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Abstract. In this paper the solution of optimal control problems under
actuator excursion and rate limits is considered. One way of address-
ing internal limits of a servomechanism in optimal control problems is
through the introduction of input and state constraints. However, this
modeling approach may introduce unnecessary conservatism in the op-
timal solution of the control problem. In the present work an actuator
formulation based on Mixed Logical Dynamics (MLD) is developed to
address this issue, eliminating the conservatism. These conditions are
implemented through a Mixed-Integer Linear Programming (MILP) for-
mulation with binary variables. The application of the formulation is
illustrated using a model of a general transport aircraft. In this scenario
both the standard optimal control formulation with state constraints and
the novel MILP formulation proposed in this paper are used to maximize
a heading change of the aircraft at a fixed terminal time. It is shown that
the MILP encoding yields a lower cost function value compared to the
standard optimal control formulation at the expense of greater compu-
tational resources.
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1 Introduction
Actuator saturations are ubiquitously present in control systems and limit the
capacity of steering the plant. Such saturations usually originate from the physics
of the operation of the actuators, e.g. the aperture of a valve, which cannot lie
outside the interval between 0 and 100%. Hence, even if the controller commands
an aperture of 110%, this is not physically achievable. If left unaddressed by
the controller, such limitations may compromise the performance or even the
stability of the closed-loop system (see e.g. [10]). Therefore, it is important to
consider these limitations within the design of control laws.

In the optimal control framework, actuator rate or excursion saturations are
usually modeled via reformulation of such limitations as constraints within the
optimization problem, as in [6]. Therefore, the optimal control is determined so
that these constraints are not violated. On the other hand, the saturations are
enforced by the actuators themselves in practice, even if the controls are not
determined to respect them. This effectively limits the set of candidate solutions
to the optimization problem to those that do not violate the constraints a pri-
ori, whereas in reality no solution would violate these constraints by their very
nature. This simplified modeling approach does not come without cost, as the
limitation a priori may entail suboptimal solutions [4].

For example, consider a valve: even if the control entails an aperture of more
than 100% of its capacity, such an aperture cannot be physically achieved. Fur-
thermore, suppose that the same control command is sent to other elements in
the control loop. One can hypothesize that the same command is used to drive
a heater whose limits are not reached by the same command value that would
entail an aperture of 110% of the valve. Therefore, by using a command that is
smaller in magnitude so that the valve is not steered to open more than 100%
a priori, one is also limiting the output of the heater, yielding a possibly sub-
optimal solution. In contrast, the saturation of the valve can be considered in a
hybrid model, in which it behaves linearly between 0% and 100%, but does not
leave this interval in spite of commands in that sense. Then, the command could
exceed the corresponding value and the heater might be driven to its optimal
state, thus enabling an optimal solution to the real control problem. In other
words, if the control could be chosen freely on such constrained arcs of the more
limited actuator, then it could optimally command the remaining one.

In the present paper, the optimal control problem involves deciding com-
mands that drive actuators in closed-loop. An aircraft model is used and focus
is given in the lateral motion, with the actuators being the left and right ailerons,
the rudder, as well as the elevator. Each of these control surfaces is modeled as
a second-order system, driven by the references of the heading as well as the
normal and lateral load factors. The lateral acceleration is regulated to zero
throughout the maneuver and the aim is to optimize the heading command to
achieve the maximum heading change within a given fixed time interval. The
excursion of the control surface actuators and their rates of change are limited.
Moreover, a fault is assumed to take place in the left aileron, whereas the right
one as well as the rudder and elevator operate normally. This fault results in a
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severely reduced excursion for the affected surface. This gives rise to the kind
of problem discussed above, as the saturation is usually modeled by state con-
straints in the optimal control problem, leading to unnecessary conservatism. An
early example of such modeling in the context of aircraft control using Linear
Programming can be found in [8]. Another example can be found in [2], where
the fault is a jamming of one surface, which leads to a necessity of performing a
different control allocation to the remaining actuators.

In this work, the actuator saturations are modeled as physical limits that are
imposed a posteriori, i.e., the excursion is saturated if the command would lead
to a violation. The proposed optimization problem considers the saturation, but
does not regard it as an state constraint, rather treats it using logic: whenever
the limit is to be exceeded, it is saturated and the derivative is set to zero. Thus,
the proposed approach is not as conservative as the usual modeling using state
constraints, but yields an optimization problem that takes the saturation into
account.

