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Abstract. We consider the symmetric simple exclusion process in one
dimension as an example of a stochastic particle process exhibiting anoma-
lous diffusion; this process is so slow that the mean-square displacement
of a tagged particle is sub-linear. This implies that the standard mean-
square displacement method (Einstein relation) cannot be applied to
determine the diffusivity for the associated macroscopic equation de-
scribing the hydrodynamic limit. We demonstrate that a recent approach
developed by the authors and collaborators, based on the covariation of
the fluctuations, is applicable to this process and does not only deliver
the transport coefficient, but the entire evolution operator associated
with the formulation of the macroscopic equation as an entropic gradi-
ent flow. Furthermore, the approach relies on fluctuations of the density
field (macroscopic fluctuations) as opposed to particle level data. This
data could in principle be obtained from experimental observations.

Keywords: Anomalous diffusion · Fluctuation-dissipation relation · Fluc-
tuating hydrodynamics.

1 Introduction

Anomalous diffusion is characterised by a nonlinear dependence of the mean
squared displacement (MSD) as a function of time, in contrast with the classical
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diffusion of Brownian particles, where MSD ∝ t (at large times). Examples of
anomalous diffusion include sublinear diffusion observed in biological applica-
tions, such as diffusion in the cell nuclei and membranes; other examples occur
for instance in disordered media, astronomy, fluid mechanics and network the-
ory [10]. A classic paper giving a broad overview on this topic is [5].

Anomalous diffusion poses numerous theoretical difficulties (see, for exam-
ple, [5]). However, the challenges are also of very practical nature. Simulation
of particle processes can quickly become prohibitively expensive. One thus seeks
macroscopic descriptions in form of partial differential equations (PDEs). A com-
mon procedure is to assume phenomenologically the structure of the govern-
ing equation and then determine the transport coefficients appearing in it from
particle simulations. Prominent methods to determine diffusion coefficients are
Green-Kubo relations (based on time-correlation functions) and Einstein rela-
tion (based on the mean square displacement) [7]. However, these methods do
not provide information on the structure of the PDE. Furthermore, the Einstein
relation has as underlying assumption that the MSD scales linearly with time,
MSD ∝ t, and is thus not directly applicable to anomalous diffusion processes.

In this contribution, we show that an alternative approach developed by some
of the authors and their collaborators [6, 9] delivers the full structure of the PDE
(and parameters therein) for an example of anomalous diffusion, namely for the
symmetric simple exclusion process. More specifically, this approach delivers the
operator of the macroscopic evolution equation (in discretised form), written as
a gradient flow of the entropy functional, without making further phenomeno-
logical assumptions on the macroscopic evolution.

We now explain the symmetric simple exclusion process (SSEP) in more
detail. In this process, particles sit on a lattice and jump stochastically to one
of its neighbouring sites with a constant rate, which can be assumed to be one
without loss of generality. The central feature of the process is that such a jump
is only possible if the destination site is empty, which results in every site being
occupied at most by one particle. If the target site is already occupied, then
the particle cannot jump and remains at its current location. Mathematically,
the jump rate from a site X to a neighbouring site X̃ can be expressed as
gX→X̃(η) := 1

2d
η(X)(1 − η(X̃)), where d is the dimension of the space (here,

d = 1), and η(X) is zero (one) if site X is empty (occupied); see [8, Section 2.2]
for further details. In one space dimension, the resulting process is slow – as in a
single-lane motorway, one slow particle is enough to impede the passage of all the
other particles behind, effectively blocking them. Thus (albeit the hydrodynamic
limit is a linear diffusion equation), the individual particles themselves are not
following a Brownian motion on a microscopical level [2]. They are slowed down
by the exclusion condition, which results in a sublinear power law for the mean
square displacement, namely MSD ∝ t1/2.

The methodology of [6] has been shown to be applicable in this context,
though, to determine the governing transport coefficient only. In this contribu-
tion, we show that the method can be extended using the approach of [9] to
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determine the full macroscopic evolution numerically from particle simulations,
assuming the governing entropy is known.

