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Abstract. To solve the initial boundary-value problem for a quasi-static
approximate model of radiative heat transfer, an optimization algorithm
is proposed. The analysis of the optimal control problem is carried out,
the optimality system is obtained. It is shown that the sequence of solu-
tions of extremal problems converges to the solution of a problem with
boundary conditions of Cauchy type for temperature. The results of the-
oretical analysis are illustrated by numerical examples.
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1 Formulation of an Optimal Control Problem

Quasi-stationary radiative and diffusion heat transfer in a bounded domain Ω ⊂
R3 with a boundary Γ = ∂Ω is modeled within the P1–approximation for the
radiative transfer equation by the following initial-boundary value problem
[16, 23]:

∂θ

∂t
− a∆θ + bκa(|θ|θ3 − ϕ) = 0,

−α∆ϕ+ κa(ϕ− |θ|θ3) = 0, x ∈ Ω, 0 < t < T ; (1)

a(∂nθ + θ) = r, α(∂nϕ+ ϕ) = u on Γ ; (2)

θ|t=0 = θ0. (3)
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Here, θ is the normalized temperature, ϕ is the normalized intensity of radiation
averaged over all directions. The positive parameters a, b, κa, and α, describ-
ing medium properties, are determined by a standard way [18]. The function
r(x, t), x ∈ Γ, t ∈ (0, T ) is given, and the unknown function u(x, t), x ∈ Γ, t ∈
(0, T ) is a control. By ∂n we denote the derivative in direction of the outward
normal n.

Extremal problem is to find a triple {θλ, ϕλ, uλ} such that

Jλ(θ, u) =
1

2

T∫
0

∫
Γ

(θ − θb)2dΓdt+
λ

2

T∫
0

∫
Γ

u2dΓdt→ inf (4)

on solutions of the problem (1)-(3). The function θb(x, t), x ∈ Γ, t ∈ (0, T ) and
the regularization parameter λ > 0 are given.

The optimal control problem (1)–(4) if r := a(θb + qb), where qb is a given
function on Σ = Γ × (0, T ), is for small values of λ an approximation of the
boundary-value problem for equation (1) for which the boundary conditions for
the intensity of radiation ϕ are unknown. Instead them the boundary tempera-
ture and flow are set,

θ|Γ = θb, ∂nθ|Γ = qb. (5)

Mathematical modeling of heat exchange accounting for the radiation effects
is used in various applications, e.g., electron microscopic diagnosis [22, 24], glass
manufacturing [13, 14], and laser thermotherapy [20]. A detailed theoretical and
numerical analysis of various formulations of boundary and inverse problems,
as well as control problems for the equations of radiation heat transfer within
the P1–approximation for the radiation transfer equation, is presented in [7–
11, 16, 18, 19, 23]. Interesting boundary value problems associated with radiative
heat transfer are studied in [2–6]. The nonlocal solvability of nonstationary and
steady-state boundary-value problems for the equations of complex heat transfer
without boundary conditions on the radiation intensity and with the conditions
(5) for temperature is proved in [12].

The main results of the work are to obtain a priori estimates for the solution
of the problem (1), (2), on the basis of which the solvability of the optimal control
problem (1)–(4) is proved and an optimality system is derived. It is shown that
the sequence {θλ, ϕλ, uλ} of solutions to the extremal problem (1)–(4) for
λ→ +0 converges to the solution of the initial-boundary value problem (1), (5)
with conditions of Cauchy type for temperature. An algorithm for solving the
control problem is presented.

2 Formalization of the Control Problem

In what follows, we assume that Ω ⊂ R3 is a bounded strictly Lipschitz domain
whose boundary Γ consists of a finite number of smooth pieces. By Ls, 1 ≤ s ≤
∞ we denote the Lebesgue space, and by Hs the Sobolev space W s

2 . Let H =
L2(Ω), V = H1(Ω). By V ′ we denote the dual space of V , and by Ls(0, T ;X)
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the Lebesgue space of functions from Ls, defined on (0, T ), with values in the
space X. The space H is identified with the space H ′ so that V ⊂ H = H ′ ⊂ V ′.
We denote by ‖ · ‖ the standard norm in H, and by (f, v) the value of the
functional f ∈ V ′ at the element v ∈ V , which coincides with the inner product
in H if f ∈ H.

