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Abstract. The paper describes a mathematical model of blood flow in
capillaries with accounting for the endothelial surface layer (ESL). The
influence of ESL is modeled by a boundary layer with zero flow velocity.
Numerical simulations for different levels of the discharge hematocrit are
conducted using the finite element method. The reliability of the results
obtained is verified using known experimental data.
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1 Introduction

Modeling blood circulation in human brain requires understanding the dynamics
of blood flow both in the entire vascular network and in an individual vessel.
Assuming the blood flow in a vessel as a moving laminar Newtonian fluid, we
describe it by the Poiseuille’s law [16]:

Q =
π

128

D4

Lµ
∆p. (1)

Here, the flow Q (volume flow rate) through a cylindrical tube is a function of
the pressure difference ∆p, the tube diameter D, and the length L of the tube.
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The dynamic viscosity µ is a material property of the liquid, which reflects the
internal resistance to shearing motions. This law is a reasonable approximation
for the flow in large blood vessels. As the diameter of the blood vessel decreases,
the behavior of the blood flow increasingly deviates from the Poiseuille’s law. For
small vessels, e.g. for capillaries, the blood cannot be considered as continuous
fluid with a fixed viscosity. Instead, it is regarded as plasma with suspended
red blood cells (RBCs), also called erythrocytes. Other elements of blood, as
for example, white blood cells and platelets have negligible effects on the blood
flow due to their tiny volume fractions. Thus, the blood in a microvessel can
be considered as a two-phase liquid consisting of plasma and erythrocytes [2, 3],
wherein the RBCs phase is modeled by a high viscosity substance. Numerical
realization of the two-phase model of blood flow in capillaries can be carried out
using the finite element method (see, e.g., [3]).

The RBCs have a tendency to migrate away from the vessel walls to the
centerline, which causes the formation of cell-free regions near the vessel walls.
Since the velocity increases towards the vessel centerline, the velocities of RBCs
are higher than the average blood velocity. This means that there is a difference
between the tube hematocrit (the volume fraction of RBCs in the vessel at a
given time instant) and the discharge hematocrit (the volume fraction of RBCs
collected at the end of the tube at a given time period); the latter is higher
than the tube hematocrit. This phenomenon is called F̊ahræus effect [14]. The
discharge hematocrit level has a significant impact on the parameters of blood
flow in microvessels [14–16].

As noted above, Poiseuille’s law does not apply to microvessels. However, to
estimate the resistance to blood flow in microvessels, it is possible, on the base
of (1), to define the apparent or effective viscosity of blood, that is, the viscosity
of a Newtonian fluid that would give the same volume flow rate for a given tube
geometry and pressure difference. According to (1), the apparent viscosity is
determined as

µapp =
π
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L

∆p

Q
. (2)

By calculating the blood flow Q for a given pressure drop ∆p using the finite
element method, we can find the apparent viscosity by formula (2) and compare
it with experimental data to estimate the adequacy of the mathematical model.

Note that the microcirculatory hemodynamic parameters (e.g., on the appar-
ent viscosity and flow resistance) are significantly influenced by the endothelial
surface layer (ESL). The effect of ESL on blood circulation, as well as its charac-
teristics are discussed in [12–14, 16]. Following [13], the term “Endothelial surface
layer” (ESL) is used for a boundary layer in which the plasma motion is signifi-
cantly retarded. In particular, the ESL includes the glycocalyx layer. A. Copley
studied the endothelium-plasma interface and developed a concept in which an
immobile layer of plasma at the vessel wall is present [4, 5]. In the present paper,
the influence of ESL on the apparent viscosity is investigated by means of the
boundary layer with zero velocity.
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Construction of a mathematical model of blood flow in microvessels account-
ing for the influence of ESL allows us to determine adequate vessels resistances
in the brain capillary network. It is important to calculate the cerebral pressure
distribution, for example, using the algorithm proposed in [2]. In particular, it
can be applied to find most dangerous pressure gradients to estimate the risk of
bleeding in the germinal matrix of preterm infants.

2 Experimental Observations of the Apparent Viscosity

The dependence of the relative apparent viscosity µrel (the ratio of apparent
viscosity to plasma viscosity) on the discharge hematocrit and vessel diameter
both in vitro and in vivo is provided by T. Secomb and A. Pries [15]. The in
vitro data corresponding to blood flow in a glass tube are represented by the
following equation:

µrel = 1 + (µ0.45 − 1)
(1−HD)C − 1

(1− 0.45)C − 1
, (3)

where
µ0.45 = 220 exp(−1.3D) + 3.2− 2.44 exp

(
−0.06D0.645

)
(4)

and

C = (0.8 + exp(−0.075))(−1 + (1 + 10−11D12)−1) + (1 + 10−11D12)−1. (5)

In these equations, D denotes the diameter of the vessel (glass tube) in µm,
and HD is the discharge hematocrit. The parameter µ0.45 is the viscosity for
HD = 0.45 which is a typical hematocrit for humans.