The key requirement for the application of the strategy outlined in [9] is
that the macroscopic evolution is a gradient flow, and that fluctuations around
such limit are Gaussian. This means that the density evolution has the following
thermodynamic structure in the limit of infinitely many particles

∂tρ = K(ρ)
δS
δρ

(ρ) =: Kρ
δS
δρ

(ρ), (1)

where Kρ is a symmetric operator, and δS
δρ is the variational derivative of the

entropy functional, while for large but finite number of particles N , the evolution
shall be formally described by the stochastic partial differential equation of the
form

∂tρ = K(ρ)
δS(ρ)

δρ
+

√
C

N

√
2K(ρ)Ẇt,x, (2)

with Ẇt,x a space-time white noise, and C a constant such that ε = C/N is the
individual lattice site volume. Equation (2) highlights a very important relation
between fluctuations and dissipation: the same operator K appears in the deter-
ministic (macroscopic) part and in the fluctuations. This important connection
precisely lies at the core of the approach in [9].

For the symmetric simple exclusion process, the macroscopic (hydrodynamic)
limit under parabolic scaling is known to be the linear diffusion equation ∂tρ =
∆ρ [8, Section 2.2]. Yet, the linear nature disguises nonlinear features that are
apparent when written in the thermodynamic form, given in Eq. (1). Indeed,
the macroscopic equation is a gradient flow of the entropy (further details in
Section 2), with S being the mixing entropy, i.e.,

S(ρ) = −
∫

[ρ log ρ+ (1− ρ) log(1− ρ)] dx (3)

in dimensionless form, and K the operator K(ρ)ξ := − div(ρ(1− ρ)∇ξ), i.e.,

∂tρ = ∆ρ = −div(ρ(1− ρ)∇δS
δρ

(ρ)) = Kρ
δS
δρ

(ρ). (4)

2 Gradient Flow Structure of the SSEP

In this section, we explain why the formulation (4) is a gradient flow. We include
this calculation as the setting does not seem to be described in the literature,
though readers with a focus on the computational aspects can safely skip this
section.

We show that (4) is the steepest descent in a weighted version of the standard
L2 Wasserstein geometry. The argument is sketched adapting ideas by Benamou
and Brenier [3]; see also [1]. In this context, a gradient flow of a functional S is
defined as the evolution

(∂tρ, s2)K−1 =

∫
δS
δρ
s2 dx, (5)
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where the geometry of the gradient evolution is defined by an inner product,
here symbolically denoted K−1; Eq. (5) is a weak formulation in the sense that
it has to be satisifed for all suitable test functions s2.

We now define the inner product in (5). For the SSEP, the evolution takes
place on the space of probability measures with bounded Lebesgue density
0 < ρ < 1 (almost surely). For such measures, we define formally an inner
product on the tangent space,

(s1, s2)K−1 :=

∫
ρ

1− ρ
∇Ψ1∇Ψ2 dx, (6)

where sj = −div(ρ∇Ψj) for j = 1, 2. (The tangent space can be interpreted
as time derivatives satisfying the continuity equation.) The last equation also
defines the class of test functions in Eq. (5).

We now compute the expressions of the gradient flow evolution for the SSEP.
On one hand, we find with undetermined Ψ1 and Ψ2 and

∂tρ = −div(ρ∇Ψ1) and s2 = − div(ρ∇Ψ2) (7)

for the expression on the left of (5)

(∂tρ, s2)K−1 =

∫
ρ∇Ψ1

1

1− ρ
∇Ψ2 dx. (8)

On the other hand, the expression of the right of (5) becomes with the mixing
entropy (3)∫

δS
δρ
s2 dx = −

∫
log

(
ρ

1− ρ

)
div(ρ∇Ψ2) dx

=

∫
ρ∇ log

(
ρ

1− ρ

)
∇Ψ2 dx =

∫
∇ρ 1

1− ρ
∇Ψ2 dx. (9)

As, in the absence of topological obstructions, any gradient vector field ∇f can
be written in the form

∇f =
1

1− ρ
∇Ψ2 (10)

(by solving div
(

1
1−ρ∇Ψ2

)
= ∆f), the combination of (8) and (9) yields∫
ρ∇Ψ1∇f dx =

∫
∇ρ∇f dx.

With the first continuity equation in (8) and integration by parts, this becomes∫
∂tρf dx =

∫
∇ρ∇f dx,

which is the weak form of the hydrodynamic limit (4) associated with the SSEP.
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For the SSEP, we call Eq. (6) the thermodynamic metric. It is a weighted
version of the classic Wasserstein metric.