By U we denote the space L2(Σ) with the norm

‖u‖Σ =

(∫
Σ

u2dΓdt

)1/2

.

We will also use the space W = {y ∈ L2(0, T ;V ) : y′ ∈ L2(0, T, V ′)}, where
y′ = dy/dt.

We will assume that

(i) a, b, α, κa, λ = Const > 0,

(ii) θb, qb ∈ U, r = a(θb + qb) ∈ L5(Σ) θ0 ∈ L5(Ω).

Let us define the operators A : V → V ′, B : U → V ′, using the following
equalities, which are valid for any y, z ∈ V , w ∈ L2(Γ ):

(Ay, z) = (∇y,∇z) +

∫
Γ

yzdΓ, (Bw, z) =

∫
Γ

wzdΓ.

The bilinear form (Ay, z) defines the inner product in the space V , and the
corresponding norm ‖z‖V =

√
(Az, z) is equivalent to the standard norm in V .

Therefore, the continuous inverse operator is defined A−1 : V ′ 7→ V. Note that
for any v ∈ V , w ∈ L2(Γ ), g ∈ V ′ the following inequalities hold:

‖v‖2 ≤ C0‖v‖2V , ‖v‖V ′ ≤ C0‖v‖V , ‖Bw‖V ′ ≤ ‖w‖Γ , ‖A−1g‖V ≤ ‖g‖V ′ .

Here, the constant C0 > 0 depends only on the domain Ω.

In what follows, we use the following notation [h]s := |h|ssignh, s > 0, h ∈ R
for the monotone power function.

Definition. The pair θ ∈W,ϕ ∈ L2(0, T ;V ) is called a weak solution of the
problem (1)-(3) if

θ′ + aAθ + bκa([θ]4 − ϕ) = Br, θ(0) = θ0, αAϕ+ κa(ϕ− [θ]4) = Bu. (6)

To formulate the optimal control problem, we define the constraint operator
F (θ, ϕ, u) : W × L2(0, T ;V )× U → L2(0, T, V ′)× L2(0, T, V ′)×H such that

F (θ, ϕ, u) = {θ′+aAθ+bκa([θ]4−ϕ)−Br, αAϕ+κa(ϕ− [θ]4)−Bu, θ(0)−θ0}.

Problem (OC). Find the triple {θ, ϕ, u} ∈W × L2(0, T ;V )× U such that

Jλ(θ, u) ≡ 1

2
‖θ − θb‖2Σ +

λ

2
‖u‖2Σ → inf, F (θ, ϕ, u) = 0.
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3 Solvability of the Problem (OC)

Let us first prove the unique solvability of the problem (1)-(3).

Lemma 1. Let conditions (i), (ii), u ∈ U hold. Then there is a unique weak
solution to the problem (1)–(3) and, moreover,

ψ = [θ]5/2 ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), [θ]4 ∈ L2(0, T ;H).

Proof. Let us express ϕ from the last equation of (6) and substitute it into the
first one. As a result, we obtain the following Cauchy problem for an equation
with operator coefficients:

θ′ + aAθ + L[θ]4 = Br + f, θ(0) = θ0. (7)

Here,

L = αbκaA(αA+ κaI)−1 : V ′ → V ′, f = bκa(αA+ κaI)−1Bu ∈ L2(0, T ;V ).

Let us obtain a priori estimates for the solution of the problem (7), on the
basis of which the solvability of this problem is derived in a standard way. Let
[ζ, η] = ((αI+κaA

−1)ζ, η), ζ ∈ V ′, η ∈ V. Note that the expression [[η]] =
√

[η, η]
defines the norm in H equivalent to the standard one.

