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Abstract. Trajectory tracking algorithms have many parameters that
influence their behavior. Adjustment of these parameters is complex be-
cause of their heterogeneous nature and the fact that the tracking quality
depends on the parameters in a complicated and mutual manner. In the
air traffic control area, there are many tracking quality criteria. An op-
timization program for this problem is elaborated on the basis of the
genetic approach. With its use, the tracking quality of the real trajec-
tory tracker has been significantly improved.
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1 Problem Overview

Trajectory tracking algorithms are used in applied problems of surveillance of
a moving object. During surveillance, observations are made at discrete time
instants {tj}. At a time instant ti, a part of an object state vector x(ti) (in the
formula, the “geometrical” part xG(ti) of x is considered) is observed:

y(ti) = xG(ti) + η(ti).

The measurement y(ti) includes the random error η(ti). A trajectory tracking
algorithm maps the sequence {y(ti)}ni=1 of the measurements up to the current
instant tn to an estimate x̂(tn) of the state vector x(tn).

The classical algorithm for the trajectory tracking is the Kalman filter [1].
However, in the case of a maneuvering object, the problem becomes more com-
plicated and demands more complex algorithms. In the area of air traffic man-
agement (ATM), the interacting multiple model (IMM) algorithm is the state-of-
the-art solution [1, 7]. The IMM is based on the hidden Markov model approach.
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The authors collaborate with the NITA company (Russia, Saint-Petersburg,
http://nita.ru) which has the leader position in Russia in the ATM solutions.
This company elaborated its own trajectory tracking program on the basis of
the IMM algorithm. So, NITA is interested in optimizing the program work.

In the present paper, we consider the trajectory tracking program as a black
box and optimize its parameters without using any specific features of the IMM
algorithm (in contrast to, for example, [4]). We keep the straightforward ap-
proach to optimization as we do not want to deviate from the existent peculiari-
ties and parameters of the NITA program since they are grounded by practical
demands of the existent ATM system.

Unfortunately, we cannot fully describe the IMM implementation in the
NITA program and the IMM parameter list since we have the non-disclosure
agreement. But the structure of the IMM variables’ dependence on parameters
is as follows. There are two main parts of the parameters: the first part governs
the process noise covariance matrices Qk (for all k = 1,m, i.e., for all the dy-
namics in the IMM method); the second one tunes the transition probabilities
matrix Π (TPM), whose elements πk` are the probabilities of switches from kth
to the lth dynamics. Due to heterogeneity of the parameters and peculiarities of
the parametrization, the influence of the parameters on the estimate sequence
{x̂(ti)} is complex. For this reason, we decide to use the genetic approach [8]
to the optimization. Genetic algorithms have been applied earlier to the IMM
parameter adjustment, for example, in [10]. The authors also created a program
for optimization of a trajectory tracker by the genetic algorithm (see [2]). In the
present work, the program has been adapted to the real NITA program.

In the optimization, simulated tracks are used. The model dynamics of an
aircraft is as follows: 

ẋN = v cosϕ,

ẋE = v sinϕ,

ϕ̇ = u
v ,

v̇ = w.

(1)

Here, xN , xE are the north and east coordinates of the aircraft in the plane, they
make up together the “geometric” coordinate vector xG(ti) = [xN (ti)xE(ti)]

T.
The symbols v and ϕ are the velocity magnitude and the path angle, they make
up together the vector xV (ti) = [v(ti)ϕ(ti)]

T of the velocity elements. The u
and w are the lateral and longitudinal accelerations.

This dynamics is compliant with the common concepts of the aircraft mo-
tion [1]. The motion with dynamics (1) with constant values of u(t) and w(t)
is well known: if u = w = 0, it is the constant velocity (CV) motion; in the
case of u 6= 0, w = 0, the motion is termed as the coordinated turn (CT); and if
u = 0, w 6= 0, it is the constant acceleration (CA) [1, 7]. We use only these cases
in our simulations with analytic integration of equations (1) from [3]. The NITA
implementation of the IMM is based on the CV, CT, and CA dynamics as well.
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2 Performance Criteria and Optimization Problem

2.1 Performance Criteria in Target Tracking

In the ATM, there are conventional standards of the trajectory tracking quality.
All of them are based on the analysis of the differences {x̂(ti)− x(ti)} between
the estimated x̂(ti) and the true x(ti) states, which are collected along the tra-
jectory. Following the standard [12], these differences are projected to the along
and across directions with respect to the trajectory, making the so-called longi-
tudinal and lateral channels. Also, it is conventional to consider the differences
of the magnitude of velocity and the path angle. The standard [13] introduces
norms on deviations in the channels in terms of the root mean squared (RMS)
error depending on the segment of the aircraft motion and the zone of observa-
tion (an airfield or en-route zone). In addition, in [13], there are directives on
the durations for the transitional process after the start and the end of some
maneuver.