We notice that there are different ways to obtain the linear diffusion equa-
tion (4), ∂tρ = ∆ρ as gradient flow. For example, we can use the standard
Wasserstein metric and the standard (Boltzmann) entropy S = −

∫
ρ log ρ dx

(see, for example, [1]), or the thermodynamic metric (6) of the SSEP and the
mixing entropy (3). This shows an advantage of the entropic gradient flow for-
mulation: here the differences between different proceses become visible, even if
they have the same macroscopic limit. For example, Brownian particles define
the classic (Boltzmann) entropy gradient flow, and the SSEP defines the thermo-
dynamic flow of the mixing entropy. Even if the hydrodynamic limit of the two
processes is the same, their fluctuations are different, as evident from Eq. (2).
The entropy-metric pair also records these differences.

3 Computational Framework

3.1 Discretisation of the Dissipative Operator

The partial differential equation (4) and the operator Kρ that the PDE en-
codes are infinite dimensional objects. Thus, their full characterisation from
particle level data either requires infinite amount of data, which is of course
unattainable from numerical simulations, or, alternatively, optimal fits from a
finite library of infinite dimensional operators. To avoid the phenomenology of
the latter approach, we here use particle data to physically infer a discretised
version of the dissipative operator (i.e., now a finite dimensional object), as pre-
viously proposed by the authors in [9]. Specifically, we consider a finite element
approximation scheme of the density field ρ and the thermodynamic driving
force F := δS/δρ of the form,

ρ(x, t) ≈
∑
a

ρa(t)γa(x), and F (x, t) ≈
∑
a

Fa(t)γa(x), (11)

where {γa(x)} is a basis of functions with local support. These satisfy the so-
called partition of unity

∑
a γa(x) = 1, linear field reproduction

∑
a γa(x)xa = x

and Kronecker-Delta property γa (xb) = δab (the latter is particularly convenient
when numerically solving the PDE with Dirichlet boundary conditions). For the
case of SSEP, linear finite element shape functions provide sufficient regularity
to approximate the above fields and are here chosen for their simplicity. For a
regular mesh with nodal spacing ∆x in one dimension, such shape functions can
be written as

γa(x) =
1

∆x
max (|x− xa| , 0) . (12)

Substituting the approximation given in Eq. (11) into the evolution equation
Eq. (4), and further testing it with a shape function γb, one obtains the weak
form of the evolution equations,∑

a

〈γa, γb〉
∂ρa
∂t

=
∑
a

〈Kργa, γb〉Fa, for all b, (13)
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where the bracket 〈·, ·〉 denotes the integral inner product in the L2 space. The
resulting matrix 〈Kργa, γb〉 represents the discretised dissipative operator, which
we will seek to estimate from particle data, with the strategy outlined in Sec-
tion 3.2. We note that for processes satisfying conservation of mass, as the SSEP
of interest here, the discretised operator entries should satisfy the constraint∑

b

〈Kργa, γb〉 = 0. (14)

Equivalently, this constraint can be written as
∑
b 〈Kργb, γa〉 = 0 for symmetric

operators, as the one associated to SSEP or any other purely dissipative processes
with the structure of Eq. (1).

Despite the finite-dimensional nature of 〈Kργa, γb〉, this operator is, a priori,
a function of the entire density profile, or, for the already assumed finite ele-
ment approximation, a function of all the nodal density values. Consequently,
its domain is extremely vast and dependent on the specific simulation domain,
rendering the sought-after approach computationally intractable and of limited
generality. Yet, many physical processes, such as SSEP are governed by local
operators. This property, combined with the fact that the chosen basis functions
have local support, implies that 〈Kργa, γb〉 is only non-zero for the cases where
node a is equal or near to node b (concretely, a = {b−1, b, b+ 1}), and that only
the local density profile is needed to determine the discretised operator. This
important observation allows us to approximate the density profile by means of
a Taylor expansion, and rewrite Eq. (13) as∑

a

〈γa, γb〉
∂ρa
∂t
≈

∑
a∈{b−1,b,b+1}

〈
K(ρa+∇ρ|a(x−xa)+...)

γa, γb

〉
Fa. (15)

For SSEP, we will truncate the Taylor expansion after the liner term, rendering
〈Kργa, γb〉 a function of only two variables: ρa and ∇ ρ|a. From a practical per-
spective, this implies that only linear profiles, encompassing different densities
and gradients, are to be simulated to characterise the discretised operator from
the associated particle data.