Multiplying, in the sense of the inner product of H, the equation in (7) by
(αI + κaA

−1)θ, we obtain

1

2

d

dt
[[θ]]2 + aα(Aθ, θ) + aκa‖θ‖2 + αbκa‖θ‖5L5(Ω) = [Br, θ] + [f, θ]. (8)

The equality (8) implies the estimate

‖θ‖L∞(0,T ;H) + ‖θ‖L2(0,T ;V ) + ‖θ‖L5(Q) ≤ C1, (9)

where C1 depends only on a, b, α, κa, ‖f‖L2(0,T ;H), ‖θ0‖, ‖r‖L2(Σ).

Further, let ψ = [θ]5/2. Note that

(θ′, [θ]4) =
1

5

d

dt
‖ψ‖2, (Aθ, [θ]4) =

16

25
‖∇ψ‖2 + ‖ψ‖2L2(Γ ).

Multiplying, in the sense of the inner product of H, the equation in (7) by
[θ]4 = [ψ]8/5, we obtain

1

5

d

dt
‖ψ‖2 + a(

16

25
‖∇ψ‖2 + ‖ψ‖2L2(Γ )) + (L[ψ]8/5, [ψ]8/5) = (Br+ f, [ψ]8/5). (10)

The equality (10) implies the estimate

‖ψ‖L∞(0,T ;H) + ‖ψ‖L2(0,T ;V ) + ‖[θ]4‖L2(0,T ;H) ≤ C2, (11)

where C2 depends only on a, b, α, κa, ‖f‖L2(0,T ;H), ‖θ0‖L5(Ω), ‖r‖L5(Σ). Further,
let us estimate ‖θ′‖L2(0,T ;V ′) taking into account θ′ = Br+f −aAθ−L[θ]4. Due
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to the conditions on the initial data, it is true that Br, f ∈ L2(0, T ;V ′). Since
θ ∈ L2(0, T ;V ), then Aθ ∈ L2(0, T ;V ′). Let ζ = L[θ]4. Then

αζ + κaA
−1ζ = αbκa[θ]4.

Multiplying, in the sense of the inner product of H, the last equality by ζ, we
obtain

α‖ζ‖2 + κa(A−1ζ, ζ) = αbκa([θ]4, ζ) ≤ α(‖ζ‖2 +
(bκa)2

4
‖[θ]4‖2).

Therefore, ‖ζ‖2V ′ = (A−1ζ, ζ) ≤ ακab
2

4 ‖[θ]4‖2 and, by virtue of the estimates (9),
(11), we obtain

‖θ′‖L2(0,T ;V ′) ≤ ‖Br + f‖L2(0,T ;V ′) + aC1 +
√
ακabC2. (12)

The estimates (9)–(12) are sufficient to prove the solvability of the problem.
Let θ1,2 be solutions of the problem (7), η = θ1 − θ2. Then

η′ + aAη + L([θ1]4 − [θ1]4) = 0, η(0) = 0.

Multiplying, in the sense of the inner product of H, the last equation by
(αI + κaA

−1)η, we obtain

1

2

d

dt
[[η]]2 + aα(Aη, η) + aκa‖η‖2 + αbκa([θ1]4 − [θ1]4, θ1 − θ2) = 0.

The last term on the left-hand side is non-negative and therefore, integrating
the resulting equality over time, we derive η = θ1 − θ2 = 0, which means the
uniqueness of the solution. The lemma is proved.

Theorem 1. Let conditions (i), (ii) hold. Then there is a solution of the problem
(OC).

Proof. Let jλ = inf Jλ on the set u ∈ U , F (θ, ϕ, u) = 0. We choose a minimizing
sequence um ∈ U, θm ∈W, ϕm ∈ L2(0, T ;V ), Jλ(θm, um)→ jλ,

θ′m + aAθm + bκa([θm]4 − ϕm) = Br, θm(0) = θ0,

αAϕm + κa(ϕm − [θm]4) = Bum. (13)

The boundedness of the sequence um in the space U implies, by Lemma 1, the
estimates