The presence of logical clauses in the optimization problem leads to a Mixed
Logical Dynamics (MLD) model, as the control and state variables are subject to
the continuous-time dynamics of the aircraft and servomechanisms, whereas the
saturations introduce logical switching between linear models for the actuators.
For implementing the logic, binary optimization variables are used in conjunction
with the real-valued variables representing the controls and states. The presence
of these binary variables entails a Mixed-Integer Linear Programming (MILP)
problem, a class known to be NP-Complete [5]. Consequently, it is expected that
the computational cost is increased as compared to the usual optimal control
formulation. Therefore, in the proposal the number of binary variables is reduced
by blocking them for a number of successive time steps, which than introduces
a compromise between optimality and computational burden.

The remainder of the present paper is divided as follows. The usual formula-
tion as an Optimal Control Problem (OCP) and the proposed MLD reformula-
tion are presented in Section 2. The aircraft model for the illustrative example
considered in this work is outlined in Section 3. Simulation results comparing
the proposal and the usual OCP are shown and discussed in Section 4. Finally,
concluding remarks and suggestion for future work are given in Section 5.

2 Optimal Control Problem Formulations

2.1 Optimal Control Formulation with Bounded Actuator
States

Let us first introduce an optimal control problem formulation which considers
actuator limits using purely state dependent constraints. The discrete Linear-
Time-Invariant (LTI) model is defined as

xk+1 = Adxk + Bduk, k = 0, . . . , N − 1, (1)
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with the state vectors xk ∈ Rm and xk+1 ∈ Rm corresponding to the instants tk
and tk+1, the control vector uk ∈ Rn at instant tk as well as the discrete system
matrix Ad ∈ Rm×m and the discrete input matrix Bd ∈ Rm×n. The controls are
assumed to be constrained by box bounds of the form:

ulb ≤ uk ≤ uub. (2)

If the actuator position and rate limits are introduced as purely state dependent
constraints in the optimal control problem the state variables at time points
tk, k = 1, . . . , N are subject to general limits:

xlb ≤ xk ≤ xub. (3)

In order to simplify notation the components in the vector xlb (xub) are set to
−∞ (+∞) for all unbounded states. The initial state x0 is fixed to the initial
condition

x0 = x(t0) (4)
and the Mayer type cost function is modeled using a linear combination cTxN , c ∈
Rm of the state vector components at the final state xN . Moreover, final bound-
ary conditions may be imposed on the state at the terminal time point tN :

xf,lb ≤ xN ≤ xf,ub. (5)

Similarly to the state constraints, the limits of all unbounded states xf,lb (xf,ub)
are set to −∞ (+∞).

Considering the optimal control problem on a horizon of N time-steps the
linear problem formulation is:

minimize
xN ,xk,uk, k = 0, . . . , N − 1

cTxN

subject to Adxk + Bduk − xk+1 = 0, k = 0, . . . , N − 1,
x0 = x(t0),

xf,lb ≤ xN ≤ xf,ub,
xlb ≤ xk ≤ xub, k = 1, . . . , N,
ulb ≤ uk ≤ uub, k = 0, . . . , N − 1.

(6)

2.2 Mixed Logical Dynamics Actuator Model
Next, an actuator model based on a MLD formulation for a linear system

xv,k+1 = aTv xk + bTv uk (7)

