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Abstract. In this paper, an one-dimensional heat conductivity equa-
tion is considered. Such an equation describes, for example, a wall which
exhibits temperature changes across the thickness, whereas the temper-
ature remains constant along the in-plane directions. The problem of
recovering the unknown temperature at the left end point of the domain
is studied. It is assumed that the temperature and the heat flux are mea-
sured at the right end point of the domain. Using the Laplace transform,
the problem is reduced to an integral equation defining the unknown
temperature at the left end point as function of time. An approximation
of the integral equation yields a linear system defining the values of the
unknown function. Additionally, the graph of the unknown function is
considered as a sequence of segments or overlapping quadratic or cubic
parabolas, and the condition of common tangents at common points of
neighboring parabolas is imposed. The resulting overdetermined system
is solved using the least square method whose fitting function consists of
two parts: a residual responsible for satisfying the integral equation and
a term responsible for the matching of the segments/parabolas. The last
term is multiplied by a regularization parameter that defines the stiffness
of the solution graph. Appropriate values of the regularization parameter
are being chosen as local minimizers of a discrepancy. Numerical experi-
ments show that one of such values provides the best choice. Numerical
simulations exhibit a very exact reconstruction of solutions even in the
case of large measurement errors (up to 10%).
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1 Introduction

Inverse problems, in contrast to stationary and non-stationary direct boundary
value problems, are characterized by unknown boundary conditions on unreach-
able parts of boundaries. Such a situation is typical when studying the heat
transfer in engineering objects that have complicated geometries with holes.
The problem of cooling of a gas turbine casing can be mentioned as an exam-
ple in this connection (see Fig. 1). Measurements give the temperature and the
heat flux density on the outer boundary of a casing, whereas the temperature
on channel walls of the casing should be recovered, see e.g. [1, 5]. Thus, the
missing information about heat conditions in the unreachable part of the casing
is compensated by a redundant condition, e.g. accounting for the heat flux on
the outer casing boundary. Such problems named after Cauchy have been first
considered by Hadamard who has observed that their solutions do not depend
continuously on the given boundary data. Therefore, inverse problems belong to
ill-conditioned ones in the Hadamard sense, [2], which means that small distur-
bances of boundary data cause large errors and oscillations in solutions. Such
instabilities can destroy numerical procedures since the measured values of the
temperature and the heat flux are always affected by errors. For example, the
presence of temperature sensors can essentially disturb the measurement of the
heat flux. To suppress instabilities typical for inverse problems, Tikhonov’s reg-
ularization techniques based on the minimization of fitting functionals are used.
The idea of Tikhonov’s method consists in including a regularization term into
the fitting functional. This provides the uniqueness and physically stipulated
regularity of solutions.

Cauchy problems are being intensively studied because of their practical sig-
nificance, see works [3, 4, 6, 8–11] for an exemplarily overview of stable approxi-
mation methods for solving ill-posed inverse problems. In paper [3], the problem
is reduced to a linear second-kind integral Volterra equation which admits a
unique solution. The method of fundamental solutions is used in paper [9] for
solving a steady-state Cauchy problem. In papers [4] and [6], a finite differ-
ence method supplemented by Fourier transform techniques is applied. Legen-
dre polynomials are used in paper [11] for the solution of an one-dimensional
Cauchy problem. Wavelet-Galerkin method supplemented by the Fourier trans-
form is utilized in paper [10]. The questions of uniqueness of solutions of Cauchy
problems are considered in paper [8].

The purpose of the paper presented is to propose a stable method for solving
an one-dimensional Cauchy problem related to reconstructing the temperature
of one surface of a wall using measurements of the temperature and the heat
flux on the other wall surface. The main features of the method consist in the
reduction of the problem to an integral equation using the Laplace transform,
approximation of solutions by sequences of segments or overlapping quadratic
or cubic parabolas, and imposing the condition of common tangents at com-
mon points of neighboring segments/parabolas, which controls the rigidity of
the graphs of approximate solutions. Numerical simulations show a very exact
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reconstruction of solutions even in the case of large measurement errors (up to
10%).

