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Abstract. Ferroelectric polarization switching under external exposure
is a complex phenomenon, the study of which can be enhanced by the ap-
plication of mathematical modeling and computer simulation techniques.
The paper extends the Landau–Ginzburg–Devonshire–Khalatnikov ap-
proach to simulate polarization switching in ferroelectrics as materials
exhibiting time memory effects. The proposed mathematical model is ex-
pressed by a time-fractional semilinear partial differential equation. An
implicit iterative finite difference scheme based on an approximation of
the Caputo fractional derivative was constructed and then implemented
in Matlab. The computational performance of derived algorithm is pro-
vided by a numerical analysis of a test-problem solution and demon-
strated by results of computer simulations of polarization hysteresis in
ferroelectrics under applied periodical field.

Keywords: Landau–Ginzburg–Devonshire–Khalatnikov model · Ferro-
electric polarization switching · Time-fractional partial differential equa-
tion · Caputo fractional derivative · Implicit finite difference scheme.

1 Introduction

In recent years, numerous studies have been extensively conducted to explore
physical systems, indicating irregularity, spatial scale invariance, self-similar be-
havior, hereditary properties and time memory effects. One of the theoretical
frameworks describing complex physical phenomena is given by the fractional
differential theory. Fractional differential equations can be used for the mathe-
matical modeling of time-dependent responses in complex-structured media un-
der non-equilibrium conditions. Such dynamics is also referred to as non-classical
or anomalous processes [1, 3, 29]. In the present study, we consider ferroelectric
materials as model objects examined with an application of the apparatus of
fractional differential equations.
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Ferroelectrics are classified as a subclass of promising polar dielectrics, which
have a wide range of applications in microelectronics, acoustics, radio engineer-
ing, optoelectronics, piezo- and pyrotechnics, etc. The most relevant applications
of ferroelectrics in science and technology are associated with general mecha-
nisms of polarization switching and domain structure dynamics stimulated by
an external exposure [22, 31].

Significant attentions have been given over the years to theoretical investi-
gations and experimental justifications of the domain boundaries moving, re-
structuring of domain configurations and kinetics of polarization switching in
ferroelectrics. For instance, the Kolmogorov–Avrami model has been developed
to model the polarization reversal processes in ferroelectrics based on statistical
approach [20]. Also, the non-Kolmogorov–Avrami model has been proposed to
simulate ferroelectric domain structure dynamics in polycrystalline disordered
thin films [28]. A modification of the Kolmogorov–Avrami model applied to po-
larization reversal process stimulated by electron irradiation has been designed
in our previous works [13, 18]. A wide spectrum of models constructed with ap-
proximation techniques have been reported in different studies, in particular, the
numerically stable Preisach model [4].

For this study, it is of interest to model of polarization switching process
in view of the importance that ferroelectrics possess self-similar domain struc-
tures and exhibit time memory effects in the process of registration of dynamic
responses. Among the various models, we can emphasize models based on frac-
tional differential approach used for description of polarization switching pro-
cesses. Specifically, the study [17] has been reported a fractional differential
modification of the Kolmogorov–Avrami model. Also, the fractional differential
analogue of the model in the injection mode has been proposed in [18]. An ap-
proximation model of polarization-electric field hysteresis dependence has been
presented in studies [10, 17] using computation of time-fractional derivative of po-
larization. In all these studies, fractional-differential models of complex domain
dynamics and polarization switching have been considered, which are justified
by indicating time memory effects, fractal properties and self-similar behavior of
ferroelectrics. Furthermore, the simulation results based on fractional differential
models have demonstrated a better agreement with the experimental data than
the integer analogs.

In addition, a fundamental phenomenological theory of the Landau–Ginzburg–
Devonshire can be applied for mathematical simulation of polarization switch-
ing processes in ferroelectrics [22, 26, 30]. Moreover, the Landau–Khalatnikov
equation allows one to examine ferroelectric state and polarization dynamic be-
havior under external field [24]. The our previous study has been done to in-
vestigate the Landau–Ginzburg–Devonshire–Khalatnikov model from both the-
oretical and computational points of view [14]. Mathematically the generalized
Landau–Khalatnikov model is governed by an initial-boundary value problem
for a time-dependent nonlinear partial differential equation of reaction-diffusion
type. To give some idea of the benefits of this approach the current study as-
sumes the fractional differential modification of generalized Landau–Khalatnikov
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model to describe time memory effects arising in ferroelectrics during polariza-
tion switching.