‖θm‖L2(0,T ;V ) ≤ C, ‖θm‖L∞(0,T ;L5(Ω)) ≤ C, ‖θ′m‖L2(0,T ;V ′) ≤ C,

T∫
0

∫
Ω

|θm|8dxdt ≤ C, ‖ϕm‖L2(0,T ;V ) ≤ C.
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Here, C > 0 denotes the largest of the constants limiting the corresponding
norms and not depending on m. Passing, if necessary, to subsequences, we con-
clude that there is a triple {û, θ̂, ϕ̂} ∈ U ×W × L2(0, T ;V ),

um → û weakly in U,

θm → θ̂ weakly in L2(0, T ;V ), strongly in L2(Q),

ϕm → ϕ̂ weakly in L2(0, T ;V ).

Moreover, θ̂ ∈ L8(Q) ∩ L∞(0, T ;L5(Ω)).
Convergence results allow us to pass to the limit in (13). In this case, the

passage to the limit in the nonlinear terms follows from the following inequality,
which is valid for ξ ∈ C∞(Q̄):

T∫
0

|([θm]4 − [θ̂]4, ξ)|dt ≤

2 max
Q̄
|ξ|
(
‖θm‖5/3L5(Ω)‖θm‖

4/3
L8(Ω) + ‖θ̂‖5/3L5(Ω)‖θ̂‖

4/3
L8(Ω)

)
‖θm − θ̂‖L2(Q).

Therefore,

θ̂′ + aAθ̂ + bκa([θ̂]4 − ϕ̂) = Br, θ̂(0) = θ0, αAϕ̂+ κa(ϕ̂− [θ̂]4) = Bû,

and wherein jλ ≤ Jλ(θ̂, û) ≤ limJλ(θm, um) = jλ. Thus, the triple {θ̂, ϕ̂, û} is a
solution of the problem (OC).

4 Optimality Conditions

To obtain an optimality system, it is sufficient to use the Lagrange princi-
ple for smooth-convex extremal problems [15, 17]. Let us check the validity
of the key condition that the image of the derivative of the constraint op-
erator F ′y(y, u), where y = {θ, ϕ} ∈ W × L2(0, T ;V ), coincides with space
L2(0, T ;V ′) × L2(0, T ;V ′) × H. It is this condition that guarantees the non-
degeneracy of the optimality conditions. Recall that

F (θ, ϕ, u) = {θ′+aAθ+bκa([θ]4−ϕ)−Br, αAϕ+κa(ϕ− [θ]4)−Bu, θ(0)−θ0}.

Lemma 2. Let the conditions (i),(ii) hold. If ŷ ∈ W × L2(0, T ;V ), û ∈ U is a
solution of the problem (OC), then the following equality is valid:

ImF ′y(ŷ, û) = L2(0, T ;V ′)× L2(0, T ;V ′)×H.

Proof. It is enough to check that the problem

ξ′ + aAξ + bκa(4|θ̂|3ξ − η) = f1, ξ(0) = ξ0, αAη + κa(η − 4|θ̂|3ξ) = f2
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is solvable for all f1,2 ∈ L2(0, T ;V ′), ξ0 ∈ H. Let us express η from the last
equation and substitute it into the first one. As a result, we get the following
problem:

ξ′ + aAξ + 4L(|θ̂|3ξ) = f1 + bκa(αA+ κaI)−1f2, ξ(0) = ξ0. (14)

The unique solvability of the linear problem (14) is proved similarly to Lemma 1.

According to Lemma 2, the Lagrangian of the problem (OC) has the form

L(θ, ϕ, u, p1, p2, q) = Jλ(θ, u) +

T∫
0

(θ′ + aAθ + bκa([θ]4 − ϕ)−Br, p1)dt

+

T∫
0

(αAϕ+ κa(ϕ− [θ]4)−Bu, p2)dt+ (q, θ(0)− θ0).