Unfortunately, there are some questions about the usage of the standards in
real and model circumstances.

1. The accuracy of sensors is very different and differs from the one described
in the standards.

2. The maneuverability of aircraft is different too. This influences the estimate
error level and duration of the transitional processes.

3. Transitions between some motion segments are not described in the stan-
dards.

An attempt to answer these questions leads the authors to the use of the Cramér–
Rao lower bound (CRLB) instead of the standards.

2.2 Cramér–Rao Lower Bound as Universal Standard

The CRLB is the lower bound for the mean squared error (in a scalar case) and
the covariance matrix of the error (in a vector case) for the unbiased estimates.
The following matrix inequality holds [6]:

E
{

(x̂(ti)− x(ti))(x̂(ti)− x(ti))
T
}
< J(ti).

The sign < denotes a partial order for symmetric matrices. Let A,B ∈ Sm×m,
x ∈ Rm, then A < B ⇔ xTAx ≥ xTBx. The matrix J(ti) reflects the information
in the preceding measurements {yj}ij=1 and can be calculated in a recurrent way
(see [9]).

Though the estimates of the real algorithms including the IMM are biased,
the CRLB shows the adequate behavior of the estimation error according to
maneuvers and time. In the segments of a constant control, the CRLB specifies
the error level that is hard to outperform. In Figure 1, the CRLB (red) and
RMS deviation of the IMM algorithm (magenta) for the longitudinal channel
are shown for the trajectory with one switch from the CV motion (u = w = 0)
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Fig. 1. The CRLB and the RMS deviation for one simulated trajectory.

to the CT motion (u 6= 0, w = 0) at t = 50 s. As one can see in the figure, the
decrease of the RMS error of the IMM filter after the maneuver is in accordance
with the CRLB behavior.

A recurrent procedure is elaborated that calculates the matrices {J(ti)} for
model tracks in the simulations. The analytical integrals from [3] for dynamics (1)
are used in it.

As the criteria for the optimization program, we decide to use the RMS
deviation for values of this type:

Xl(ti) =
xl(ti)√

eTl (ti)J(ti)el(ti)
,

where

xl(ti) = eTl (ti)(x̂(ti)− x(ti)).

Here, Xl is the relative longitudinal deviation, that is, the ratio of the “absolute”
(in meters) longitudinal deviation xl(ti) and the corresponding “projection” of
the CRLB matrix onto the longitudinal channel defined by the longitudinal
direction vector el(ti) ∈ R4. The vector el(ti) consists of the tangential vector
to the curve xG(·) in the plane xN , xE in the first two coordinates and two
zeros in the second two coordinates (the xV elements). The analogous formulas
are introduced for the lateral (Xn), the velocity magnitude (Xv), and the path
angle (Xϕ) channels using the corresponding directional vectors (en, ev, eϕ).

Besides these “one-dimensional” criteria, we introduce additional two ones.
The RMS deviation of the Mahalanobis distance in the “geometric” coordinates
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is

X2d(ti) =
√

(x̂G(ti)− xG(ti))T(JG(ti))−1(x̂G(ti)− xG(ti)),

and the RMS deviation of the Mahalanobis distance in the total state vector
space is

X4d(ti) =
√

(x̂i − x(ti))T(J(ti))−1(x̂i − x(ti)).

Here, JG(ti) is the upper-left block (two first rows and columns) of the matrix
J(ti), x̂G(ti) is the “geometric” coordinates estimate (two first elements of x̂).

The total number of the criteria (cl, cn, cv, cϕ, c2d, c4d) is nc = 6. In the
case of iterating the criteria, they will be indexed as ci, i ∈ 1, nc.

2.3 Confidence Interval of Criterion

In this section, we consider the longitudinal channel (deviation Xl, criterion cl)
as an example. Calculations for other channels (criteria cn, cv, cϕ, c2d, c4d) can
be made in the same way.

The “true” criterion value cl is the expectation

cl =
√

E {X2
l (t)},

with averaging over the distribution of random measurement errors, measure-
ment instants, and probable trajectories.

