

Copyright © 2020 for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Parallel I/O and Checkpoints in DVM System

Valery Aleksakhin1 [0000-0001-8385-8894], Vladimir Bakhtin1 [0000-0003-0343-3859],

Olga Zhukova1 [0000-0002-1033-6371], Victor Krukov1 [0000-0001-6630-964X],

Olga Savitskaya1[0000-0002-2174-3212]

1 Keldysh Institute of Applied Mathematics, Miusskaya sq., 4, 125047, Moscow, Russia

dvm@keldysh.ru

Abstract. DVM-system is designed for the development of parallel programs of

scientific and technical calculations in C-DVMH and Fortran-DVMH lan-

guages. These languages use a single parallel programming model (DVMH

model) and are extensions of the standard C and Fortran languages with paral-

lelism specifications, written in the form of directives to the compiler. The

DVMH model makes it possible to create efficient parallel programs for hetero-

geneous computing clusters. The article presents new features of DVM system

for working with checkpoints, which are based on the use of parallel I/O.

Keywords: automation of development of parallel programs, DVM-system, ac-

celerator, GPU, Fortran, С, MPI, OpenMP, OpenACC, DVMH, I/O, check-

point.

1 Introduction

Many tasks that are being solved today on modern computing systems require a large

amount of data to be placed on external memory (disks) and intensive data exchange

between disks and RAM. Functionally, these exchanges can be divided into the fol-

lowing groups:

1. Explicit I/O statements required to input initial data and output final results.

2. Checkpoints. For tasks with large execution times, it is necessary to periodi-

cally keep the state of the task. If the task is aborted for some reason, it can

be continued from the last stored state.

3. Time steps. In some tasks, it is required to save the current state of the arrays

at certain time intervals. For example, these data can be used in visualization

subsystems.

4. Calculations with arrays on external memory. If some arrays do not fit in

RAM (working external arrays), then the execution process can be organized

as follows:

 External arrays are placed in files (disks).

 For each external array, a buffer (or several buffers) is allocated in the RAM.

2

 Use and update of the external array is performed by portions equal to the

buffer size. The next chunk is read into the buffer, processed and written to

the disk (if necessary).

Different groups of operations require different approaches to their implementa-

tion. For example, for checkpoints, first of all, it is necessary to reduce the read/write

time of the checkpoint, the number of files, their format fall into the background.

When saving data for their later visualization, on the contrary, it is needed to save the

data in the required format. For calculations with arrays on external memory, it is

possible to implement a mode when the next portion of data from the file will be read

while using a previously read chunk of data that will significantly reduce the execu-

tion time of the program.

The desire to achieve maximum I/O performance and the lack of a common widely

used parallel I/O interface has forced the developers of new programming languages,

for example, UPC (Unified Parallel C), Chapel, XcalableMP to develop their own

tools for parallel I/O. Such tools were also implemented in the DVM system.

It should be noted that at last time the checkpoints have become increasingly used

by application programmers:

 when debugging parallel programs (for example, to detect an error that oc-

curs after several hours of a program execution, a checkpoint may be saved

before the error occurrence and then the program can be started repeatedly

many times from this point under the control of the debugger);

 when starting a program on a supercomputer with a queue system, if the

maximum quant of the time provided by the queue system is less than the

 for the development of reliable, fault-tolerant programs.

The last problem is becoming more and more actual. Modern supercomputers con-

sist of tens of thousands of nodes, and each year this number is increased [1]. At the

same time, the probability of failure of separate parts of the system or even the entire

system is increased [2]. It requires to look for new approaches to the implementation

of checkpoints.

This article presents the capabilities of the DVM system [3], which can be used in

the development of fault-tolerant parallel programs with intensive I/O. The article is

structured as follows. Chapter 2 discusses the various parallel I/O modes implemented

for C-DVMH [4] programs. Chapter 3 presents the directives for parallel I/O in

Fortran-DVMH [5]. Chapter 4 describes the new capabilities of the DVM system for

working with checkpoints. In Chapter 5 an example of these capabilities usage is

shown, and the efficiency of the implemented I/O subsystem is analyzed.

2 Parallel I/O in C-DVMH

The DVM system supports different I/O modes:

1. Serial synchronous I/O.

2. Parallel synchronous I/O:

a. to a local file

b. to a parallel file.