Once the discrete operator has been estimated, this may then be used to
simulate the evolution of arbitrary initial profiles, i.e., not necessarily linear
ones. For this, we will use a forward Euler time discretisation scheme, and rewrite
Eq. (15) as

M
ρi+1 − ρi

∆t
= KiFi. (16)

where the superscript ”i” denotes the time step ti, and all quantities have been
written in the form of vectors and matrices. Specifically, ρi =

(
ρia
)
Nγ×1

is the

vector of densities at the nodal positions, ∇ρi =
(
∇ρ|ia

)
Nγ×1

is the vector of

density gradients, and Fi = Fi
(
ρi
)

=
(
F ia
(
ρi
))
Nγ×1

is the vector of thermody-

namic driving forces, where Nγ is the number of basis functions. Furthermore,
the matrix forms of M (independent of time) and the dissipative operator Ki

read
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M = (〈γa, γb〉)Nγ×Nγ = ∆x



2/3 1/6 0 · · · 1/6

1/6 2/3 1/6
. . .

...

0 1/6
. . .

. . . 0
...

. . .
. . .

. . . 1/6
1/6 · · · 0 1/6 2/3


Nγ×Nγ

, (17)

Ki = Ki
(
ρi,∇ρi

)
=
(
Ki
ba

)
Nγ×Nγ

=



Ki
11 Ki

12 0 · · · Ki
1Nγ

Ki
21 Ki

22 K
i
23

. . .
...

0 Ki
32

. . .
. . . 0

...
. . .

. . .
. . . Ki

Nγ−1,Nγ
Ki
Nγ1

· · · 0 Ki
Nγ ,Nγ−1 Ki

NγNγ


Nγ×Nγ

=



K0(Xi
1) Kp(Xi

2) 0 · · · Km(Xi
Nγ

)

Km(Xi
1) K0(Xi

2) Kp(Xi
3)

. . .
...

0 Km(Xi
2)

. . .
. . . 0

...
. . .

. . .
. . . Kp(Xi

Nγ
)

Kp(Xi
1) · · · 0 Km(Xi

Nγ−1) K0(Xi
Nγ

)


Nγ×Nγ

,

(18)

where K0, Kp and Km represent the three operator entries 〈Kργa, γb〉 = Kba

with a = b−1, b, b+ 1, respectively, Xi
a = (ρia,∇ρ|ia), and the periodic boundary

conditions have been considered.

3.2 Fluctuation-Dissipation Statement to Compute the Discretised
Operator from Density Fluctuations

For any given density profile, 〈Kργa, γb〉 can be computed from the covariation
of the rescaled local density fluctuation as [9]

〈Kργa, γb〉 = lim
h↘0

1

2h
E [(Yγa (t0 + h)− Yγa (t0)) · (Yγb (t0 + h)− Yγb (t0))] , (19)

where t0 is an arbitrary initial time that does not affect the result for the op-
erator entries as long as the system has reached a local equilibrium, E [·] repre-
sents the expectation, and Yγ are local rescaled density fluctuations, defined as
Yγ = limε→0 〈ρε − ρ, γ〉 /

√
ε with ρ = E [ρε]. In practice, the particle system is

of course simulated with a finite number of sites, and thus the limit as ε → 0
in Yγ is numerically approximated. Similarly, the right hand side of Eq. (19) is
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computed for a finite time step h, that is sufficiently small to capture the limit
numerically, yet, sufficiently large for the particle system to exhibit some particle
jumps. Finally, the expectation in this same equation will be approximated as the
ensemble average over many but finite realisations of macroscopically identical
density profiles.

3.3 Polynomial Regression of the Discretised Operator

Equation (19) will enable the calculation of the discrete operator

Kba =
〈
K(ρa+∇ρ|a(x−xa))

γa, γb

〉
for a finite set of linear profiles, resulting in a discrete space Vdiscr of ρa and∇ ρ|a.
Yet, its use in Eq. (15) to simulate the evolution of arbitrary density profiles will
require evaluating Kba at different density and density gradient values, for which
a suitable interpolation scheme is therefore needed. Towards this goal, we recall
that the three operator entries Kba with a ∈ {b − 1, b, b + 1} should satisfy the
constraint given by Eq. (14) in order for the evolution to be mass preserving.
Although such identity may not be exactly satisfied for the particle-inferred
operator in Vdiscr, we here perform a polynomial regression on such data that,
by construction, exactly satisfies the conservation constraint. More specifically,
denoting by φj(X) (j = 1, 2, . . . , n) the fitting basis, with X = (ρ,∇ρ), we
approximate the three non-zero entries of the discretised operator as

K0 =

n∑
j=1

a0jφj(X), (20)

Km =

n∑
j=1

amj φj(X), (21)

Kp = −K0 −Km = −
n∑
j=1

(
a0j + amj

)
φj(X), (22)

where K0,Km and Kp have been defined after Eq. (18). For simplicity, we use
polynomials up to order-k as the basis functions, i.e., φj(X) ∈ {1, ρ,∇ρ, ρ2, ρ∇ρ,
(∇ρ)2, ..., ρk, ..., (∇ρ)k}. Specifically, we will use k = 4 to fit the discrete operator
data for SSEP.