Here, p = {p1, p2} ∈ L2(0, T ;V ) × L2(0, T ;V ) Is the conjugate state, q ∈ H is

the Lagrange multiplier for the initial condition. If {θ̂, ϕ̂, û} is a solution of the
problem (OC), then by virtue of the Lagrange principle [15, Ch. 2, Theorem 1.5]
the variational equalities hold ∀ζ ∈ L2(0, T ;V ), v ∈ U
T∫

0

(
(B(θ̂ − θb), ζ) + (ζ ′ + aAζ + 4bκa|θ̂|3ζ, p1)− κa(4|θ̂|3ζ, p2)

)
dt+(q, ζ(0)) = 0,

T∫
0

((αAζ + κaζ, p2)− bκa(ζ, p1)) dt = 0,

T∫
0

(λ(û, v)Γ − (Bv, p2)) dt = 0.

Thus, from the obtained conditions, we derive the following result.

Theorem 2. Let the conditions (i),(ii) hold. If {θ̂, ϕ̂, û} is a solution of the
problem (OC), then there is a unique pair {p1, p2} ∈W ×W such that

− p′1 + aAp1 + 4|θ̂|3κa(bp1 − p2) = B(θb − θ̂), p1(T ) = 0,

αAp2 + κa(p2 − bp1) = 0 (15)

and wherein λû = p2|Σ .

5 Approximation of a Problem with Boundary
Conditions of Cauchy Type

Let us consider an initial-boundary value problem for the equations of com-
plex heat transfer, in which there are no boundary conditions on the radiation
intensity:

∂θ

∂t
− a∆θ + bκa([θ]4 − ϕ) = 0, −α∆ϕ+ κa(ϕ− [θ]4) = 0, (x, t) ∈ Q, (16)
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θ = θb, ∂nθ = qb on Σ, θ|t=0 = θ0. (17)

Existence and uniqueness of functions θ ∈ L2(0, T ;H2(Ω)), ϕ,∆ϕ ∈ L2(Q),
satisfying (16), (17) for sufficiently smooth θb, qb are proved in [12]. Let us show
that solutions of the problem (OC) for λ→ +0 approximate the solution of the
problem (16), (17).

Theorem 3. Let the conditions (i),(ii) hold and there is a solution θ, ϕ ∈
L2(0, T ;H2(Ω)) of the problem (16), (17). If {θλ, ϕλ, uλ} is a solution of the
problem (OC) for λ > 0, then as λ→ +0

θλ → θ weakly in L2(0, T ;V ), strongly in L2(Q),

ϕλ → ϕ weakly in L2(0, T ;V ).

Proof. Let θ, ϕ ∈ L2(0, T ;H2(Ω)) be a solution of the problem (16), (17), u =
α(∂nϕ+ ϕ) ∈ U. Then

θ′ + aAθ + bκa([θ]4 − ϕ) = Br, θ(0) = θ0, αAϕ+ κa(ϕ− [θ]4) = Bu,

where r := a(θb + qb). Therefore, taking into account that θ|Γ = θb,

Jλ(θλ, uλ) =
1

2
‖θλ − θb‖2Σ +

λ

2
‖uλ‖2Σ ≤ Jλ(θ, u) =

λ

2
‖u‖2Σ .

Thus,

‖uλ‖2Σ ≤ C, ‖θλ − θb‖2Σ → 0, λ→ +0.

Hereinafter, C > 0 does not depend on λ. The boundedness of the sequence uλ
in the space U implies, by Lemma 1, the estimates

‖θλ‖L2(0,T ;V ) ≤ C, ‖θλ‖L∞(0,T ;L5(Ω)) ≤ C, ‖θ′λ‖L2(0,T ;V ′) ≤ C,

T∫
0

∫
Ω

|θλ|8dxdt ≤ C, ‖ϕλ‖L2(0,T ;V ) ≤ C.

Therefore, one can choose a sequence λ→ +0 such that

uλ → u∗ weakly in U,

θλ → θ∗ weakly in L2(0, T ;V ), strongly in L2(Q),

ϕλ → ϕ∗ weakly in L2(0, T ;V ).