3

3. Asynchronous parallel I/O.

In C-DVMH, the following I/O operations are implemented in full compliance

with the C99 standard: remove, rename, tmpfile, tmpnam, fclose, fflush, fopen, freo-

pen, setbuf, setvbuf, fgetc, fgets, fputc, fputs, getc, getchar, gets, putc, putchar, puts,

ungetc, fread, fwrite, fgetpos, fseek, fsetpos, ftell, rewind, clearerr, feof, ferror.

Consider some details of the implementation of different I/O modes.

Serial synchronous I/O is performed as follows:

1. The file is opened by only one process from the current multiprocessor

system (I/O process).

2. All operations on the file are performed only by the I/O process.

3. When input/output operation of a distributed array is performed, read or

write is done by portions of about a 100МБ, then the data are sent to pro-

cesses or accumulated from processes that are owners of this data.

4. If the operation involves writing user variables or returning a value, the

data are sent by the I/O process.

5. If during the execution of the operation an error occurs and the standard

prescribes to set errno, then its value is also sent by the I/O process.

6. All operations on a file can be performed only collectively by all process-

es of the multiprocessor system which created this file.

7. The operations not on the file descriptors (rename, remove, tmpnam) are

performed by I/O process of the current multiprocessor system which

sends the execution results to all other processes.

To implement parallel synchronous I/O, two new modes for fopen and freopen

functions were added: local file and parallel file.

The local file is opened independently by each process. All operations on local

files are processed by each process independently and do not cause any communica-

tions.

When reading (or writing) a distributed array from the local file, each process

reads (or writes) only the local part of the distributed array. Modern parallel file sys-

tems are focused on efficient work with a large number of files. Thus, the work with

local files is a fairly convenient means of parallel I/O of distributed data, it is per-

formed efficiently, but requires the coincidence of the data distribution during record-

ing and next reading. The DVMH-program [6], which works with the local files, must

run on the same processor grid as the DVMH program that recorded this data.

The main idea of working with parallel files is as follows. Let’s we have a 4 giga-

byte file that stores a two-dimensional distributed array. Let the DVMH-program was

launched on 4 processes. In this case, each process is responsible for reading of the ¼

part of the file. Such reading can be performed in parallel. The 1-st process reads the

1-st GB of the file, the 2-nd process reads the 2-nd GB of the file, etc. After reading

its own part of the file, the process can send this data to other processes. If the array in

the program is distributed by columns (there is a subset of columns of the distributed

array on each processor), then the process will leave ¼ part of the read information to

itself, and ¾ of the read data will send to other processes ("foreign" columns). But if

the array is distributed by rows, then no data passing is required, since each process

will read only "own" rows of the array.

4

Thus, the parallel file is opened by each process of the multiprocessor system. All

operations on parallel files are performed in the same way as on ordinary files, with

the exception of fread, fwrite, futs operations. Consider the algorithm for implementa-

tion of these operations:

1. To synchronize on the file system all operations from the I/O process

(since only it performs all other operations). To synchronize the contents

of the file in memory with the contents on the disk, the system call

_commit on Windows or fdatasync on Linux are used.

2. To pass the position in the file from the I/O process to all other processes

of the current multiprocessor system.

3. Each process sets the position in the file to that point from which it will

read (or write).

4. Each process performs its part of the work.

a. If a read operation to replicated variable is requested, then after

reading a part, the read chunks are combined (the operation of

MPI_Allgather type).

b. If an operation with distributed array is requested, then each pro-

cess accumulates the data it needs from all other processes before

writing, or after reading its own part of the file sends it to other

processes (the operation of MPI_Alltoall type).

5. All processes synchronize their updates to the file system.

6. The I/O process sets the position behind the last read (or write) chunk.

This mode saves the contents of the file as if it were written by a serial program. It

also allows to read the files written by a program executed on any number of process-

es (including the original serial one).