2 Model Equation

The governing equation and the initial and boundary conditions are the follow-
ing:

ρc · ∂T
∂t

=
∂

∂x

(
λ
∂T

∂x

)
, x ∈ (0, δ) , t > 0, (1)

T (x, 0) = T0 (x) , (2)

T (δ, t) = H (t) , (3)

−λ∂T
∂x

(δ, t) = Q (t) , (4)

T (0, t) = F (t) . (5)

Here, ρ denotes the density, c the relative heat, and λ is the heat conductivity
coefficient. The temperature F (t) is unknown.

Q

Fig. 1. Fragment of a gas turbine casing with a one-dimensional wall permitting the
heat transfer across the thickness only (left); calculation area (right).
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Obviously, the problem described by (1)–(4) is a Cauchy problem because
the boundary conditions (3) and (4) are imposed at the same point x = δ.

For the next considerations, it is convenient to introduce non-dimensional
variables

ϑ =
T

Tmax
, ξ =

x

δ
, τ =

λ

ρc
· t
δ2
, where Tmax = max

x ∈ (0, δ)
t ≥ 0

T (x, t), (6)

to obtain the following non-dimensional formulation of the problem:

∂ϑ

∂τ
=
∂2ϑ

∂ξ2
, ξ ∈ (0, 1), τ > 0, (7)

ϑ(ξ, 0) = ϑ0(ξ) := T0(x)/Tmax, ξ ∈ (0, 1), (8)

ϑ (1, τ) = h (τ) := H(t)/Tmax, τ > 0, (9)

−∂ϑ
∂ξ

(1, τ) = q (τ) :=
δ

λ · Tmax
·Q(t), τ > 0. (10)

Finally, the unknown boundary temperature at ξ = 0 reads

ϑ (0, τ) = χ (τ) := F (t)/Tmax, τ > 0. (11)

3 Analytical Solution

3.1 Laplace Transform

In view of linearity of equations (7)–(10), the Laplace transform can be applied.
Denote

Lϑ (ξ, τ) = ϑ̄ (ξ, s) :=

∞∫
0

ϑ (ξ, τ) · e−sτdτ (12)

and observe that the system of equations (7)–(10) is transformed to the form

s · ϑ̄ (ξ, s)− ϑ (ξ, 0) =
d2ϑ̄

dξ2
, (13)

ϑ̄ (ξ, 0) = ϑ̄0 (ξ) , (14)

ϑ̄ (1, s) = h̄ (s) , (15)

−∂ϑ̄
∂ξ

(1, s) = q̄ (s) . (16)

The unknown boundary condition at ξ = 0 reads

ϑ̄ (0, s) = χ̄ (s) . (17)
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For simplicity, assume that ϑ0 (ξ) = ϑ0 = const. Then the solution of the
direct problem given by (13), (14), (16), and (17) has the form

ϑ̄ (ξ, s) =χ̄ (s) · cosh
√
s (1− ξ)

cosh
√
s

−

q̄ (s) · sinh
√
sξ√

s · cosh
√
s

+
ϑ0
s
·
(

1− cosh
√
s (1− ξ)

cosh
√
s

)
.

(18)

Rewrite the previous equation as

ϑ̄ (ξ, s) =s · χ̄ (s) · cosh
√
s (1− ξ)

s · cosh
√
s
−

s · q̄ (s) · 1

s
· sinh

√
sξ√

s · cosh
√
s

+ ϑ0

(
1

s
− cosh

√
s (1− ξ)

s cosh
√
s

) (19)

and observe that the poles of the right-hand side of (19) are given by the relations

s = 0 and cosh(
√
s) = 0.