For practical usage, we replace the expectation by its plug-in estimator ĉl
(see [11]). It is the empirical sample average

ĉ2l,n =
1∑N

k=1Nk

N∑
k=1

Nk∑
j=1

X2
l (tj , xk(·)) =

1

n

n∑
i=1

X2
l,i , ĉl,n =

√
ĉ2l,n. (2)

Here, N is the number of the trajectories xk(·) that have been processed up to
the instant of ĉl calculation, Nk is the number of the measurements of xk(·), n =∑N
k=1Nk is the total number of the measurements. The Xl values are indexed in

two ways: firstly, by the trajectory and the time instant as Xl(tj , xk(·)), secondly,
by the total index i over all the trajectories as Xl,i. The ĉl,n satisfies (see [11])

ĉl,n
P−−−−→

n→∞
cl , E {ĉl,n} = cl.

Since ĉl,n 6= cl, we need a confidence interval for ĉl,n for precise calculations.
An interval [ĉll,n, ĉ

u
l,n] 3 ĉl,n is a 1− α confidence interval if

lim inf
n→∞

P
{
cl ∈ [ĉll,n, ĉ

u
l,n]
}
≥ 1− α.

In our work, we use the normal-based confidence interval [11] in the form

[ĉll,n, ĉ
u
l,n] =

[
ĉl,n − ŝen(ĉl,n)zα/2, ĉl,n + ŝen(ĉl,n)zα/2

]
,
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where zα/2 is the (1 − (1 − α)/2)-quantile of the standard normal distribution
N (0, 1), and ŝen(ĉl,n) is the estimated standard error of ĉl,n, which can be cal-
culated as follows:

m̂
(4)
l,n =

1

n

n∑
i=1

X4
l,i , ŝen(ĉl,n) =

1

2ĉl,n
√
n

√
m̂

(4)
l,n − (ĉ2l,n)2 .

2.4 Optimization Problem

Denote the parameter vector by a. In our case, there are 16 parameters of the
IMM implementation by NITA; therefore, a ∈ R16. All the parameters are sub-
ject of box constraints: amin ≤ a ≤ amax. The multicriteria optimization problem
can be formulated as follows:{

(cl(a), cn(a), cv(a), cϕ(a), c2d(a), c4d(a))→ min,

amin ≤ a ≤ amax.
(3)

3 Genetic Program

The genetic optimization algorithm is based on the evolution process simulation.
In these terms, there is a population P = {a} consisting of individuals. Every
individual a is connected with some point in the space of parameters to be
optimized (of the trajectory tracker in our case).

In Figure 2, the principal scheme of our genetic optimization program is
shown. The scheme is standard enough [8] and only slightly differs from the
one in our earlier work [2]. The main differences are that the new program is
intended for big data sets processing and that the criteria contain uncertainties
(the confidence intervals).

The “true” criterion values in (3) cannot be calculated; therefore, the esti-
mates ĉi,n(a)(a) are used instead:{(

ĉl,n(a)(a), ĉn,n(a)(a), ĉv,n(a)(a), ĉϕ,n(a)(a), ĉ2d,n(a)(a), ĉ4d,n(a)(a)
)
→ min,

amin ≤ a ≤ amax.

Note that, here, the number of samples n for the estimates ĉi,n(a)(a) depends on
a: n = n(a). This reflects the fact that the estimates ĉi of the criteria are calcu-
lated using different subsets of the whole training trajectory set X = {xk(·)}Nk=1.

In the program, we refuse the idea to calculate the estimates ĉi for a newly
formed individual a using the whole set X . The set X is expected to be very big;
therefore, if we did so, the computational load would be too large. Instead of that,
at every generation b (this is the epoch of the evolution process), we calculate

the “preliminary” estimates ĉi,Nbatch
(a) on a small batch Xb = {xk(·)}Nbatch(b+1)

k=Nbatchb+1

and then upgrade them at the succeeding generations using formulas (2).
The estimates ĉi,n(a)(a) of the criteria are influenced by random errors in

data; therefore, they have uncertainties, which are especially big if the num-
ber n(a) is small. For this reason, the lower and upper confidence bounds ĉli,n(a)(a),
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Fig. 2. Genetic algorithm flowchart.

ĉui,n(a)(a) are used in the selection procedure in order to prevent deletion of the
individuals that might have better values of ĉi in the future. Other operations of
the genetic algorithm (the directed breeding, the crossover, and the mutation)
do not differ significantly from those in [2].

3.1 Selection

The main difference of the new genetic program from the previous one is in
the selection procedure. At the first step, immortal individuals Pd = {ad} are
assigned. An individual ad is assigned to be immortal if it is the minimum point
of some criterion or its upper confidence bound

∃i ∈ 1, nc : ad = argmin
a∈P

ĉi,n(a) or ad = argmin
a∈P

ĉui,n(a).