To implement asynchronous I/O, additional I/O threads are created in each of pro-

cesses. All operations on one file are performed sequentially by one thread. The oper-

ations on different files can be performed in parallel by different threads. Asynchro-

nous I/O mode is based on usage of additional memory. During writing a distributed

array to a file, a copy of that array is created in the CPU RAM, a task is created to

write the array-copy to the file, one of the I/O threads begins to perform this task, and

after it the control is returned to the user program. Then, I/O and calculations can be

performed simultaneously - the program updates the distributed array, and saved val-

ues from the array-copy are written to the file. Such simultaneous execution is possi-

ble only for I/O functions that do not return values and do not set errno (a variable

that stores the integer code of the last error). If the program uses the result of I/O op-

eration, for example, the number of elements that have been successfully written to

the file, this results in waiting for the completion of the operation.

It should be noted that only a small part of standard I/O functions do not return

values or do not set errno. These are rewind and clearerr functions. But these values

aren’t used in most of user programs. For example, instead of the statement:

n_elem = fwrite (B, sizeof (double), L * L, f)

the statement:

fwrite (B, sizeof (double), L * L, f) is used.

5

To implement asynchronous I/O, additional versions that do not return values

have been introduced in the runtime system: fprintf, fscanf, printf, scanf, vfprintf,

vfscanf, vprintf, fgets, fputc, futs, gets, putc, putchar, puts, ungetc, fread, fwrite,

fseek. They also do not set errno, and it means that the result of their work is only

either writing to a file the data passed to the function, or reading this data from the

file. An optimization was also introduced in the C-DVMH compiler, which recogniz-

es for this set of functions whether their return value is used and if the value is not

used, a call of the function variant not returned value is generated.

To implement asynchronous I/O in the C-DVMH compiler, for the fopen and freo-

pen functions a new mode was added: asynchronous file.

Both usual files (non-local and non-parallel) and local or parallel files (the file

cannot be local and parallel at the same time) can be asynchronous.

As already noted, the operations on different files may overlap (were performed by

different I/O threads). Any operation that does not allow asynchronous execution

results in waiting for all asynchronous operations on the corresponding file before

starting the synchronous operation.

Also, some operations (those that require communications) cannot be asynchro-

nous if the MPI implementation does not provide parallel work with it

(MPI_THREAD_MULTIPLE mode is required).

To serialize asynchronous operations on each file, the mechanism of dependent

tasks and parallel execution of the task graph is used.

Thus, the DVM-system supports several different I/O modes. The I/O mode is set

when the file is opened. To do this, the set of file open modes was extended for fopen

and freopen functions. If to add the letter "l" or "L" to the file open mode, each pro-

cessor opens its own local file and all operations are performed by each processor

independently from the others. When opening in this mode the '% d' construct can be

used in the filename, to specify different names for different processors.

The following statement:

FILE *f = fopen("out_%04d.txt", "wl");

will open N files for write (N is the number of processors in the current multipro-

cessor system) with the names out_0000.txt, out_0001.txt, out_0002.txt,

out_0003.txt...

The all group of the files can be deleted by a special function:

int dvmh_remove_local(const char *filename);

If to add a letter "p" or "P" to the file open mode, all processors will perform paral-

lel input/output to the global file.

Adding a letter "s" or "S" enables asynchronous I/O mode.

Table 1 lists the environment variables that affect I/O performance.

Table 1. Environment variables that affect I/O execution

DVMH_PARALLEL_IO_THRES positive integer specifying the min-

imum size of input or output data (in

bytes) that the runtime system will

attempt to input or output in paral-

lel. The default value is 104857600,

6

i.e. 100 MB.

DVMH_IO_BUF_SIZE positive integer that specifies the

maximum size of the I/O buffer

when I/O is performed by the I/O

processor. The default value is

104857600, i.e. 100 MB.

DVMH_IO_THREAD_COUNT non-negative integer that specifies a

number of I/O threads performing

asynchronous I/O operations. The

zero value will disable asynchro-

nous I/O. The default value is 5.

3 Parallel I/O in Fortran-DVMH

Prior to the implementation of the parallel I/O subsystem for C-DVMH programs, I/O

in Fortran-DVMH programs was performed sequentially and synchronously. A spe-

cial I/O process performed all file operations, carried out the necessary sending of

read data and accumulated the information necessary for recording from all processes.

Fortran 95 operators were used for I/O.

There were serious restrictions for I/O of distributed arrays in the Fortran-DVMH

language:

 The I/O list had to consist of only one distributed array name and could not

contain other I/O objects.

 In format I/O statements only the format specified by '*' was allowed.

 The control information list should not contain ERR, END, or IOSTAT

parameters.