xp,k+1 = aTp xk + bTp uk (8)
with the system vectors av ∈ Rm and ap ∈ Rm as well as the input vectors bv ∈
Rn as well as bp ∈ Rn is introduced. Moreover, the states xv and xp are compo-
nents of the state vector x. Five different cases are distinguished regarding the
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actuator limits using four binary decision variables di,k ∈ {0, 1}, i ∈ {1, 2, 3, 4}
for each of the instants tk, k = 1, . . . , N . At each time-step tk only one of the
decision variables d1,k, d2,k, d3,k, or d4,k is allowed to be one, i.e. either one of the
decision variables is one and the others are all zero or all decision variables are
zero. In the following, the first binary variable d1,k corresponds to the lower rate
limit and the second variable d2,k corresponds to the upper rate limit. Similarly,
the third variable d3,k corresponds to the lower position limit and the fourth
variable d4,k corresponds to the upper position limit. If any of these variables
is chosen as one the corresponding rate or position limit is regarded as active.
If all variables are zero the actuator is unbounded and evolves according to the
linear model defined in Eqs. (7) and (8). It is important to emphasize that the
binary variables cannot be treated as free variables in view of the coupling with
the states by the implications introduced in Alg. 1. For example, if d1,k = 1 at
some time instant tk, then the corresponding constraints in lines 5–7 would have
to be satisfied, which may not be feasible due to the current state of the system.

In the following, the equality and inequality constraints which need to be
introduced for the actuator model depending on the values of the decision vari-
ables at each discrete time point are described. Let Ceq denote a set of functions
which collects all equality constraints related to the actuator model. Similarly,
let Ciq denote a set of functions for all inequality constraints.

Depending on the choice of the binary variables di,k, i = 1, 2, 3, 4 for each
time-step tk → tk+1 the constraints which need to be added to these sets are
described in Alg. 1. This procedure is called for all k ∈ {0, . . . , N − 1} in a
loop and updates the equality and inequality constraints in the sets Ceq and Ciq
(both initialized as empty sets before the first iteration of the loop). Note that
the anticipated rate and position states x̃p and x̃v (cf. lines 2 and 3 in Alg. 1)
are not components of the state vector. They are rather predictions without
considering the effect of the saturations. Observe that the last constraint which
is added to the set Ciq of inequality constraints

d1,k + d2,k + d3,k + d4,k − 1 ≤ 0 (9)

ensures together with di,k ∈ {0, 1}, i = 1, 2, 3, 4 that either all decision variables
are zero or at most a single variable is one. To model the logical conditions from
Alg. 1 in a Linear Program the big-M formulation is employed [1, 3].

Note that all constraint functions c : Rp → R are of the general form

c(zc) = aTc zc − bc,

with a parameter vector zc ∈ Rp, a constraint vector ac ∈ Rp as well as the
scalar right-hand-side bc ∈ R. For an inequality constraint function c(zc) ≤ 0
the big-M formulation can be written as

c(zc) ≤ C(d)M(c(zc)),

where C(d) is a condition depending on a vector of binary variables d which takes
either the value true or false (respectively zero or one) andM(c(zc)) returns a
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Algorithm 1 Actuator model constraints
1: procedure C(Ceq, Ciq, d1...4,k,xk,xk+1,uk,av,ap,bv,bp,xv,lb,xv,ub,xp,lb,xp,ub)
. Add actuator constraints for a time-step tk → tk+1

2: x̃v ← aTv xk + bTv uk . Predicted rate state
3: x̃p ← aTp xk + bTp uk . Predicted position state
4: if d1,k then
5: Ciq ← Ciq ∪ {x̃v − xv,lb ≤ 0}
6: Ceq ← Ceq ∪ {xv,k+1 − xv,lb = 0}
7: Ceq ← Ceq ∪ {xp,k+1 − aTp xk − bTp uk = 0}
8: else if d2,k then
9: Ciq ← Ciq ∪ {−x̃v + xv,ub ≤ 0}

10: Ceq ← Ceq ∪ {−xv,k+1 + xv,ub = 0}
11: Ceq ← Ceq ∪ {xp,k+1 − aTp xk − bTp uk = 0}
12: else if d3,k then
13: Ciq ← Ciq ∪ {x̃p − xp,lb ≤ 0}
14: Ciq ← Ciq ∪ {x̃v ≤ 0}
15: Ceq ← Ceq ∪ {xp,k+1 − xp,lb = 0}
16: Ceq ← Ceq ∪ {xv,k+1 = 0}
17: else if d4,k then
18: Ciq ← Ciq ∪ {−x̃p + xp,ub ≤ 0}
19: Ciq ← Ciq ∪ {−x̃v ≤ 0}
20: Ceq ← Ceq ∪ {−xp,k+1 + xp,ub = 0}
21: Ceq ← Ceq ∪ {xv,k+1 = 0}
22: else
23: Ceq ← Ceq ∪ {xp,k+1 − aTp xk − bTp uk = 0}
24: Ceq ← Ceq ∪ {xv,k+1 − aTv xk − bTv uk = 0}
25: end if
26: Ciq ← Ciq ∪ {d1,k + d2,k + d3,k + d4,k − 1 ≤ 0}
27: return Ceq,Ciq
28: end procedure
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conservative big-M constant for relaxing the constraint. For this big-M constant
it needs to be ensured that given an admissible region Zc for the parameters zc
the value of the constraint function is always lower than this constant. The
minimum cost function value of the following Linear ProgramM(c(zc))