Setting
√
s = iµ and observing that cosh(iµ) = cos(µ) yield the following roots

of the equation cosh(
√
s) = 0:

sn = −µ2
n, where µn = (2n− 1) · π

2
, n = 1, 2, . . . .

3.2 Inverse Laplace Transform

Let L−1f and Resxf denote the inverse Laplace transform of f and the residue
of f at x, respectively. The following auxiliary calculations are true:

L−1
[

cosh
√
s (1− ξ)

s · cosh
√
s

]
=

Res
s=0

cosh
√
s (1− ξ)

s · cosh
√
s

+

∞∑
n=1

Res
s=sn

cosh
√
s (1− ξ)

s · cosh
√
s
· es·τ =

1 +

∞∑
n=1

lim
s→sn

(s− sn) · cosh
√
s (1− ξ)

s · cosh
√
s

· esτ =

1− 2

∞∑
n=1

cosµn (1− ξ)
µn · sinµn

· e−µ
2
n·τ =

1− 4

π

∞∑
n=1

sinµnξ

2n− 1
· e−µ

2
n·τ ,

(20)

L−1
[

1

s
· sinh

√
sξ√

s · cosh
√
s

]
= ξ − 2

∞∑
n=1

(−1)
n−1 · sinµnξ

µ2
n

· e−µ
2
nτ , (21)
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L−1 [s q̄ (s)] =q′ (τ) + q0 · δ (τ) , L−1 [s χ̄ (s)] = χ′ (τ) + χ0 · δ (τ) ,(
cf. e.g. L [q′ (τ)] = s · q̄ (s)− q0

)
,

(22)

L−1
[

1

s

]
= η(τ), (23)

where δ (τ) is Dirac’s delta function, η(τ) is the unit step function, q0 = q(0),
and χ0 = χ(0).

Application of the above auxiliary calculations yields the following results:

ϑ (ξ, τ) = L−1
[
ϑ̄ (ξ, s)

]
= ϑ0

[
4

π

∞∑
n=1

sin (2n− 1) π2 ξ

2n− 1
· e−µ

2
nτ

]
+

L−1 [s χ̄ (s)] ∗

[
1− 4

π

∞∑
n=1

sin (2n− 1) π2 ξ

2n− 1
· e−µ

2
nτ

]
−

L−1 [s q̄ (s)] ∗

(
ξ − 8

π2

∞∑
n−1

(−1)
n−1 sin (2n− 1) π2 ξ

(2n− 1)
2 · e−µ

2
nτ

)
=

= ϑ0

[
4

π

∞∑
n=1

sin (2n− 1) π2 ξ

2n− 1
· e−µ

2
nτ

]
+ [χ′ (τ) + χ0 · δ (τ)] ∗ η (τ)−

4

π

∞∑
n=1

sin (2n− 1) π2 ξ

2n− 1
· e−µ

2
nτ ·

τ∫
0

[χ′ (p) + χ0 · δ (p)] · eµ
2
np · dp −

[q′ (τ) + q0 · δ (τ)] ∗ η (τ) · ξ +

8

π2

∞∑
n=1

(−1)
n−1 sin (2n− 1) π2 ξ

(2n− 1)
2 · e−µ

2
nτ ·

τ∫
0

[q′ (p) + q0 · δ (p)] eµ
2
np · dp =

= ϑ0

[
4

π

∞∑
n=1

sin (2n− 1) π2 ξ

2n− 1
· e−µ

2
nτ

]
+ χ (τ) ·

[
1− 4

π

∞∑
n=1

sin (2n− 1) π2 ξ

2n− 1

]
+

2 ·
∞∑
n=1

µn · sinµnξ · e−µ
2
nτ ·

τ∫
0

χ (p) · eµ
2
np · dp −

∞∑
n=1

sin (2n− 1)
π

2
· ξ · e−µ

2
nτ ·

τ∫
0

q (p) · eµ
2
np · dp. (24)