The plots of the relative viscosity obtained by the formula (3) (in vitro data)
for the levels of discharge hematocrit of 0.1, 0.3, and 0.5 are shown in Fig. 1.

Similar measurements in vivo are difficult due to technicalities of measuring
the pressure drop in capillaries. Therefore, it was assumed that the reduction of
the viscosity with increasing diameter of living vessels was similar to that in glass
tubes. However, the estimates of the apparent viscosity obtained by Lipowsky
et al. [7, 8] for blood flow in microvessels were much higher than expected from
the in vitro data. An alternative parametric description that is consistent with
the observed behavior in vivo was found by Pries et al. [11]:

µrel =

(
1 + (µ∗

0.45 − 1)
(1−HD)C − 1

(1− 0.45)C − 1

(
D

D − 1.1

)2
)(

D

D − 1.1

)2

, (6)

where
µ∗
0.45 = 6 exp(−0.085D) + 3.2− 2.44 exp

(
−0.06D0.645

)
(7)

and C remains the same as in equation (5).
The plots of the relative viscosity obtained by the formula (6) (in vivo data)

for the levels of discharge hematocrit of 0.1, 0.3, and 0.5 are shown in Fig. 2.
The difference between the in vivo and in vitro data can be explained by the

presence of the endothelial surface layer on the inner surface of blood vessels,
which has a significant effect on the blood flow.
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Fig. 1. Dependence in vitro of the relative viscosity (µrel) on the vessel diameter (D) for
different values of the discharge hematocrit: HD = 0.1 (solid line), HD = 0.3 (dashed
line), and HD = 0.5 (dot-dashed line). The data represented by (3)-(5) correspond to
the blood flow in glass tubes.
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Fig. 2. Dependence in vivo of the relative viscosity (µrel) on the vessel diameter (D) for
different values of the discharge hematocrit: HD = 0.1 (solid line), HD = 0.3 (dashed
line), and HD = 0.5 (dot-dashed line). The data represented by (6), (7) correspond to
the blood flow in microvessels of animals.
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3 Finite Element Modeling

As it was proposed in [2, 3], the RBCs and blood plasma are considered as one
flow with two different viscosities (much larger viscosity for red blood cells):
the viscosity of blood plasma is assumed to be µ1 = 0.001 Pa · s, whereas the
viscosity of RBCs is set to be µ2 = 0.1 Pa · s to make RBCs effectively rigid.
Moreover, it is assumed that the flow is steady-state, without transition effects.
Therefore, the model is described by the steady state Stokes equation with space
variable viscosity.

Assume that the flow is axisymmetric, that is all variables depend only on
the radial and longitudinal coordinates, r and z. Let ur and uz be the radial
and longitudinal flow velocities, respectively, and p the pressure. Therefore, it is
possible to reduce the problem to two dimensions (see Fig. 3). Here, the radius
r0 determines the boundary of the sequence of RBCs and hence rc − r0 is the
thickness of the plasma gap between the RBCs and the vessel wall.

Fig. 3. Schematic drawing of the computational domain in cylindrical coordinates.

Denote Ω = (0, rc)× (0, L). The model is mathematically formulated in [17]
in a weak form, which allows us to use spatially discontinuous viscosity functions.
With x1 = r, x2 = z, u1 = ur, u2 = uz, u = (u1, u2)T , p(r, 0) = p0, p(r, L) = 0,
the weak formulation reads in cylindrical coordinates as follows:∫

Ω

x1

(
2µ(x1, x2)

2∑
i,j=1

Dij(u)Dij(v) +
u1v1
x21

)
dx

−
∫
Ω

x1 p div(v)dx =

∫
Γ0

x1 p0 v2 dx, (8)

ε

∫
Ω

x1pq dx−
∫
Ω

x1 div(u) q dx = 0, ε = 10−6, u|Γ2
= 0, v|Γ2

= 0, (9)

where

Dij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, div(u) =

u1
x1

+
∂u1
∂x1

+
∂u2
∂x2

.
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Functions v = (v1, v2)T , and q are the test ones. The viscosity distribution
µ(x1, x2) is equal to 0.001 Pa · s in the plasma part and 0.1 Pa · s in the RBCs
part.

Thus, the RBCs are modeled as fluid with the high viscosity to make them
effectively rigid. The model (8), (9) is equivalent to the following one:∫

Ω

x1

(
2µ(x1, x2)

2∑
i,j=1

Dij(u)Dij(v) +
u1v1
x21

+∇pv
)
dx = 0, (10)

ε

∫
Ω

x1

(
pq − div(u)q

)
dx = 0, (11)

p|Γ0 = p0, p|Γ1 = 0, u|Γ2 = 0, v|Γ2 = 0, (12)

where

∇p =

(
∂p

∂x1
,
∂p

∂x2

)
.