minimize
zc ∈ Zc

− c(zc)

yields the maximum value of the constraint function. However, it remains to
determine the admissible set Zc for the parameters zc. Observe that for all
constraints the vector zc merely contains the discretized control and state vari-
ables. As such, the admissible set is defined by the limits of these variables.
For the controls these limits are readily available as all inputs to the system
are assumed bounded (cf. Eq. (2)). The same holds for the bounded state vari-
ables (cf. Eq. (3)). For the unbounded state variables xi, i ∈ I := {i : xlb,i =
−∞ or xub,i = +∞} conservative limits can be determined from the following
Linear Program B(m, i)

minimize
xN ,xk,uk, k = 0, . . . , N − 1

meTi xN

subject to Adxk + Bduk − xk+1 = 0, k = 0, . . . , N − 1,
x0 = x(t0),

ulb ≤ uk ≤ uub, k = 0, . . . , N − 1,

where m = 1 for a minimization, i.e. a determination of the lower limit, and
m = −1 for a maximization, i.e. a determination of the upper limit. Moreover,
ei denotes a vector which only has a unit entry at the i-th component and zero
at the remaining components. Here, we require x(t0) to be an equilibrium point
of the system.

The extension to equality constraints is straight-forward due to the fact that
an equality constraint may be expressed using two inequality constraints

c(zc) ≤ C(d)M(c(zc)),
−c(zc) ≤ C(d)M(−c(zc))

and the same procedure for the computation of the big-M constant can be em-
ployed for each of the inequality constraints. For completeness, the full list of
constraints including the corresponding conditions which need to be introduced
using the big-M notation is provided in Table 1.
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Table 1. Constraints and conditions introduced for each time step tk → tk+1
using the big-M notation. The conditions are true if the expressions return zero.

Constraints c (zc) Conditions C(d)
x̃v − xv,lb ≤ 0 1− d1,k
xv,k+1 − xv,lb = 0 1− d1,k
−x̃v + xv,ub ≤ 0 1− d2,k
−xv,k+1 + xv,ub = 0 1− d2,k
xp,k+1 − aTp xk − bTp uk = 0 1− d1,k − d2,k
x̃p − xp,lb ≤ 0 1− d3,k
x̃v ≤ 0 1− d3,k
xp,k+1 − xp,lb = 0 1− d3,k
−x̃p + xp,ub ≤ 0 1− d4,k
−x̃v ≤ 0 1− d4,k
−xp,k+1 + xp,ub = 0 1− d4,k
xv,k+1 = 0 1− d3,k − d4,k
xp,k+1 − aTp xk − bTp uk = 0 d1,k + d2,k + d3,k + d4,k
xv,k+1 − aTv xk − bTv uk = 0 d1,k + d2,k + d3,k + d4,k

3 Aircraft Model
The dynamic model under consideration represents the closed-loop system of
a generic twin-engine, fixed-wing aircraft. The plant, which is described as a
rigid body, is controlled by the primary control surfaces, i.e. the left and right
ailerons as well as the elevator and the rudder. The inner-loop controller for this
aircraft features integral as well as proportional parts and translates a roll angle
command Φc, as well as normal and lateral load factor commands, nz,c and ny,c,
to desired control surface deflections. For each of the primary control surfaces
(ailerons, elevator, and rudder) the dynamics are modeled by linear second-order
models (natural frequency ωn = 40 rad/s, relative damping ζ̄ = 0.707) of the
form

d

dt

[
x(t)
ẋ(t)

]
=

[
0 1
−ω2

n −2ζ̄ωn

] [
x(t)
ẋ(t)