Since
4

π

∞∑
n=1

sin (2n− 1) π2 ξ

2n− 1
= 1

for ξ > 0, the square bracket following χ(τ) vanishes.
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4 Inverse Problem

Henceforth, the case where q(τ) ≡ 0 and ϑ0 = 0 will be considered. Then
equation (24) assumes the form

ϑ (ξ, τ) =

τ∫
0

χ (p) · ψ (ξ, τ, p) dp, ξ ∈ (0, 1), τ ≥ 0, (25)

where

ψ (ξ, τ, p) = 2

∞∑
n=1

µn · sinµnξ · e−µ
2
n(τ−p). (26)

The boundary condition (9) and formula (25) yield the integral equation

τ∫
0

χ (p) · ψ (1, τ, p) · dp = h (τ) (27)

for the determination of χ(τ).

4.1 Approximation of the Integral Equation

Assume that the temperature h(t) is measured with the sampling time ∆τ so
that the values hk = h(τk), τk = k · ∆τ, k = 0, 1, 2, . . ., are available. Then
equation (27) assumes the form

τk∫
0

χ (p) · ψk(p) · dp = hk, with ψk(p) = ψ (1, τk, p) . (28)

Using the sampling χj = χ(τj), j = 0, . . . , k, and choosing a mixing coeffi-
cient Θ ∈ (0, 1), we have

τk∫
0

χ (p) · ψk(p)dp =

k∑
j=1

τj∫
τj−1

χ (p) · ψk (p) dp ≈

k∑
j=1

τj∫
τj−1

[Θ · χj−1 + (1−Θ)χj ] · ψk (p) dp =

k∑
j=1

[Θ · χj−1 · rkj + (1−Θ) · χj · rkj ] =

Θ · χ0 · rk1 + (1−Θ)χk · rkk +

k∑
j=1

χj [Θ · rkj+1 + (1−Θ) · rkj ] =:

k∑
j=0

χjψkj .
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Here, for any k ≥ 1,

rkj =

τj∫
τj−1

ψk (p) dp, j = 1, . . . k,

ψkj = Θ · rkj+1 + (1−Θ) rkj , j = 1, . . . k − 1,

ψk0 = Θ · rk1, ψkk = (1−Θ) rkk.

(29)

Thus, the approximation of (28) can be written as:

k∑
j=0

χjψkj = hk, k = 1, . . .M,

where M defines the time horizon. The matrix form of this system reads

[ψ] {χ} = {h} , dim [ψ] = M × (M + 1), dim {h} = M. (30)

Remark. Use (26) to explicitly obtain

rkj =

τj∫
τj−1

ψ(1, τk, p)dp = 2

∞∑
n=1

µn · sinµn ·
τj∫

τj−1

e−µ
2
n(τk−p)dp =

= 2

∞∑
n=1

sinµn
µn

·
(
e−µ

2
n∆τ ·(k−j) − e−µ

2
n∆τ ·(k−j+1)

)
. (31)

Note that rkj = rk+l,j+l, and hence ψkj = ψk+l,j+l for any l > 0, which saves
the computation efforts.

4.2 A Known Particular Solution

In order to validate the solution of integral equation (27) via approximation (30),
use a known particular solution of equation (7) with the initial value ϑ(ξ, 0) = 0
and the boundary conditions

ϑ (0, τ) = Tb ·
(
1− e−βτ

)
, −∂ϑ

∂ξ
(1, τ)−Bi · ϑ (1, τ) = 0. (32)

Here, Bi is the Biot number.
The solution has the form

ϑ (ξ, τ) =Tb ·
(

1− Bi

Bi+ 1
· ξ
)(

1− e−βτ
)

+

2Tb · β · e−βτ ·
∞∑
n=1

wn (ξ) · 1

p2n − β
−

2Tb · β ·
∞∑
n=1

wn (ξ)− 1

p2n − β
· e−p

2
nτ ,

(33)
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where

wn (ξ) = − sin pnξ

pn
·
(

1− Bi

Bi2 +Bi+ p2n

)
,

and pn are the roots of the equation

tan pn = − pn
Bi
, n = 1, 2, . . . , lim

Bi→0

(
pn −

π

2
(2n− 1)

)
= 0, uniformly in n.

