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Abstract. The paper discusses a numerical grid method for solving
time-optimal zero-sum differential games with lifeline. The dynamics of
the considered games are supposed to be of a generic non-linear kind. The
players’ controls are taken from given compact sets of finite-dimensional
Euclidean spaces. The objective of the first player is to reach the target
set as fast as possible, with that, avoiding the set called lifeline. The
second player counteracts to that: it tries either to guide the system to
the lifeline avoiding the target set of the first player, or if it is impos-
sible, to keep the system away from the target set infinitely, or if it is
impossible too, to postpone maximally reaching the target set. In the
text, we reference out work about theoretical constructions on existence
of the value function of such a game. Also, we set forth the idea of the
numerical method. Results of solving some model and practical examples
are given.

Keywords: Time-optimal zero-sum differential games · Lifeline · Value
function · Numeric grid method.

1 Formulation of Problem

The following autonomous dynamic system is considered:

ẋ = f(x, p, q), t ≥ 0, x ∈ Rd, p ∈ P, q ∈ Q. (1)

Here, x is the d-dimensional state vector of the system, p and q are controls of
the first and second players, respectively, which are constrained by compact sets
in their finite-dimensional Euclidean spaces. Two sets are given: a compact set
T ⊂ Rd of the full dimension and an open setW such that T ⊂ W ⊂ Rd. Denote
F = Rd \ W and G = W \ T . The set T is the target set. The first player tries
to guide the system to it as soon as possible avoiding the set F , which is called
lifeline. The second player hinders this, it strives to reach the set F avoiding the
set T , of if it is impossible, to keep the system in the set G forever, or if this is
impossible too, to postpone reaching the target set T as long as possible.

The following assumptions are supposed to be true:
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C.1. the function f : Rd × P ×Q 7→ Rd is continuous in the totality of variables
and Lipschitzian on x with the constant λ; also, the Isaacs’ condition [5] is
held:

min
p∈P

max
q∈Q

〈
s, f(x, p, q)

〉
= max

q∈Q
min
p∈P

〈
s, f(x, p, q)

〉
=: H(x, s) ∀s ∈ Rd. (2)

C.2. the boundary ∂G (that is, the boundaries ∂T and ∂F) is compact, twice
smooth and has the curvature radius not less than some r > 0.

C.3. the boundary ∂T and the function f obey the following condition:

min
p∈P

max
q∈Q

〈
nT (x), f(x, p, q)

〉
< 0, ∀x ∈ ∂T .

C.4. the boundary ∂F and the function f obey the following condition:

min
p∈P

max
q∈Q

〈
nF (x), f(x, p, q)

〉
< 0, ∀x ∈ ∂F .

In two last conditions, nT (x) and nF (x) denote the unit outer normal to
the boundary of the corresponding set at the point x, which belongs to the
boundary. The sense of these conditions is the following: the first player has
dynamic advantage near the boundary of the target set and can guide the system
inside the set if the point is at the boundary. In the same way, the second player
has the dynamic advantage near the lifeline.

For a given initial position x0, these objectives of players can be formalized
in the following way. Let x(·;x0) be a trajectory of the system emanated from
the point x0 under some players’ strategies. Define two instants

t∗ = t∗
(
x(·;x0)

)
= min

{
t : x(t;x0) ∈ T

}
,

t∗ = t∗
(
x(·;x0)

)
= min

{
t : x(t;x0) ∈ F

}
,

which are the first instants when the trajectory hits the sets T and F , respec-
tively. They equal +∞ if the corresponding set is never hit by the trajectory.
The payoff for the trajectory x(·;x0) is defined as

τ
(
x(·;x0)

)
=

{
+∞, if t∗ = +∞ or t∗ < t∗,

t∗, otherwise.
(3)

The players’ strategies are feedback. To define a motion of the system un-
der feedback strategies of the players, we use the formalization suggested by
Krasovskii and Subbotin [6, 7].

In paper [8], the authors have proved the existence of the value function for
games of this kind. The proof uses the positional ideology set forth in [6, 7].

In [8] together with the original game (1), a Dirichlet problem for the Ha-
milton–Jacobi PDE corresponding to the game is considered:

H
(
x,Du(x)

)
− u(x) = 0, x ∈ G, (4)

u(x) = 0 if x ∈ ∂T , u(x) = 1 if x ∈ ∂F , (5)
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where H(x, s) = H(x, s) + 1. The function H(x, s) is the Hamiltonian defined
in (2).

