]. If the control 

system is described by a differential equation of the first, second or third order, then methods based 

on the study of processes in the phase space are used for the analysis and synthesis of nonlinear 

systems [1-3]. 

The inclusion of a multilayer neural network in a nonlinear dynamic control system expands the 

phase space of this system. This expansion is due to the dynamic nature of the processes of 

information transformation and training of the neural network by the method of back propagation of 

errors [4-6]. 

According to the theory of synergetic control [7], the expansion of the phase space in complex 

nonlinear systems creates prerequisites for the emergence of self-organization processes in them. In 

such a system, the initial external influences in relation to the original control object become the 

internal forces of the “extended” system. The system becomes open in the thermodynamic sense and 

energy, matter, or, as in our case, information from the corresponding source flow through it. 

Synthesized controls are the carriers of this information. Therefore, the control problem in the 

“extended” system is formulated as the problem of forming an algorithm for interaction between the 

components of the extended system, which ensures the occurrence of self-organization processes. 

This algorithm is a multi-layer neural network learning algorithm that minimizes some functional 

 Q , where   – generalized error of both training and management [4]. The structure and 
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properties of the system are determined both by the method of generating this error, depending on the 

available measurement information, and by the choice of the functional     . 

The process of structural synthesis of a control system for a dynamic object using a neural network 

is based on the application of the procedure for analytical synthesis of systems with multilayer neural 

networks based on specified invariant manifolds. The initial data for the synthesis of a control system 

with a neural network include a mathematical model of a control object, a model of the external 

environment and a control goal [6, 8]. 

2. Formation of an extended system of differential equations 

The mathematical model of the object is written in the form of equations of state that determine the 

change in time of the state vector      under the action of measured disturbances      and 

control actions     . It is assumed that a subset of the state vector is available for measurement 

    . In what follows, we restrict ourselves to considering the class of control objects described by 

a system of differential equations linear in control: 

                        , 
             

(1) 

where vector smooth functions     ,    ,     are defined up to a set of parameters. 

The purpose of the control and the procedure for adjusting the weighting coefficients of the 

synaptic connections of the neural network are specified by the local functional Q=Q(y, r), or by the 

desired dynamic characteristics of the synthesized system in the form of  a reference model 

    
         

     , and the function      , is chosen so that the change in x
M

 under the action of 

the setting influence    has the desired character. Taking into account the dimension of the vectors of 

the input    and output y signals, the approximate number of network layers, the number of basic 

elements in the layer and the dimension of the vector of synaptic connections for each element are 

determined. The initial conditions of the weighting coefficients of synaptic connections of the 

network are set [9, 11]. At the first stage of the synthesis, an extended set of equations for the basic 

structure of the generalized custom object is constructed. 

We write the original system of differential equations of the object (1) without taking into account 

the disturbances v of the external environment: 

                     , (2) 

where       – state vector of the control object;            - control action;     ,     – 

smooth functions of their arguments, additional requirements for which are formulated as needed;  – 
vector of unknown parameters. 

Then we will compose a system of differential equations that determine the dynamics of the 

measurement and observation system, suppression of disturbances and the actual model of disturbing 

influences as particular solutions of our differential equations, a system for reproducing and 

calculating control actions: 

          , (3) 

where,      the state vector of dynamical systems external to the object generating disturbances. 

Let us write the coupling equations of the systems of equations (2) and (3) in the form: 

            (4) 

Based on equations (2) - (4), we write down an extended system of differential equations: 

 ̃     ̃  ̃       ̃  ̃   ̃ , (5) 

Where  ̃               – extended system state vector;  ̃       – a new vector of control 

of the extended system. Equations (5) and are an extended system of nonlinear differential equations 

of the generalized tunable object. 



3. Adaptive control system with multilayer neural network 

Consider the problem of synthesizing an adaptive control system with nonlinear affine equations 

for object control (2) and using a multilayer neural network as an adaptive controller. The behavior of 

the control object (2) depends on the parameters  . A set    of possible values of   is also given, 

which determines the class of adaptability. The desired dynamic characteristics of the synthesized 

adaptive system with a reference model are determined by a system of linear differential equations: 

    
      

     
 , (6) 

where   
     – state vector of the reference model; A

M
, B

M
 – matrices of corresponding dimensions, 

the coefficients of which are known and thereby determine the desired state vector of the model   
  

under the input action r. In accordance with the stages of the synthesis of adaptive control systems 

[12-14] for a given system of equations of the object (2) and its reference model (6), the structure and 

algorithm of the regulator of the main loop of the system, the functional diagram of the loop and the 

adaptation algorithm are determined. 

The adaptation algorithm changes the vector of adjustable parameters   
   

 in such a way as to 

ensure the achievement of the control goal for any vector of unknown parameters   belonging to a 

given class   . Let us choose the backpropagation algorithm as such an adaptation algorithm for 

tuning a multilayer neural network [15-17]. 