The mathematical formulation of this model represents a whole class of
initial-boundary value problems for time-dependent nonlinear fractional partial
differential equations of the reaction-diffusion type. As far as analytical methods
can be applied for a sufficiently limited range of problems, numerical meth-
ods play a crucial role in mathematical modeling and computer simulation of
anomalous reaction-diffusion systems. In particular, to solve numerically these
problems, one can use computational schemes based on the finite difference ap-
proach [2, 5, 7, 12, 15, 16, 19, 21, 23, 25, 27, 32]. The application of finite difference
schemes for solving fractional differential equations have some special features,
which are attributed to providing a satisfactory approximation order and reduc-
ing rather intensive computations costs. This primarily depends on the chosen
definition of the fractional derivative and on the method of approximation. In
practice, the definitions of Grünwald–Letnikov [15, 16, 23] and Caputo [12, 23]
are widely used. Therefore the construction and implementation of effective nu-
merical schemes is particularly important and decisive.

Hence, the present study was undertaken to develop a model of polarization
switching in ferroelectrics by means of constructing a time-fractional modifi-
cation of the generalized Landau–Khalatnikov equation and a finite difference
scheme for further computer simulations.

2 Mathematical Model

The phenomenological Landau–Ginzburg–Devonshire theory of ferroelectricity
enables one to examine the relation between the polarization P and the ex-
ternal electric field E [22, 30]. In addition, the Landau–Khalatnikov approach
can be used to formulate a time-dependent model of polarization dynamics in
ferroelectrics. We will therefore apply the generalized Landau–Khalatnikov equa-
tion based on the Landau–Ginzburg–Devonshire–Khalatnikov theory to model-
ing polarization switching processes in ferroelectrics taking into account time
memory effects. The fundamental thermodynamic model is described by a semi-
linear parabolic partial differential equation. By inductive assumption, we can
introduce a time-fractional modification of the Landau–Khalatnikov equation to
model complex polarization dynamics and polarization switching process.

To be definite, we also assume that an uniaxial ferroelectric crystal is under
consideration and the polarization P is the order parameter describing its state.
This implies that polarization P depends on one space variable x and sample
surfaces are associated with the coordinates x = 0 and x = L as illustrated in
Fig. 1.

Also, suppose that the polarization reversal process in a ferroelectric crystal
is realized due to the application of the sinusoidal electric field. Notice that the
polarization and the intensity of applied electric field are vector quantities. In
these terms, only two feasible states for polarization ↑ P and ↓ P are simulated
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(a) (b)

Fig. 1. The scheme of the 180◦ polarization reversal process in a ferroelectric uniaxial
crystal and corresponding polarization states for the maximum value of applied field
(a) and after the complete 180◦ switching event (b).

after the whole 180◦ switching event related to the orientation of applied field
↑ E and ↓ E respectively.

Whence, we can arrive at the mathematical problem statement described
by an initial-boundary value problem for a time-fractional semilinear parabolic
partial differential equation:

∂αP

∂tα
= D

∂2P

∂x2
+ aP + bP 3 − cP 5 + E, 0 < x < L, 0 < t ≤ T

T ∗
, (1)

P |t=0 = 0, 0 ≤ x ≤ L, (2)

∂P

∂x

∣∣∣∣
x=0

=
P

λ
,
∂P

∂x

∣∣∣∣
x=L

= −P
λ
, 0 ≤ t ≤ T

T ∗
, (3)

where α is the order of the time-fractional Caputo derivative (defined below),
α ∈ (0, 1); t is the dimensionless time; T ∗ is the characteristic time in s; T
is the observation time in s; P = P (x, t) is the polarization distribution in
C/m2; D = δkT ∗; k is the thermodynamic restoring force in F/(m · s); δ is

the gradient coefficient in m3/F; E = ẼkT ∗; Ẽ=E0 sin(ωt) is the electric field

applied along the polar axis in V/m; a = −ãkT ∗, b = −b̃kT ∗ and c = c̃kT ∗; ã

in m/F, b̃ in m5/(C2·F), c̃ in m9/(C4·F) are the thermodynamic constants; λ is
the extrapolation length in m.