]
+

[
0
ka

]
δ(t), (10)

with a commanded value δ(t) which is fed from the controller to the actuators
with an input gain ka. Note that this model is of the same form assumed in
the MLD formulation upon discretization (cf. Eqs. (7) and (8)). In the present
work, the dynamics are discretized using a forward Euler approximation [7]. The
complete closed-loop aircraft model including the plant, actuator models, and
the inner-loop controller can be described by a nonlinear state space model:

ẋ(t) = f (x(t),u(t)) . (11)

Tables 2 and 3 summarize the states and controls considered in this model re-
spectively. The linear model considered for the optimization is obtained through
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a linearization of the nonlinear model (11) at a horizontal reference flight con-
dition (reference height 2500m, reference velocity 67m/s). For our analysis, the
thrust command is assumed to be held at the respective trim value at all times.
Moreover, a decoupling between the longitudinal and lateral modes is assumed,
so that the optimization considers only the lateral motion. Later, the generated
inputs by the proposed approach in the present paper are fed to the complete
nonlinear model for validation.

It is important to mention that this particular model assumes a single ac-
tuator for the ailerons, as one considers that symmetric commands are sent to
the left and right ailerons. In the present work, the left aileron is assumed to be
in a fault condition, which limits its excursion severely more than the nominal
one, whereas the right aileron and the rudder operate under nominal conditions.
Therefore, in order to separate both ailerons, left and right deflections ξl and
ξr, as well as rates ξ̇l and ξ̇r, respectively, are considered instead of a single
deflection ξ and rate ξ̇. Their effect is taken into account by hypothesizing that
each of these deflections generate half of the moment that would be generated
by an equivalent ξ. Therefore, their coefficient is half of the coefficient of ξ and
then their deflections are summed. Under nominal operation, i.e., when both
ailerons are subject to the same limits, this should yield the same result as a
single aileron symmetric deflection variable applied to them.

Table 2. States of the aircraft model.

Model State Name Symbol

Longitudinal

Integral of the load factor error Inz

Speed V
Angle of attack α
Pitch rate ωy
Pitch angle θ
Elevator rate η̇
Elevator deflection η
Height h

Lateral

Sideslip angle β
Roll rate ωx
Yaw rate ωz
Roll angle Φ
Yaw angle Ψ

Aileron rate ξ̇
Aileron deflection ξ

Rudder rate ζ̇
Rudder deflection ζ
Integral of the roll angle error IΦ
Integral of the yaw angle error IΨ
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Table 3. Controls of the aircraft model.

Model Control Name Symbol
Longitudinal Commanded load factor nz,c

Lateral Commanded lateral acceleration ny,c
Commanded roll angle Φc

4 Results

4.1 Simulation Scenario

The maneuver used to evaluate the proposal in the present paper consists of
minimizing the heading Ψ of the aircraft at a fixed final instant tf = 10 s.
Such a maneuver corresponds to maximizing the turn of the aircraft nose in the
horizontal plane towards the clockwise sense. Constraints are imposed on the
variables related to the excursions and rates of the actuators as indicated in
Table 4. The commanded roll angle is also limited to avoid unrealistic reference
values, thus Φc ∈ [−45, 45] deg. Moreover, the final roll angle was set to Φ(tf ) =
0 deg and the roll ωx and yaw ωz rates were subject to terminal constraints
ωx(tf ) = ωz(tf ) = 0 deg/s, aiming at returning the aircraft to a leveled flight
condition at the end of the maneuver.

For the discretization employed in the optimization problems the time inter-
val [0, tf ] was sampled with N = 500 points at a regular interval. However, for
the case of the proposed MILP approach, such a quantity of samples entails a
large number of binary variables, which are linked to the computational demands
for solving the optimization problem. On the other hand, sampling with lower
frequency might compromise the capability of predicting accurately the system
dynamics, especially of the fastest modes. Therefore, as a compromise solution,
the binary variables were kept constant for 10 samples, enabling the real-valued
variables to be sampled at a suitable frequency and at the same time reducing
the number of binary decision variables to one tenth.

Table 4. Constraints on the actuators for the evaluation maneuver.