It can be shown [12, 18] that the control goal is achieved by minimizing the quadratic learning 

functional          by the adaptation algorithm using back propagation of the error. In this case, 

the generalized control error   is chosen as the left side of the homogeneous system of equations, the 

solution of which is satisfied by the desired control actions: 

    
          (7) 

Substituting into (7) the value of the derivative of the state vector of the model (6) and replacing 

the state vector of the model x
M

 with the measured state vector x  of the control object (3), we obtain 

an expression for the generalized error function in the form: 

                   (8) 

The control action u corresponding to (8) can be obtained from the condition     taking into 

account the equations of the object (2): 

       , (9) 

where                   
As noted in [6, 9, 10, 14, 15], the absence of a regular procedure for choosing network parameters, 

such as the number of layers, the number of neurons in a layer, the values of the initial conditions of 

the weighting coefficients of the network, as well as the network tuning factor, which determine the 

stability and quality of transient processes in an adaptive control system, leads to the need for 

preliminary modeling of the synthesized adaptive control system. In the course of modeling, the 

selection of network parameters that satisfy the required quality of transient processes in such a 

system for any vector of unknown parameters   belonging to a given class    is carried out. 

The block diagram of an adaptive control system for a nonlinear dynamic object with an explicit 

reference model and a dynamic multilayer neural network of the “inverse control model” type as an 

adaptive controller is shown in the figure. The reference model is also implemented in the form of a 

dynamic neural network of the “direct learning model” type [9, 14, 15]. 



 
Figure 1: Block diagram of an adaptive system with a multilayer neural network. 

 

4. Stableiterative algorithms for calculating control actions based on the 
methods of minimal iterations 

Direct use of relation (9) can lead to a decrease in the control accuracy of u, since the pseudo-

inverse operation is used here. In the case when the matrix g(x) is a matrix of incomplete rank, then 

the problem under consideration is ill-posed. To give numerical stability to the procedure for pseudo-

inversion of the matrix g(x), it is expedient to use the concepts of regular methods [19-22]. An 

extensive literature is devoted to the discussion of the problems of numerical determination of 

pseudoinverse matrices [23-27]. 

We will apply the  )()( xgxgT
– minimal iteration method to solving the overdetermined system 

(9) [23, 24, 28]. 

For some arbitrary vector     , a sequence of vectors q1, q2,…, where      , is constructed 

using the following formulas: 

                            , (10) 

then for i=2,3… are calculated 

                       , (11) 

where 

   
               

       
    

       

           
                . (12) 

This method is considered purely iterative. It is assumed that all vectors q1, q2,… are nonzero. 

In parallel, i=2,3… the values are calculated 

                         (13) 

where 

   
                    

       
  (14) 

With an exact implementation of the method, if the vectors q1,…,qm are linearly independent, the 

computational process ends at the m-th step, i.e. the modified method, like the original one, is final; 

the result is      . In [28] it was shown that the error functional, which for this method has the 

form that is shown below 

                             ,  

when using modification during iterations, it is guaranteed not to increase at each step. 



However, there is the following complication of the calculation procedure when solving large 

problems. If the matrix g(x) contains elements of large modulus, then its norm is large, and then the 

vectors qi and vi can strongly increase in norm with increasing number i. 

To eliminate this drawback, it is often proposed to modify formulas (10) - (14) by applying the 

normalization of the vectors x at each iteration step [23, 26]. 

Following [24, 28], we present the corresponding formulas for the modified method with 

normalization: 

        
 

  
          |      |                  

further, for i=2, 3, … we calculate 

                          

where 

   
 

  
          |      |    

               

  
    

  

    
   

In parallel for i=1, 2, … 

                 ,  

is computed, where 

   
                    

  
   

To invert the matrix      in (9), it is also advisable to use the method of matrix partitioning 

according to the Frobenius formula [23, 24].We can divide the redefined matrix  xg  into blocks 

     [
  
   

]. (15) 

whereR is a nondegenerate square matrix  | |     и         . Then, the equality          [26] 

is true, and therefore  

     [
 
  ]  

      ,  

     [
 
  ]                           

Therefore 

                [
 
  ]

 

       [
 
  ]

 

   

Applying the formulas             and               , we finally find 

      [
 
  ]                               (16) 

Formula (16) gives an explicit expression for the pseudoinverse matrix       through the blocks 

of       . 

To impart greater numerical stability when implementing the pseudo-inversion algorithm (16), it is 

advisable to represent it in the form: 

      [
 
  ]                   (17) 

where                                                        

   – regularization parameters. 

It is expedient to select the regularization parameters   and   in (17) based on the method of 

model examples [29]. 



5. Conclusion 

The above algorithms make it possible to produce stable pseudo-inversion of matrices and thereby 

increase the accuracy of adaptive control systems with a multilayer neural network under conditions 

of parametric uncertainty. 
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