By construction, note that the characteristic time T ∗ is introduced to the
model to adjust the dimensions of time and distance (see, e.g., [19]). In addition,
we consider the model of polarization reversal process in ferroelectrics with first
order phase transitions. In the case of ferroelectrics with the second order phase
transition, equation (1) can be reduced to a more simple form specified as a
cubic time-fractional partial differential equation with parameter b < 0.

Since the proposed model is expressed by a nonlinear fractional-differential
equation, the design of numerical schemes for such problems is of particular
importance.
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3 Outline of Algorithm

The accuracy of numerical solutions of fractional differential equations is directly
related to the definition of the fractional derivative and the method of its ap-
proximation. A fractional derivative in contrast to a classical one, does not have
an unambiguous definition. In our case, we consider the Caputo time-fractional
derivative [23], which is defined as follows:

Dα
Cf(t) =

1

Γ (n− α)

∫ t

0

(t− ξ)n−α−1f (n)(ξ)dξ, n− 1 < α ≤ n, (4)

where Γ is the Gamma function.
In recent decades, the theory of fractional differential problems has stimu-

lated many investigations. Among the applications a special place is occupied
by the numerical approaches for solving diffusion-type equations [2, 5, 12, 15, 16,
21, 25, 27, 32]. Numerous studies have been devoted to numerical solutions of the
anomalous diffusion equation with a time-fractional derivative [2, 5, 12, 21, 25, 32]
or with space-fractional derivatives [15, 16, 21, 27] or both of them [21]. In these
studies numerical solutions of diffusion problems have been obtained using the
definitions of Riemann–Liouville, Caputo, Grünwald–Letnikov, Ritz, etc.

The order of the approximation of fractional derivatives in most of the re-
ported studies are less than the second. More accurate approximations have been
derived for advection-diffusion equations (see [2, 12]) and time-fractional subd-
iffusion equation [5], as well as by constructing an algorithm for the numerical
solution of the diffusion-wave equation [7].

In order to obtain a numerical solution of the problem (1)–(3) we derive a
computational scheme based on the Caputo definition of fractional derivative (4),
an implicit finite difference method and an iterative procedure. Here we apply the
approach to the finite difference approximation of fractional derivative proposed
in study [12], in which numerical solution of the advection-diffusion equation with
a time-fractional derivative has been found, and also stability and convergence
of the obtained difference scheme have been investigated.

Hence, for the Caputo fractional derivative of order 0 < α < 1 we can intro-
duce an approximation on a finite-difference grid Ωτ =

{
tk = kτ, k = 0, N

}
:

dαf
(
tk
)

dtα
=

τ−α

Γ (3− α)

k−1∑
j=0

[
wk−j

(
f j+1 − f j−1

)
+ sk−j

(
f j+1 − 2f j + f j−1

)]
+

+O
(
τ3−α

)
, k = 1, N, (5)

where τ is the time step; f(t) is a differentiable function; the weight functions
w and s are given as follows:

wk−j =
2− α

2

[
(k − j)1−α − (k − j − 1)1−α

]
,

sk−j = (k − j)2−α − (k − j − 1)2−α − (2− α)(k − j − 1)1−α.
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The fractional derivative (5) is approximated with the order of O(τ3−α).
However, if j = 0 in (5), we will have the function value f−1 at the dummy node,
which is defined outside of the computational interval. We can approximate this
value by following f−1 = f(0) + O(τ). As a result, the general scheme (called
also L1-2 formula [8, 12]) is much more effective and more accurate than the
L1 formula, which is derived using direct finite-difference approximation of the
Caputo derivative [6].