Thus, if Bi = 0, we can set r(τ) = ∂ϑ(1, τ)/∂ξ = 0, h(τ) = ϑ(1, τ), and
χ(τ) = Tb ·

(
1− e−βτ

)
. Therefore, the solution given by approximation (30)

can be compared with χ(τ). Computer experiments show that system (30) is
numerically unstable (see Fig. 2). The instability occurs near to the time hori-
zon M ·∆. Thus, the regularization of solutions of (30) is necessary.

Fig. 2. Oscillations of a solution given by non-regularized system (30).

4.3 Regularization of solutions

Remember that approximate solutions are searched as grid functions assuming
values χj at grid points τj , j = 0, . . .M . The idea of the regularization is to
introduce some rigidity to the graph of the approximation. This can be done by
accounting for approximate first, second, third, or fourth derivatives.

Regularization with the 2nd derivative. Consider two adjacent intervals [τi−1, τi]
and [τi, τi+1] (see Fig. 3) and denote the finite difference approximations of the
left and right first derivatives at τi by χ̃ and ˜̃χ, respectively. Impose the condition

δi = χ̃− ˜̃χ =
χi − χi−1

h
− χi+1 − χi

h
= − 1

h
(χi+1 − 2χi + χi−1) ≈ 0 (34)

that expresses a small jump of the approximate first derivative at τi.
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Fig. 3. Fitting of the approximate first derivatives.

Note that

χi+1 − 2χi + χi−1
h2

= χ
′′

(τi) + 0 (h) , i = 1, 2, . . . ,M − 1,

and therefore

M−1∑
i=1

(
χi+1 − 2χi + χi−1

h2

)2

≈
∫ t

0

(
χ
′′

(τ)
)2
dt =: J1.

The matrix corresponding to the relation (34) has the following form:

[w] =


1 − 2 1

1 − 2 1
· · ·

1 − 2 1

 , dim[w] = (M − 2) ·M, (35)

or

[w] =


−1 1

1 − 2 1
1 − 2 1
· · ·

1 − 2 1

 , dim[w] = (M − 1) ·M,

if the value of χ′(0) is available.

Regularization with the 3rd derivative. Consider now three adjacent intervals
[τi−1, τi], [τi, τi+1], and [τi+1, τi+2] and denote now by χ̃ and ˜̃χ the finite difference
approximations of the second derivative at τi and τi+1, respectively. Impose the
condition

δi = χ̃− ˜̃χ =
χi+1 − 2χi + χi−1

h2
− χi+2 − 2χi+1 + χi

h2
=

1

h2
(χi−1 − 3χi + 3χi+1 − χi+2) ≈ 0

(36)
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that guarantees the closeness of the parabolas shown in Fig. 4 on the common
interval [τi, τi+1].

Fig. 4. Fitting of the approximate second derivatives.

Note that

χi−1 − 3χi + 3χi+1 − χi+2

h3
= −χ

′′′
(τi) + 0 (h) , i = 1, 2, . . . ,M − 2,

and therefore

M−2∑
i=1

(
χi−1 − 3χi + 3χi+1 − χi+2

h3

)2

≈
∫ t

0

(
χ
′′′

(τ)
)2
dt =: J2.