Towards the goal of finding the optimal fitting parameter a0j and amj , we

denote the data points from the numerical simulation as {X0
i ,K

0
i } with i =

1, ..., N0 for the diagonal entry Kbb, {Xm
i ,K

m
i } with i = 1, ..., Nm for the sub-

diagonal entry Kb,b−1, and {Xp
i ,K

p
i } with i = 1, ..., Np for the super-diagonal

entry Kb,b+1, where N0, Nm, Np are the number of data points for the three
entries, respectively. We then define the loss function L as the sum of the least
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square error for all three entries, i.e.,

L =
1

2

N0∑
i=1

 n∑
j=1

φj(X
0
i )a0j −K0

i

2

+
1

2

Nm∑
i=1

 n∑
j=1

φj(X
m
i )amj −Km

i

2

+
1

2

Np∑
i=1

− n∑
j=1

φj(X
p
i )
(
a0j + amj

)
−Kp

i

2

. (23)

The minimum of the loss function can be analytically computed by setting its
partial derivatives with respect to a0 and am to zero, i.e.,

∂L

∂a0
= Φ0T

(
Φ0a0 −K0

)
+ ΦpT

[
Φp
(
a0 + am

)
+ Kp

]
= 0, (24)

∂L

∂am
= ΦmT (Φmam −Km) + ΦpT

[
Φp
(
a0 + am

)
+ Kp

]
= 0. (25)

We remark that the above equations use the matrix/vector forms for the fit-
ting parameters a0 = (a0j )n×1, am = (amj )n×1, the operator entries K0 =

(K0
j )N0×1, Km = (Km

j )Nm×1, Kp = (Kp
j )Np×1, and the basis functions Φ0 =

(φj(X
0
i ))N0×n, Φm = (φj(X

m
i ))Nm×n, Φp = (φj(X

p
i ))Np×n. Denoting

Φ =

(
Φ0TΦ0 + ΦpTΦp ΦpTΦp

ΦpTΦp ΦmTΦm + ΦpTΦp

)
,

a =

(
a0

am

)
, and b =

(
Φ0TK0 −ΦpTKp

ΦmTKm −ΦpTKp

)
,

(26)

Equations (24)–(25) can be equivalently written in compact form as

Φa = b, (27)

delivering a simple linear system of equations from which the fitting parameters
a can be obtained. Alternatively, a constrained least-square solver available in
some commercial packages could be used to find the optimal fitting parameters.

4 Numerical Results

4.1 Discretised Operator from Particle Fluctuations

In order to compute the operator entries numerically from density fluctuation
using Eq. (19), we use the lattice kinetic Monte-Carlo (KMC) method [4], imple-
mented in C++, to simulate the particle jumps for SSEP over a unit interval with
Nsites = 5000 sites (i.e., ε = 1/5000). We perform simulations with 43 different
initial linear (or piecewise linear) density profiles, which results in the discrete
space Vdiscr shown in Fig. 1, with data points within the range of ρ ∈ [0.05, 0.95]
and ∇ρ ∈ [−3, 3].
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Fig. 1. The probed discrete data space Vdiscr of (ρ,∇ρ) used to evaluate the discretised
operator.

For each initial profile, we perform R = 105 realisations using the strategy
of [6] aimed at partially alleviating the computational burden associated to the
equilibration time (this strategy requires additional parameters, which are here
chosen as R1 = 50, R2 = 2000, equilibration time tprep − tini = 4 × 10−6 and
randomisation time t0−tprep = 4×10−9). The actual time interval over which the
covariation in density fluctuations are computed is h = 4× 10−10. Additionally,
Nγ = 50 shape functions are used to discretise the macroscopic domain.