Using the idea of constructing an implicit finite-difference scheme in con-
junction with an approximation of the Caputo time-fractional derivative [12],
and a finite difference approximation of the second-order space derivative, we
can formulate a finite-difference analogue for the differential equation (1) on the
space-time grid Ωτh =

{
xi = ih, i = 0,M, tk = kτ, k = 0, N

}
:

τ−α

Γ (3− α)

k−1∑
j=0

[
wk−j

(
P j+1
i − P j−1i

)
+ sk−j

(
P j+1
i − 2P ji + P j−1i

)]
=

=
D

h2
(
P ki+1 − 2P ki + P ki−1

)
+ aP ki + b(P ki )3 − c(P ki )5 + Ek, (6)

where k = 1, N , i = 1,M − 1.
Since we solve the cubic-quintic partial differential equation, we arrive at

a system of nonlinear difference equations on each time layer. In this way we
can use of an iterative procedure, which will allow us to solve a system of lin-

ear algebraic equations. So that we form a sequence of approximations P
(q)
i

converging to P ki for each time moment tk, k = 1, N , using the relations:

(P
(s)
i )3 ≈ (P

(q−1)
i )2P

(q)
i , (P

(q)
i )5 ≈ (P

(q−1)
i )4P

(q)
i , where q = 1, 2, ... is the

number of iteration.
The iterative algorithm at the k time step starts by estimating an initial

value of polarization using the value from the previous time step, that is P
(0)
i =

P k−1i . The combination of finite difference schemes with an iterative procedure
enables one to solve applied problems without losing the accuracy of the general
computational scheme (see, e.g., [9, 11, 14]).

Also, we use the initial condition P 0
i = 0, i = 0,M and the asymmetric finite

difference approximation for Robin boundary conditions (3) for k = 0, N :

−3P k0 + 4P k1 − P k2
2h

=
P k0
λ
,

3P kM − 4P kM−1 + P kM−2
2h

= −P
k
M

λ
. (7)

The general system of algebraic equations is solved by the Gauss method,
which guarantees solving the problem with the error determined by the accu-
racy of computations. The design of the computational algorithm emphasis the
relation between the applied framework of fractional derivatives and the for-
malized long time memory physical process. The polarization value at a given
time moment depends not only on the behavior of the polarization in the vicin-
ity of this point, but also on the values from the entire range of the temporal
variable. Hence we proposed the implicit iterative finite difference scheme based
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on an approximation for the Caputo fractional derivative to solve semilinear
time-fractional partial differential equation. This algorithm was implemented in
Matlab software which allows high processing rates working with matrices.

4 Computer Simulation Results

4.1 Test Problem and Numerical Analysis

Let us first consider a simple test problem specified as a time-fractional diffusion
equation with imposed initial and boundary conditions:

∂0.85u

∂t0.85
= 0.5

∂2u

∂x2
+

Γ (4)

Γ (3.15)
x3t2.15 − 3xt3, 0 < x < 1, 0 < t ≤ 1, (8)

u|t=0 = 0, 0 ≤ x ≤ 1, (9)

u|x=0 = 0, u|x=1 = t3, 0 ≤ t ≤ 1. (10)

This problem has an analytical solution defined as u(x, t) = x3t3. In order to
verify this solution, one can use a simple relation for calculation of fractional-
order derivative of a power function v = tp [15]:

dβv

dtβ
=

Γ (p+ 1)

Γ (p− β + 1)
tp−β .

Figure 2 shows the results of numerical solutions of the problem (8)–(10) in
comparison with the analytical solution.

Fig. 2. The analytical – 1 and numerical solutions of the test problem (8)–(10) obtained
using the Caputo definition of fractional derivative – 2 and the Grünwald–Letnikov
formula – 3 at the time moment t = 1 and for space and time steps h = τ= 0.125.
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We conducted simulations based on the proposed numerical scheme (6), (7)
and using an implicit finite difference scheme based on the Grünwald–Letnikov
approximation of the fractional derivative [15, 16]. The latter is one of the most
popular computational schemes used in different applications. The order of ap-
proximation of this scheme is estimated to beO(τ+h2). The graphs are visualized
as coordinate profiles of function u(x, t) calculated at the last time moment of
observation of the process.