The matrix corresponding to the relation (36) has the following form:

[w] =


1 − 3 3 − 1

1 − 3 3 − 1
· · · · · · · · · · · · · · ·

1 − 3 3 − 1

 , dim[w] = (M − 2) ·M. (37)

Regularization with the 4rth derivative. Consider fourth adjacent intervals formed
by the points τi−2, τi−1, τi, τi+1, τi+2, and two cubic parabolas corresponding to
the points {τi−2, τi−1, τi, τi+1} and {τi−1, τi, τi+1, τi+2}, respectively (see Fig. 5).
Impose the condition

χi−2 − 4χi−1 + 6χi − 4χi+1 + χi+2 ≈ 0 (38)

that guarantees the closeness of the cubic parabolas on the common intervals
[τi−1, τi] and [τi, τi+1].
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Fig. 5. Fitting of the approximate third derivatives.

It easily to see that

χi−2 − 4χi−1 + 6χi − 4χi+1 + χi+2

h4
= χ

′′′′
(τi) + 0 (h) , i = 2, 3, . . . ,M − 2,

and therefore

M−2∑
i=2

(
(χi−2 − 4χi−1 + 6χi − 4χi+1 + χi+2)

h4

)2

≈
∫ t

0

(
χ
′′′′

(τ)
)2
dt =: J3.

The matrix corresponding to the relation (38) has the following form:

[w] =


1 − 4 6 − 4 1

1 − 4 6 − 4 1
· · · · · · · · · · · · · · ·

1 − 4 6 − 4 1

 , dim[w] = (M − 4) ·M. (39)

When solving equation (30), conditions (34), (36), and (38) can be accounted
for by minimizing the following functional (the upper index ς denotes the noise
level in data measured with error):

J ({χ}) = ‖[ψ]{χ} − {h}ς‖2 + α2 ‖[w]{χ}‖2 ,

which can be interpreted as the application of minimum square method to the
system [

[ψ]
α [w]

]
{χ} =

{
{h}ς
{0}

}
. (40)

The optimality condition (the zero first variation of the functional J) reads

1

2
δJ ({χ}) = [ψ]T [ψ]{χ}+ α2[w]T [w]{χ} − [ψ]T {h}ς = 0,

and therefore(
[ψ]T [ψ] + α2[w]T [w]

)
{χ} = [ψ]T {h}ς , rank

(
[ψ]T [ψ] + α2[w]T [w]

)
= M.
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Finally

{χ}ςα =
(

[ψ]T [ψ] + α2[w]T [w]
)−1

[ψ]T {h}ς . (41)

Let [ψ]+ := limε→0([ψ]T [ψ]+εI)−1[ψ]T be the Moore-Penrose-Inverse matrix,
and {χ}+ := [ψ]+{h} a unique Moore-Penrose solution of (30). Estimate the
difference

{χ}+ − {χ}ςα = [ψ]+{h} −
(
[ψ]T [ψ] + α2[w]T [w]

)−1
[ψ]T {h}ς =

[ψ]+{h} −
(
[ψ]T [ψ] + α2[w]T [w]

)−1
[ψ]T {h}+(

[ψ]T [ψ] + α2[w]T [w]
)−1

[ψ]T · ({h} − {h}ς) =(
[ψ]+ −

(
[ψ]T [ψ] + α2[w]T [w]

)−1
[ψ]T

)
· {h}+(

[ψ]T [ψ] + α2[w]T [w]
)−1 · ({h} − {h}ς) .

(42)

Therefore,∥∥{χ}+ − {χ}ςα∥∥2 ≤ ∥∥∥[ψ]+ −
(
[ψ]T [ψ] + α2[w]T [w]

)−1
[ψ]T

∥∥∥
2
· ‖{h}‖2 +∥∥∥([ψ]T [ψ] + α2[w]T [w]

)−1
[ψ]T

∥∥∥
2
· ‖{h} − {h}ς‖2 ≤∥∥∥[ψ]+ −

(
[ψ]T [ψ] + α2[w]T [w]

)−1
[ψ]T

∥∥∥
2
· ‖{h}‖2 +∥∥∥([ψ]T [ψ] + α2[w]T [w]

)−1
[ψ]T

∥∥∥
2
· ς =∥∥[ψ]+ − E (α)

∥∥
2
· ‖{h}‖2 + ‖E (α)‖2 · ς, where

E (α) =
(
[ψ]T [ψ] + α2[w]T [w]

)−1
[ψ]T , rank E = M.