Also, it is proved by the authors that problem (4), (5) under assumptions C.1–
C.4 has a continuous generalized solution (in the viscous [3, 4] or minimax [10]
sense), which coincides with the value function of game (1).

2 Idea of Numerical Method

First, note that the payoff (3) can have infinite values, what is inconvenient for
numerical analysis. Let us consider a new payoff

J
(
x(·;x0)

)
=

{
1− exp

(
−τ
(
x(·;x0)

))
, if τ < +∞,

1, otherwise,
(6)

which has its values in the interval [0, 1]. This variable change is well-known as
the Kruzhkov’s transform. Denote by v(x) the value function for this payoff. The
suggested method constructs some approximations to the function v(x).

For further numerical construction, we change the continuous time by a dis-
crete one with instants 0, h, 2h, 3h, . . . , and the continuous space by a grid
L =

{
(i1k, i2k, . . . , idk)

}
, ij ∈ Z. So, h and k are the steps of time and spatial

discretization. The steps of spatial discretization along different axes can differ,
but this does not affect the idea of the method. Below, a linear enumeration of
the nodes of the grid is assumed: L = {ls}s∈Z.

Original trajectories x(·;x0) of the system are changed by discrete ones:

xn = xn−1 + hf(xn−1, pn−1, qn−1), n = 1, 2, 3, . . . ,

where x0 is the initial position, pn ∈ P , and qn ∈ Q.
The value function w(ls) of the discretized game can be characterized on the

basis of the Dynamic Programming Principle:
w(ls) = γmax

q∈Q
min
p∈P

wloc

(
ls + hf(ls, p, q)

)
+ 1− γ, if ls ∈ LG ,

w(ls) = 0, if ls ∈ LT ,
w(ls) = 1, if ls ∈ LF .

Here, LT , LG , and LF are the subcollections of the nodes of the grid L, which are
located in the sets T , G, and F , respectively. The coefficient γ = e−h. The symbol
wloc denotes some local approximation of the function w between the nodes of
the grid. The approximation can be piecewise-linear, polylinear, or some other.
Each type of the approximation (or, at least, each class of approximations) needs
its own proof of convergence of the method.

Let M be the set of infinite vectors with indices in Z. For any infinite vec-
tor W , the operator F :M→ R is element-wisely defined as follows:

Fs(W ) =


γmax

q∈Q
min
p∈P

wloc

(
z(ls, p, q),W

)
+ 1− γ, if ls ∈ LG ,

0, if ls ∈ LT ,
1, if ls ∈ LF .
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Here, z(ls, p, q) = ls + hf(ls, p, q). We have proved that in the case when wloc

is the piecewise-linear or polylinear approximation between the grid nodes the
operator F is a contraction map and its fixed point impose an approximation to
the value function v(x).

Note that actually, only values w(ls) for the nodes ls ∈ LG are important.
The values of w at other nodes are fixed and do not need to be stored and/or
computed. So, if the set G is bounded, then it can be covered by some finite
grid LG , which can be represented in a computer.

So, values at these nodes can be set to some initial states and further re-
peatedly recomputed by the operator F . After such a recomputation, one gets
converging sequences at the nodes, which after a sufficient number of iterations
approximate well the ideal values w(ls). The latters in their turn by local ap-
proximation estimate well the value function v of game (1) with payoff (6) if the
steps h and k are small enough.

In our work, we do not consider the questions about the rate of convergence
of the algorithm. Hovewer, this algorithm is based on the numerical method from
the work [1] where also the convergence rate theorem [1, Th. 3.4, pp. 140–144] is
proved. We believe that in our case the rate of convergence is similar, but this
fact has not been proved yet.

3 Examples

We have an own cross-platform realization of this numerical method written
using the environment .NetCore 3.0 and language C# of version 6.0 or later.
A single-threaded program was written and then, by means of the capabilities
of C#, it was made multi-threaded in order to compute faster on multi-core
processors. A processor used for computing examples is Intel(R) Core(TM) i7-
8700 CPU @ 3.20GHz with 6 cores and 12 threads.