The results for the three operator entries 〈Kργa, γb〉 with a ∈ {b− 1, b, b+ 1}
are shown in Figs. 2(a)–(c) (blue circles) together with the analytical surfaces,
obtained by performing a Taylor expansion on xa as

〈Kργb, γb〉 = 〈m∇γb,∇γb〉 = 2
mb

∆x
+

1

3

∂2m

∂x2

∣∣∣
b
∆x+O(∆x2), (28)

〈Kργb−1, γb〉 = 〈m∇γb−1,∇γb〉 = −mb−1

∆x
− 1

2

∂m

∂x

∣∣∣
b−1
− 1

6

∂2m

∂x2

∣∣∣
b−1

∆x

+O(∆x2), (29)

〈Kργb+1, γb〉 = 〈m∇γb+1,∇γb〉 = −mb+1

∆x
+

1

2

∂m

∂x

∣∣∣
b+1
− 1

6

∂2m

∂x2

∣∣∣
b+1

∆x

+O(∆x2), (30)

with

ma = ρa(1− ρa),
∂m

∂x

∣∣∣
a

= ∇ρ|a (1− 2ρa) , and
∂2m

∂x2

∣∣∣
a

= −2 (∇ρ|a)
2

+O(∇ρ2).

(31)
The diagonal entry Kbb is symmetric with respect to ρ = 0.5 and is indepen-
dent with ∇ρ, while the two off-diagonal entries are non-symmetric and have
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Fig. 2. (a–c) Numerical results (blue circles) for the discretised operator entries〈
K(ρa+∇ ρ|a(x−xa))

γa, γb
〉

with a ∈ {b − 1, b, b + 1} as a function of density ρ and

density gradient ∇ρ (at node a) in Vdiscr, shown in Fig. 1. The analytical predictions
(smooth surfaces) based on Eqs. 28–30 are jointly shown. (d–f) Corresponding relative
errors (in %), denoted as errKba with a ∈ {b − 1, b, b + 1}, for the numerical results,
between the data and analytical results (blue circles) together with the relative errors
for the polynomial regression of data (smooth surface with non-zero relative error).

an opposite dependence due to the mass conservation constraint. The relative
error between the data points and the analytical predictions is quantified in
Figs. 2(d)–(f), where the relative error of the fit, following Section 3.3, is also
shown. As it may be observed in the figure, the fourth order polynomial regres-
sion with mass conservation strictly enforced significantly decreases the error:
while the standard deviation of the relative errors of the original data points
for three entries Kbb,Kb,b+1 and Kb,b−1 are 1.4%, 2.3% and 2.5%, respectively,
these get reduced to 0.27%, 0.44% and 0.31%, respectively, for the polynomial
fit. Similarly, the maximum relative errors decrease from 7.9%, 12.7% and 21.6%,
to 2.6%, 5.7% and 3.8%. We remark that the relative errors are larger near ρ = 0
and ρ = 1, where the analytical values of operator entries are close to 0, and the
relative errors thus become singular. Overall, the numerical strategy outlined
in this section delivers a high accuracy for the discretised dissipative operator
governing the simple exclusion process.

4.2 Macroscopic Simulation

We now test the capability of the particle-inferred operator to predict the density
evolution for an arbitrary initial profile. Concretely, we consider an initial density
ρ(x, 0) = 0.5 − 0.3 cos(4πx) over the unit interval x ∈ [0, 1], discretised with
Nγ = 50 shape functions (i.e., ∆x = 1/Nγ = 0.02). This profile is evolved
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using the forward Euler scheme described in Eq. (16) with ∆t = ∆x2/1000, the
discrete operator obtained in Section 4.1 and the analytical driving force, given
by the entropy in Eq. (3). Periodic boundary conditions are considered, and the
system is evolved till almost reaching an equilibrium state with a flat density
profile at the average initial density.

Snapshots of the evolution are represented in Fig. 3, together with the an-
alytic PDE (with identical spatio-temporal discretisation, and discretised op-
erator given by Eqs. (28)–(31)), and the average over multiple realisations of
long-time KMC simulations. Due to the large computational cost of these KMC
simulations, these are performed using Nsites = 1000 sites and averaging over
R = 200 realisations (we recall that the discretised operator was inferred from
particle simulations using Nsites = 5000). The numerical results depict an excel-
lent agreement between the three curves, making them almost indistinguishable
in the figure.

Fig. 3. Snapshots of the density evolution for the symmetric simple exclusion process
at times t = 0 (a), 0.002 (b), 0.004 (c), 0.006 (d), 0.01(e), and 0.02 (f). Such evolution
is computed with three different strategies: PDE with analytic operator, PDE with
particle-inferred operator, and long-time KMC simulations.

The present contribution therefore shows that the computational strategy
of [9] is able to extract the dissipative operator for the symmetric simple ex-
clusion process, an anomalous diffusion process, and hence, it can be used to
predict the non-equilibrium macroscopic evolution of arbitrary initial profiles.
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