 Only replicated variables were allowed in the control information list.

 It was not allowed to use I/O statements for distributed arrays in a parallel

loop.

It should be noted that a Fortran-DVMH program executing unformatted I/O of the

distributed arrays was not compatible in general with the serial program in Fortran 95.

Data that were written by one program couldn't be read by other program, due to a

difference in lengths of records. For example, the serial program could write entire

array using a single operation, but the parallel program accumulated data in the spe-

cial I/O buffer that could be flushed to the file several times (as information was ac-

cumulated from various processes).

Because of this, the usage of parallel I/O tools implemented for C-DVMH pro-

grams in the Fortran-DVMH compiler did not cause any additional problems.

In the DVMH runtime system there were created new functions that are a kind of

adapters between Fortran I/O operators and C-DVMH I/O functions. A new version

of the Fortran-DVMH compiler has been developed, that uses these functions-

adapters.

To set the Fortran-DVMH I/O mode a new directive has been introduced:

!DVM$ IO_MODE ([PARALLEL]

7

 [[,]LOCAL]

 [[,]ASYNC])

This directive can be placed before a file open statement and it controls all next I/O

operations to this file (unit). If there is no the directive before the file open statement,

I/O is performed according to the old scheme (through the I/O processor). The

LOCAL, PARALLEL, and ASYNC specifications correspond to the modes that were

discussed in the previous chapter.

Figure 1 shows a program fragment that demonstrates the new capabilities of the

Fortran-DVMH language: I/O mode setting; operating with distributed array sections,

usage of several distributed arrays in a single I/O statement; support for such control

parameters as ERR, END, that specify the statement in the program to switch to if an

error occurs or the end of the file is reached.

 PARAMETER (L=4096)

 FLOAT A(L,L), B(L,L)

!DVM$ DISTRIBUTE (BLOCK, BLOCK) :: B

!DVM$ ALIGN A(I,J) WITH B(I,J)

 …

!DVM$ IO_MODE (LOCAL,ASYNC)

 OPEN(4, ACCESS='STREAM', FILE='DATA.DAT', ERR=77)

 …

 WRITE(4) A(3:L-2,2:L-1),B

 …

 CLOSE(4)

 …

77: PRINT *, 'ERROR HAPPENED! PROGRAM TERMINATES'

 STOP

Fig. 1. I/O in Fortran-DVMH program.

4 Mechanism for working with checkpoints

The parallel I/O modes described in the previous sections allow to implement effec-

tive work with checkpoints in DVMH programs. For example, the use of local files

allows each process to quickly write/read its part of a distributed array; the use of

asynchronous I/O allows to write a checkpoint simultaneously with execution of pro-

gram’s computational statements.

However, the usage of these I/O operators leads a serious complication of the

source program code, adding many new statements when working with checkpoints:

 check existence of data file;

 check the mode in which the file was recorded;

 for a local file, check the number of processors and the processor grid that was

used when writing the file;

 check the correctness of the read data. For example, to check same sizes of the

array that was saved and the array that was created after the program restart;

8

 implement a file interleaving mechanism. For example, to write data

alternately to file1.dat and file2.dat files so that in case of failure when saving

the next checkpoint, at least one of the files has the correct value;

 implement the overlapping of checkpoint recording and a program execution;

 and much more.

A programmer is forced to repeat the described above logic of working with

checkpoints in each DVMH program. To simplify the work with checkpoints, new

specifications of parallelism have been developed in the DVM system.

Checkpoint definition directive:

!DVM$ CP_CREATE cp-name, VARLIST(cp-var-list), FILES(filenames) [, mode]

cp-name ::= string-expr

cp-var ::= subarray | variable

filenames ::= filename-list | filename-array

filename ::= string-expr

filename-array ::= string-array

mode ::= PARALLEL | LOCAL

The directive specifies the name of the checkpoint (cp_name), a list of data for sav-

ing and reading (VARLIST argument), the list of the files to be used (FILENAMES

argument), and the mode of file using (mode). The mode can be local or parallel. The

asynchrony of the checkpoint is specified directly in the save statement itself. If mode

is not specified, the parallel mode is used by default.