Two following examples are connected with the classic time-optimal game
“Homicidal chauffeur” originally suggested by R. Isaacs in his book [5]. A pursu-
ing object (car with a bounded turn radius) tries to catch an evading one with
the dynamics of simple motions (pedestrian). The original dynamics are

ẋp = w1 cosψ, ẏp = w1 sinψ, ψ̇ =
w1

R
a,

ẋe = w2 cos b, ẏe = w2 sin b.

Here, (xp, yp) and (xe, ye) are the geometric positions of the pursuer and the
evader in the plane; ψ is the course angle of the car’s velocity; w1 is the magnitude
of the linear velocity of the car; the value R/w1 describes the minimal turn radius
of the car. The control a ∈ [−1,+1] of the pursuer shows how sharply the car
turns: the value a = −1 corresponds to the maximally sharp right turn, the value
a = +1 corresponds to the maximally sharp left turn, and a = 0 corresponds to
the instantaneous rectilinear motion. The control b ∈ [−π, π] of the pedestrian
is the instantaneous direction of its velocity, which magnitude is w2.
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3.1 Example 1

A strong disadvantage of the original dynamics is their quite high dimension,
namely, 5. However, the dynamics permit [5] a reduction of the dimension of
the phase vector in the following way. Superpose the origin and the position of
the pursuer. Direct the ordinate axis along the current vector of the pursuer’s
velocity. So, the new state position (x, y) of the system is two-dimensional and
its dynamics are the following:

ẋ = −w1

R
ya+ w2 sin b, ẏ =

w1

R
xa− w1 + w2 cos b.

Here, x, y are the two-dimensional coordinates of a new object, which now is
jointly controlled by the players. The first player (pursuer) tries to guide the
system to the set T =

{
(x, y) ∈ R2 : (x−0.2)2+(y−0.3)2 ≤ 0.0152

}
keeping the

trajectory inside the setW = [−1.5, 1.5]× [−1, 1.5]. The second one (pedestrian)
hinder this.

The parameters of the game taken for a numerical experiment are w1 = 2,
w2 = 0.6, R = 0.2. The example has been taken from [9]. The time step h =
0.001, the spatial step k = 0.005. The number of iterations equals 200. The total
time of computation was 7 hours and 51 minutes.

The graph of the value function in the three-dimensional space x, y, v(x, y)
is given in Fig. 1.

x

y

v(x, y)

Fig. 1. The graph of the value function for Example 1.
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3.2 Example 2

Now let us present a modified version of the problem having the following reduced
dynamics:

ẋ = −Wy

Vp
sinφ+ Ve sinψ,

ẏ =
Wx

Vp
sinφ+ Ve cosψ − Vp,

V̇p = W cosφ.

Here, x and y are the coordinates of the object; Vp is the current magnitude
of the linear velocity of the car. Now, the pursuer manages two controls. The
first one W is the magnitude of the acceleration of the car, which results in
changing both the coordinates x, y. The second control is φ, which is the angle
between the vectors of the acceleration and velocity of the car; it is assumed
that −π/2 ≤ φ ≤ π/2.

Note that due to chosen constraints for the control φ the velocity Vp can only
grow. There are constraints for its magnitude: Vp ∈ [Vmin, Vmax].

The value Ve is the magnitude of the velocity of the pedestrian; ψ is the
angle between the velocity vector of the pedestrian and the direction of the
y-axis (0 ≤ ψ ≤ 2π).

The target set is a cylinder T =
{

(x, y, Vp) : x2 + y2 ≤ 0.32
}

. For computa-
tions, we take W ≡ 1, Ve ≡ 0.3, Vmin = 0.5, Vmax = 1.5. The example has been
taken from [2].

x

y

Vp

Fig. 2. A level set (Lebesgue set) of the value function for Example 2; the constant of
the set equals 5.7.
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So, the set W = [−6.0, 6.0]× [−4.0, 7.0]× [0.5, 1.5], time step h = 0.05, space
steps k = 0.05, 0.05, 0.02, respectively. The number of iterations equals 150. The
time of computation was 37 hours.

In this example the graph of the value function v(x, y, Vp) is embedded into a
four-dimensional space and cannot be drawn explicitly. Therefore, we show the
level set (Lebesgue set) of the function, that is the collection of points (x, y, Vp)
such that v(x, y, Vp) ≤ 5.7 (see Fig. 2).
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