In addition, we performed a numerical analysis of solutions of the problem
(8)–(10). The accuracy of the results were estimated using the maximum norm
δ = ‖u− ũ‖∞ / ‖u‖∞, where ũ is the numerical solution, u is the exact solution
calculated for the last time moment t = 1. Figure 3 demonstrates the values of
the relative errors δ in the double log scale with the variation of the number of
nodes M , N along the x and t axes, respectively.

Fig. 3. Estimations of relative errors δ for numerical solutions of the problem (8)–(10)
in the log-log scale with the variation of the number of nodes M = N : obtained using
the Caputo fractional derivative – plot 1 and the Grünwald–Letnikov formula – plot 2.

A comparative analysis of the errors suggests that the described scheme pro-
vides a converged solution and an acceptable accuracy. These observations in-
dicate that we can apply the derived computational scheme to get accurate nu-
merical simulation for this class of problems. It should be pointed out that the
algorithm can be characterized as resource-intensive and time-consuming. As an
example, for number of nodes equal to N = M = 160 the accuracy corresponds
to δ ≈ 10−6 and the computation time approximately equals 2000 s.
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4.2 Simulation of Polarization Hysteresis Loop

In this section, we perform numerical simulation of the hysteresis dependence
between polarization and applied electric field arising in ferroelectrics. For in-
stance, let us consider the following numerical example as a mathematical model
describing a time-space distribution of polarization, which changes with the ex-
ternal sinusoidal electric field:

∂αP

∂tα
=
∂2P

∂x2
+ 0.05P + 2.5P 3− 30P 5 + 20 sin 5t, 0 < x < 1, 0 < t ≤ 1.5, (11)

P |t=0 = 0, 0 ≤ x ≤ 1, (12)

∂P

∂x

∣∣∣∣
x=0

= 100P,
∂P

∂x

∣∣∣∣
x=1

= −100P, 0 ≤ t ≤ 1.5. (13)

Here, a set of model parameters are normalized arbitrarily to promote com-
parability of simulated quantities (in particular, in view of the existence of the
P (E) hysteresis dependence) approximately corresponding to ferroelectric crys-
tals with first-order phase transitions.

The result of computer implementation of the model (11)–(13) is presented
in Fig. 4. The hysteresis dependencies P (E) are plotted with varying the order
of the time-fractional derivative α for values of space step h = 0.0143 and time
step τ = 0.0214. These findings suggest that a decrease in the order of the time-
fractional derivative leads to a narrowing of the ferroelectric hysteresis loop while
maintaining its shape. In other words, polarization hysteresis loop has a more
narrow shape for crystals with a significant time-memory effect.

Fig. 4. Ferroelectric hysteresis loops P (E) calculated with variation of the order of the
time-fractional derivative: α = 0.99 – plot 1; α = 0.85 – plot 2; α = 0.6 – plot 3.
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Thus, the use of a time-fractional derivative in modeling polarization switch-
ing process potentially allows one to control the results of computations due to
a variation of the order of fractional derivative α or adjust this parameter as a
numerical characteristic of the time memory effect in ferroelectrics to provide
the better agreement of simulations results with experimental data.

5 Conclusion

In this article we proposed a time-fractional modification of the thermodynamic
model of polarization hysteresis in ferroelectrics and numerical scheme for its
computer implementation.

The modification of the generalized Landau–Khalatnikov model was described
by an initial boundary value problem for a time-fractional semilinear partial dif-
ferential equation. We derived an implicit iterative finite difference scheme based
on an approximation of the Caputo fractional derivative. The combination of fi-
nite difference schemes with an iterative procedure allowed applied problems to
be solved without losing the accuracy of the general computational scheme. The
formalized computational algorithm reveals the key peculiarities of simulation
of long time-memory dynamic processes. The polarization value at a given time
moment depends not only on the behavior of the polarization in the vicinity of
this point, but also on the values from the entire range of the temporal vari-
able. This algorithm was implemented in Matlab software and validated using
test-problem.

We performed numerical simulations of the hysteresis dependence between
polarization and applied electric field arising in ferroelectrics. Our findings indi-
cate that the use of the fractional differential apparatus provides a more ”flexible
tool” due to a variation of the order of fractional derivative. This can be used
to provide the better agreement of simulations results with experimental data.
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