Variable Name Symbol Minimal value Maximal value
Left aileron deflection ξl −2 deg 2 deg
Left aileron rate ξ̇l −26 deg/s 26 deg/s
Right aileron deflection ξr −20 deg 20 deg
Right aileron rate ξ̇r −26 deg/s 26 deg/s
Rudder deflection ζ −29 deg 27 deg
Rudder rate ζ̇ −20 deg/s 20 deg/s
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A time limit of 120 s was imposed for the MILP solution, i.e., if after this
period the optimal solution was not yet determined, the solver returned the
feasible solution with the lowest cost so far, if any was available.

4.2 Simulation Results with the Linearized Model
The results using the standard optimal control and MILP modeling can be seen
in Fig. 1 for the heading Ψ , roll Φ and sideslip β angles, as well as the com-
manded roll Φc angle. The achieved final values of the heading are Ψ(tf ) = −9.2
deg imposing the fault as constraints and Ψ(tf ) = −28.4 deg with the MILP
approach. This difference can be attributed to a less conservative usage of the
roll angle with the usual modeling approach, since it does not achieve values
lower than −20 deg, whereas with the MILP approach the minimum value is
lower than −40 deg. The sideslip angle is kept low throughout the maneuver
with both approaches.

Figure 2 depicts the actuator deflections and rates. Both approaches respect
the constraints. However, the MILP scheme enables an asymmetric usage be-
tween the left (faulty) and right (healthy) ailerons. Indeed, the right aileron is
driven to its lower limit of −20 deg between 0 and 2 s. In contrast, without the
MILP formulation, the right aileron is steered only between −2 and 2 deg. It is
important to remark that the MILP approach preserved the constraints imposed
on the left aileron, remaining between −2 and 2 deg. Moreover, one can see that
the availability of more actuator authority in the right aileron leads the MILP
solution to use the rudder more intensively, as larger sideslip angle variations
are seen with the more aggressive curve flown.

4.3 Nonlinear Simulation
For validation purposes, the inputs obtained from the MILP solution were ap-
plied to the nonlinear model around the trimmed condition. It is important
to remark that this model, besides being nonlinear, involves also the complete
dynamics of the aircraft, including the longitudinal movement. The results are
presented and discussed in the present subsection.

The heading achieved in the nonlinear simulation can be seen in Fig. 3 to
be lower in absolute value in the nonlinear simulation, reaching Ψ(tf ) = −26.1
deg, a reduction of 2.3 deg in the span as compared to the linear simulation.
However, this remains substantially higher in absolute value when compared to
the one obtained when the MILP formulation was not used. Regarding the roll
angle, no considerable difference can be noticed in Fig. 3. On the other hand,
the sideslip angle can be seen to reach slightly higher absolute values in the
nonlinear simulation, albeit still acceptable.

In Figure 4, it can be seen that the left aileron deflection remains at the lower
bound for a longer period in the nonlinear simulation as compared to the results
with the linear model. Moreover, the right aileron deflection follows the same
profile obtained in the linear simulation, with small differences due to different
amplitudes and durations of the oscillations in the rate associated to this aileron.
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Fig. 1. Commands and outputs treating saturation as constraints and with the
proposed approach.
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Fig. 2. Actuator deflections and rates treating saturation as constraints and
with the proposed approach.
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The same applies for the rudder. Overall, one can ascertain that the nonlinear
simulation confirms the applicability of the controls determined by the proposal
and their superior performance in terms of the minimization of the heading.
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Fig. 3. Commands and outputs with the proposed approach simulated with the
linear and nonlinear models.
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Fig. 4. Actuator angles and rates with the proposed approach simulated with
the linear and nonlinear models.

5 Conclusion and Future Work

In the present work a MLD formulation for modeling internal limits (rate and
position) for actuation systems was developed. Under this approach the logical
conditions were implemented through a MILP formulation with binary vari-
ables. The additional degree of freedom enabled by this formulation results in
an improved solution compared to the standard optimal control formulation in
the simulation example of the lateral movement of a general transport aircraft.
On the other hand, the proposed MILP encoding yields a higher computational
burden.

Future work could involve increasing the computational efficiency for solving
the resulting MILP problem e.g. through the techniques proposed in [9, 11] for
reducing the number of binary variables in the MILP encoding.
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