(43)

In numerical computations, the distance ‖{χ}+ − {χ}ςα‖2 will be used for
finding optimal values of α(ς) for given noise levels ς. Moreover, if an exact
stable solution

{
χ0
}

of (30) would be known, say
{
χ0
}

= {χ}+, its rigidity can
be compared with that of the solution searched. This motivates the following
modification of the objective functional:

J
(
{χ} ,

{
χ0
})

= ‖[ψ] {χ} − {h}‖2 + α2
∥∥[w]

(
{χ} −

{
χ0
})∥∥2 (44)

which corresponds to the system[
[ψ]
α [w]

]
{χ} =

{
{h}

α [w]
{
χ0
}} =

{
{h}
{0}

}
+

[
[0]
α [w]

] {
χ0
}
. (45)

Figures 6–9 show simulation results.
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α

‖{
χ
}+
−
{χ
}ς α
‖ 2

Fig. 6. Dependency of the distance between {χ}+ and {χ}ςα on α at fixed error levels ς.
Appropriate values of α are local minimizers of this function. The case of matrix (35)
is considered.

Fig. 7. Comparison of the exact temperature at x = 1 with the temperature recon-
structed from the inverse problem for several appropriate values (local minimizers, see
Fig. 6) of the regularization parameter α. The random noise level ς equals 5.0%. The
case of matrix (35) is considered.
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Fig. 8. Comparison of the exact temperature at x = 0 with the temperature obtained
from the inverse problem for several appropriate values (local minimizers, compare
with Fig. 6) of the regularization parameter α. The random noise level ς equals 5.0%.
The case of matrix (37) is considered.

Fig. 9. Comparison of the exact temperature at x = 0 with the temperature obtained
from the inverse problem for several appropriate values (local minimizers, compare
with Fig. 6) of the regularization parameter α. The random noise level ς equals 5.0%.
The case of matrix (39) is considered.
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5 Concluding Remarks

The paper proposes a practical method of regularization of inverse problems
where a function (a set of functions) of time has to be reconstructed. Such a
function can be approximated by a sequence of segments or overlapping parabo-
las, and the condition of close values of the derivatives of neighboring seg-
ments/parabolas at common points can be imposed. This introduces a rigidity
of the graph of the searched function. Corresponding matrix weighted penalty
terms multiplied by a regularization parameter provide the stabilization of solu-
tions. Numerical experiments show that appropriate values of the regularization
parameters correspond to local minimizers of ‖{χ}+ − {χ}ςα‖2.

Simulations show a good agreement of reconstructed functions with exact
solutions even for the high level (up to 10%) of random disturbances in mea-
surements.
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8. Haò, D.N.: A noncharacteristic Cauchy problem for linear parabolic equa-
tions I: Solvability. Mathematische Nachrichten 171(1), 177–206 (1995).
https://doi.org/10.1002/mana.19951710112

9. Marin, L., Lesnic, D.: The method of fundamental solutions for the Cauchy prob-
lem associated with two-dimensional Helmholtz-type equations. Computers and
Structures 83 267–278 (2005). https://doi.org/10.1016/j.compstruc.2004.10.0050

10. Reginska, T., Eldén, L.: Solving the sideways heat equation by a wavelet-Galerkin
method. Inverse Problems 13(4), 1093–1106 (1997)

11. Shidfar, A., Pourgholi, R.: Numerical approximation of solution of
an inverse heat conduction problem based on Legendre polynomi-
als. Applied Mathematics and Computation 175(2), 1366–1374 (2006).
https://doi.org/10.1016/j.amc.2005.08.040