To set the value of the pressure drop at a capillary with the length L, first,
we estimate the pressure drop in the capillary network (pressure difference be-
tween inlets and outlets). For the estimation, the cerebral flow rate and total
resistance of the capillary network are required. According to [18], the cerebral
blood flow rate Q = 600 ml/min is a realistic value for an adult brain. Moreover,
a cerebrovascular network model from [10] yields the total resistance RT of the
capillary system to be equal to 0.1Pa · s/mm3, which gives the pressure drop to
be equal to 1000 Pa (computed as Q · RT ). Following [10], where the parallel
topology for capillaries with the length of 600 µm and radius of 2.8 µm is utilized,
we consider in further modeling that the pressure drop of 1000 Pa corresponds
to the capillary length of 600 µm. Therefore, for the capillary length equals to L,
the pressure drop is 5L/3 Pa. In the numerical modeling, the capillary length
is chosen in the range from 50 to 150 µm in accordance with the level of the
hematocrit.

When conducting computer simulations, along with specifying the radius of
the vessel, it is required to determine the radius r0 of the core zone filled with
RBCs and the linear dimensions of RBCs. To specify r0, we use the following
approximation [2]:

r0 = 0.3µm + 0.8rc. (13)

The length of an erythrocyte is determined on the base of its mean volume equals
to 88 µm3 [9] and the value of r0.

Comparison of the results of the finite element modeling (conducted by using
FreeFEM++ package [6]) with in vitro data shows a significant difference (see
Fig. 4). This is because the velocity no-slip condition, u|Γ2 = 0, is not suitable
for modeling the blood flow in glass tubes. More adequate is using the velocity
slip condition: u1|Γ2

= 0 and α∂u2/∂x1 + u2|Γ2
= 0. By appropriate choosing

the parameter α in numerical modeling, we can provide a closer approximation
of the in vitro data.
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Fig. 4. In vitro data of the relative viscosity (µrel) calculated with (3)-(5) for HD =
0.3 (dashed line), and the corresponding results of the finite element modeling (red
asterisks).

To take into account the influence of ESL in modeling the blood flow in
microvessels, we assume zero flow velocity in some neighborhood of the vessel
wall, that is u = 0 for r∗ < r ≤ rc (r∗ > r0). The presence of the sublayer of ESL
with zero flow velocity is mentioned in particular in [14], where the longitudinal
velocity profile measured in a rat venule is presented. Note that a similar effect
regarding zero velocity in a neighborhood of the surface somewhat akin to ESL
is also observed [1] in modeling of elasto-optical biosensors.

To fit the results of finite elements modeling to experimental data described
by (6) and (7), we use the following representation of the boundary of the layer
with zero flow velocity:

r∗ = 0.366µm + 0.725rc + 0.024r2c . (14)

The formula (14) is obtained by the minimization of the mean square error
between the results of the finite element modeling and in vivo data given by (6).
Note that the representation (14) was obtained under the assumption of the
consistency of the approximation (13). Refining the formula (13) will result in a
corresponding adjustment of the formula (14).

The computed values of the relative viscosity and in vivo data calculated
with (6) and (7) are shown in Fig. 5.

It is worth to note that taking into account the influence of ESL through
the layer with zero flow velocity is characterized by a significant increase of the
relative viscosity and, respectively, by a proportional increase of the microvessel
resistance. As a consequence, it leads to a proportional decrease in the longitu-
dinal velocity. The results of a numerical experiment for the vessel diameter of
6 µm and HD = 0.3 are shown in Fig. 6.
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Fig. 5. In vivo data of the relative viscosity (µrel) calculated with (6) and (7) for
different values of the discharge hematocrit: HD = 0.1 (solid plot), HD = 0.3 (dashed
plot), and HD = 0.5 (dots-dashed plot); and the corresponding results of the finite
element modeling (red asterisk) using the approximations (13) and (14).
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Fig. 6. Velocity profile (longitudinal velocity, u2) for the vessel diameter of 6 µm and
HD = 0.3: with accounting for zero flow velocity layer (blue solid line) and without it
(red dashed line).
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In the example considered, accounting for the ESL leads to the 3.9-fold in-
crease of the viscosity and, respectively, to the 3.9-fold decrease of the blood
flow.

4 Conclusion

The mathematical model of blood flow in capillaries containing the endothelial
surface layer was proposed. The ESL influence is described by the presence of the
boundary layer with zero flow velocity. The reliability of the results obtained has
been verified for different values of the discharge hematocrit and vessel diameter
using experimental data from the literature.

Further efforts of the authors will be aimed at applying this approach to
calculate the characteristics of the cerebral capillary network with the subsequent
calculation of the blood flow and pressure drop distributions in the germinal
matrix of preterm infants.
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