The example of using the CP_CREATE directive:

 INTEGER I

 INTEGER, DIMENSION(1:N) ARR

!DVM$ DISTRIBUTE ARR(BLOCK)

!DVM$ CP_CREATE CP1, VARLIST(I, ARR), FILES('file1.dat','file2.dat'), LOCAL

In this example, a checkpoint named CP1 is declared. The files, variables, and lo-

cal open mode are set for it.

To save the checkpoint, the CP_SAVE directive is used. It is enough to specify

the name of the checkpoint, and optionally specify the asynchrony of this operation in

the directive.

The syntax of the directive is as follows:

!DVM$ CP_SAVE cp-name [, ASYNC]

For example, when executing the directive:

!DVM$ CP_SAVE CP1, ASYNC

and assuming that the checkpoint CP1 has been defined as above, the scalar variable I

and the distributed array ARR will be written to file1.dat or file2.dat file. The file will

be selected depending on which of them was last recorded successfully. The file open

mode is local, so only the local part of the array ARR will be written to it.

To load the checkpoint the CP_LOAD directive is used. Only the checkpoint

name is specified in it. The syntax of the directive is as follows:

!DVM$ CP_LOAD cp-name

9

For example, when executing the directive:

!DVM$ CP_LOAD CP1

and assuming that the checkpoint CP1 has been defined as above, the scalar variable I

and the local part of the array ARR will be loaded from the file1.dat file, or from the

file2.dat file. The last correctly recorded file will be selected automatically.

To wait for the asynchronous checkpoint to be saved the CP_WAIT directive is

used:

!DVM$ CP_WAIT cp-name, STATUS(status-var)

status-var ::= int-variable

For example, when executing the directive:

!DVM$ CP_WAIT CP1, STATUS(st)

and assuming that the checkpoint CP1 has been defined as above, the program waits

for the end of the asynchronous write to file1.dat and file2.dat files, if it was, and

closes them. One of the following values will be written to the variable st passed as an

argument of the STATUS parameter: 0 – asynchronous writing is finished successful-

ly; a non-zero value – if some error occurred.

An experimental version of the DVM system has been developed that supports

these specifications for working with checkpoints.

5 Testing the approach

Several test programs have been developed to examine the efficiency of the imple-

mented I/O subsystem, as well as the checkpoints mechanism. One of them, imple-

menting the Jacobi iterative algorithm, is shown in Figure 2. This test simulates the

recording of a checkpoint (distributed array B) that is performed every 10 iterations.

 PROGRAM JAC2D

 PARAMETER (L=32000, ITMAX=100)

 REAL A(L, L), B(L, L), EPS

 INTEGER ST

! arrays A and B with block distribution

!DVM$ DISTRIBUTE(BLOCK, BLOCK) :: A

!DVM$ ALIGN B(I, J) WITH A(I, J)

!DVM$ CP_CREATE CP1,VARLIST(B),FILES('file1.dat','file2.dat'),LOCAL

 MAXEPS = 0.5

 DO IT = 1, ITMAX

 EPS = 0.

 IF (MOD(IT,10) .EQ. 0) THEN

!DVM$ CP_SAVE CP1, ASYNC

 CONTINUE

 ENDIF

! variable EPS is used for calculation of maximum value

!DVM$ PARALLEL(J, I) ON A(I, J), REDUCTION(MAX(EPS))

 DO J = 2, L - 1

 DO I = 2, L - 1

 EPS = MAX(EPS, ABS(B(I, J) - A(I, J)))

10

 A(I, J) = B(I, J)

 ENDDO

 ENDDO

! Copying shadow elements of array A from

! neighbouring processors before loop execution

!DVM$ PARALLEL(J, I) ON B(I, J), SHADOW_RENEW(A)

 DO J = 2, L - 1

 DO I = 2, L - 1

 B(I, J) = (A(I,J-1)+A(I-1,J)+A(I+1,J)+A(I,J+1))/4.

 ENDDO

 ENDDO

 PRINT 200, IT, EPS

200 FORMAT (' IT = ', I4, ' EPS = ', E14.7)

 ENDDO

!DVM$ CP_WAIT CP1, STATUS(ST)

 END

Fig. 2. Fragment of the iterative Jacobi method in Fortran-DVMH

Figure 3 shows the execution times of the Jacobi program on 1 node of the Lo-

monosov supercomputer when using different I/O modes. During this experiment, 2

MPI processes by 6 threads were started at the node, PARALLEL, LOCAL and asyn-

chronous/local (ASYNCHRONOUS) modes of the checkpoint saving were tested.