Only non-immortal individuals of age greater than 3 participate in the second
step of the selection. An individual as is removed from the population if its lower
confidence bound of some criterion is greater than the population minimum of
upper confidence bound of this criterion

∃i ∈ 1, nc : ĉli,n(as) > min
a∈P

ĉui,n(a). (4)

In some cases (at the initial steps), condition (4) is not checked for all the criteria,
but only for the criterion c4d.

4 Simulation Results

There are two sets of simulated trajectories. The first one is the training set for
optimization, the second one is the test set for validation of the optimization
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results (see [5]). The training set consists of 1000 trajectories which are made
from one trajectory by variations of some basic realization of controls u, w. The
controls have to be designed in such a way that the speed will be in the range
from 35 to 300 m/s and there will be segments of maneuver and straight-line
motion. In Figure 3, one training trajectory is shown, the density of black dots
corresponds to the velocity: the time interval between every two consequent dots
is 15 s.

Fig. 3. Trajectory of the training set.

For every trajectory x(·) in the training set, a number of measurement real-
izations are made. The measurement instants are simulated as follows: initially,
they are assigned in a grid with a certain step (can be from 3 to 11 s), then they
vary randomly with the magnitude 0.45 of the grid step. To simulate misses of
measurement, randomly chosen 5% of measurements are excluded from the col-
lection. The measurement random errors ηi are drawn from the centered normal
distribution with the variance matrix that is randomly chosen from 3 versions:
1) the major semi-axis is 200 m, the minor one is 100 m, the angle of the major
semi-axis is 60◦, 2) 300 m, 80 m, 30◦, 3) 500 m, 150 m, 0◦.

The genetic optimization program is adapted for parallel computation. The
simulations were performed using the “Uran” supercomputer of N. N. Krasovskii
Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy
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of Sciences. Using 16 CPU cores, the total computation time were 58 hours. The
computations was stopped at the 2320th generation of the evolution.

The test set consists of 400 trajectories which are created independently in the
same way as the training ones (but without random variations of measurement
instants). In Table 1, the criteria values on the test trajectories are shown.

Table 1. The values of the criteria on the test set.

ĉl,n ĉn,n ĉv,n ĉϕ,n ĉ2d,n ĉ4d,n
Initial parameters 2.86341 3.71362 3.2436 3.32135 5.11065 8.78238
Optimized parameters 0.90609 0.94095 1.15279 1.18451 1.33594 2.64482

An example of the trajectory tracker output in the plane xN , xE for one test
trajectory is shown in Fig. 4. The blue graph corresponds to the initial param-
eters, the green one corresponds to the optimized parameters at the generation
2320 (the best of the c4d criterion), the black dots are the measurements, and
the true (ideal) trajectory is the magenta solid line. The estimated track for the
optimized parameters is evidently closer to the true trajectory than that for the
initial parameters. In Figure 5, the graphs of the RMS deviation of X4d is shown

Fig. 4. A fragment of some test trajectory in the plane xN , xE .
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as a function of time along the trajectory shown in Fig. 4. The averaging of X4d

is performed over 100 realizations of the random errors with the same grid of
measurement instants. The blue solid line is for the initial parameters of the
tracker and the red one is for the optimized parameters at the generation 2320.
The dashed lines are the 0.95-confidence bands. The subfigure below the main
figure shows the controls u(t) (green) and w(t) (blue). Using this subfigure, one
can see that all the places where the behavior of X4d(t) changes are connected
with the switches of the controls.

Fig. 5. Graphs of the RMS deviation of X4d along some test trajectory as a function
of time.

In Figure 6, the analogous RMS error graph for the absolute (in meters,
without division by the value of the CRLB) lateral deviations xn(t) are shown
(the trajectory is the same). As in the case of Fig. 5, the initial parameters
correspond to the blue solid line and the optimized ones correspond to the red
line. The dashed lines show the 0.95-confidence bands. The black line is for the
RMS error of the measurements.

5 Conclusion

As a result of computer simulations, we can say that the trajectory tracking pro-
gram with the optimized parameters shows a smaller RMS error (both absolute
and relative) in each channel and has a faster transition process.

In further work on this project, we plane to use real ATC data for the training
and test trajectory sets. Another point important for our study is the selection
procedure, since its current version claims too high requirements on individuals.
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Fig. 6. The absolute (in meters) RMS deviation in the lateral channel.
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