The obtained results on convergence allow, as in Theorem 1, to pass to the limit
as λ→ +0 in the equations for θλ, ϕλ, uλ and then

θ′∗ + aAθ∗ + bκa([θ∗]
4 − ϕ∗) = Br, θ∗(0) = θ0, αAϕ∗ + κa(ϕ∗ − [θ∗]

4) = Bu∗.
(18)
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Wherein θ∗|Γ = θb. From the first equation in (18), taking into account that
r = a(θb + qb), we derive

∂θ∗
∂t
− a∆θ∗ + bκa([θ∗]

4 − ϕ∗) = 0 a.e. in Q, θ∗ = θb, ∂nθ = qb a.e. in Σ.

From the second equation in (18) it follows that −α∆ϕ+κa(ϕ− [θ]4) = 0 almost
everywhere in Q. Thus, the pair θ∗, ϕ∗ is a solution of the problem (16), (17).
Since the solution to this problem is unique [12], then θ∗ = θ, ϕ∗ = ϕ.

6 Numerical Algorithm and Examples

Let us present an algorithm for solving the control problem. Let

J̃λ(u) = Jλ(θ(u), u),

where θ(u) is the component of solution to the problem (1)–(2) corresponding

to the control u ∈ U . According to (15), the gradient of the functional J̃λ(u) is

defined as follows: J̃ ′λ(u) = λu− p2. Here, p2 is the corresponding component of

the conjugate state of the system (15), where θ̂ := θ(u).
The proposed algorithm for solving the problem (OC) is as follows:

Algorithm 1 Gradient descent algorithm

1: Choosing the value of the gradient step ε,
2: Choosing the number of iterations N ,
3: Choosing an initial approximation for the control u0 ∈ U ,
4: for k ← 0, 1, 2, . . . , N do :
5: For a given uk, calculate the state yk = {θk, ϕk}, a solution of the problem

(1)-(3).
6: We calculate the value of the quality functional Jλ(θk, uk).
7: From equations (15), we calculate the conjugate state pk = {p1k, p2k}, where

θ̂ := θk, û := uk.
8: We We recalculate the control uk+1 = uk − ε(λuk − p2)

The parameter ε is chosen empirically so that the value of ε(λuk − p2) is a
significant correction for uk+1. The number of iterations N is chosen sufficient
to satisfy the condition Jλ(θk, uk)−Jλ(θk+1, uk+1) < δ, where δ > 0 determines
the accuracy of the calculations.

The example considered below illustrates the performance of the proposed
algorithm for small, which is important, values of the regularization parameter
λ ≤ 10−12. Note that for the numerical solution of a direct problem with a given
control, the simple iteration method was used to linearize the problem and solve
it by the finite element method. Solving a conjugate system that is linear at
a given temperature is straightforward. For numerical simulation, we used the
solver FEniCS [1, 21].
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Let us compare the work of the proposed algorithm with the results of the
article [12]. The problem is considered in the domain Ω× (−L,L), where Ω =
{x = (x1, x2) : 0 < x1,2 < d} and for large L reduces to a two-dimensional
problem for the computational domain Ω. The following values of the problem
parameters were chosen: d = 1(m), a = 0.92 10−4 (m2/s), b = 0.19 (m/s),
α = 0.0333 (m) κa = 1 (m−1). The parameters correspond to air at nor-
mal atmospheric pressure and temperature 400◦C. The function θb, qb for the
boundary condition (5) are set as follows: θb = θ̂|Γ , qb = ∂nθ̂|Γ , where θ̂ =
(x1 − 0.5)2 − 0.5x2 + 0.75.

An approximate solution to the problem (16), (17) with Cauchy data, pre-
sented in [12] (see Fig. 1), was obtained by solving a fourth-order parabolic
problem for temperature.
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Fig. 1. Temperature field obtained in the article [12].

The solution stabilized after 120 seconds, but the calculations at each time
step were quite expensive [12]. Fig. 2 shows the steady-state temperature field
obtained by the method proposed in the current article.

The presented example illustrates that the proposed algorithm successfully
finds a numerical solution to the problem (16), (17) with the boundary conditions
of the Cauchy type.
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Fig. 2. Temperature field obtained by the proposed algorithm.
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