For comparison, there is given the time of the array saving, using the old scheme

through the I/O processor (OLD).

Fig. 3. The execution times of Jacobi's program on the Lomonosov supercomputer

Using the local mode for this experiment made it possible to reduce the time of the

checkpoint saving by almost 2 times (in this case, each process writes its own part of

the array in the file) in comparison with the serial mode (in this case, single I/O pro-

cess saves the entire array in the file, plus the time is required to pass part of the array

from one process to the I/O process). Using asynchronous mode reduces the I/O exe-

cution time by almost 7 times from 128.99 seconds to 18.95 seconds due to overlap-

ping I/O and calculations (during execution of next 10 iterations of the algorithm, the

previous checkpoint has time to be written in the file). All asynchronous writes are

buffered. For this experiment, the execution time of 10 buffering operations of the

array B (memory-to-memory copy) is almost 18 seconds.

11

Conclusions and Outlook

Inefficient I/O management negates any optimizations of parallel execution for the

tasks with intensive I/O. The new features presented in the article allow to increase

the efficiency of I/O execution for DVMH programs.

One of the advantages of the developed parallel I/O tools is the ease of use. In his

application program a programmer uses the usual I/O operators (C or Fortran) of seri-

al programming language, switching between modes is carried out by changing only

one parameter of the fopen and freopen functions (for the C-DVMH language) or

using the IO_MODE directive (for the Fortran-DVMH language).

The developed I/O tools are universal - they can be used to save checkpoints, and

to save data obtained at the next time step of the algorithm (for example, for visuali-

zation), and for calculations with arrays on external memory.

A new version of SAPFOR [7,8] system which automates the development of par-

allel programs in the DVMH model is currently being developed. In this version au-

tomatic checkpoint placement will be implemented. The system will automatically

identify the variables that need to be saved/restored in some point and generate the

necessary directives.

References

1. TOP500 supercomputers.: https://www.top500.org/, last accessed 2020/11/25.

2. Bondarenko, A.A., Yakobovskii, M.V.: Obespechenie otkazoustojchivosti vysokopro-

izvoditelnyh vychislenij s pomoshchyu lokalnyh kontrolnyh tochek. Vestn. YUUrGU. Ser.

Vych. matem. inform., 3(3), 20–36 (2014).

3. System for automating the development of parallel programs (DVM-system). http://dvm-

system.org, last accessed 2020/11/25.

4. C-DVMH language, C-DVMH compiler, compilation, execution and debugging of DVMH

programs. http://dvm-system.org/static_data/docs/CDVMH-reference-en.pdf, last accessed

2020/11/25.

5. Fortran DVMH language, Fortran DVMH compiler, compilation, execution and debugging

of DVMH programs. URL: http://dvm-system.org/static_data/docs/FDVMH-user-guide-

en.pdf, last accessed 2020/11/25.

6. Bakhtin, V.A., Klinov, M.S., Kriukov, V.A., Podderiugina, N.V., Pritula, M.N., Saza-

nov, Iu.L.: Rasshirenie DVM-modeli parallelnogo programmirovaniia dlia klasterov s get-

erogennymi uzlami. Vestnik Iuzhno-Uralskogo gosudarstvennogo universiteta, seriia "Ma-

tematicheskoe modelirovanie i programmirovanie", 8 (277)(12), 82–92 (2012).

7. Klinov, M.S., Kriukov, V.A.: Avtomaticheskoe rasparallelivanie Fortran-programm. Oto-

brazhenie na klaster. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, (2),

128–134 (2009).

8. Kataev, N.A., Kolganov, A.S., Smirnov, A.S.: Podderzhka interaktivnosti v sisteme

SAPFOR. Nauchnyi servis v seti Internet: trudy XIХ Vserossiiskoi nauchnoi konferentsii

(18–23 sentiabria 2017 g., g. Novorossiisk). M.: IPM im. M.V. Keldysha, 2017. P. 243–

249. http://keldysh.ru/abrau/2017/57.pdf doi:10.20948/abrau-2017-57.

http://dvm-system.org/static_data/docs/CDVMH-reference-en.pdf

