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Abstract. The paper analyzes the statistical and temporal seasonal and decadal 

variability of the atmospheric pressure field in the Arctic region of Russia. 

Schemes for the frequency analysis of probability transitions for characteristics 

of stochastic-diffusion processes were used as the main research method. On the 

basis of the given series of 60 years long from 1948 to 2008, such parameters of 

diffusion processes as the mean (drift process) and variance (diffusion process) 

were calculated and their maps and time curves were constructed. The seasonal 

and long-term variability of calculated fields was studied as well as their depend-

encies on a discretization of the frequency intervals. These characteristics were 

analyzed and their geophysical interpretation was carried out. In particular, the 

known cycles of solar activity in 11 and 22 years were revealed. Numerical cal-

culations were performed on the Lomonosov-2 supercomputer of the Lomonosov 

Moscow State University. 

Keywords: Time Series Analysis, Random Diffusion Processes, Seasonal and 

Long-Term Variability of Atmospheric Pressure. 

1 Introduction 

Time series analysis (ATS) is one of the most well-developed and widely used areas in 

mathematical statistics. ATS methods are successfully applied in geophysics, econom-

ics, engineering and other types of human activity related to the study of data sets. For 

example, one of the first applications of ATS methods was the analysis of harvest data 

in England in the 18th century [1], associated with grain harvest, which was divided 

into a long-term trend, a seasonal component and an irregular component depending on 

current events (weather conditions, inflationary price splash, etc.). Subsequently, the 

ATS began to be used in the analysis of the financial market [2], in the analysis of long-

term variability of geophysical characteristics, such as the temperature of air or water 

[3], in more complex models and schemes [4]. At the present stage of the ATS analysis 

for instance, autoregressive and moving average (ARIMA) schemes are often used [5]. 
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However, this one requires the use of a large amount of computing power, computer 

time and memory, solving problems of visualizing the results, and many related prob-

lems. In recent years, thanks to significant progress in the field of computing systems 

and numerical modeling, accumulation and processing of big data, experiments on ATS 

have become available to many research groups and individual users belonging to a 

certain scientific community. This, in turn, contributes to the further development of 

numerical modeling, analysis of modeled data and their obtained results with the further 

comparison. 

Research on ATS is also widely used directly in probability theory and mathematical 

statistics. One of the methods of analysis is the representation of the series in the form 

of a Markov chain and / or a Markov process. Since the literature on Markov processes 

is very extensive, we will mention only a few of the most famous works in this area, 

which, however, set out all the necessary theoretical provisions and practical methods 

for calculating the characteristics necessary for further research. For example, [6] de-

scribes all the theoretical information needed in this work on how to determine the 

process parameters given below, and [7] provides specific examples of such processes. 

In this work, the behavior of the atmospheric pressure field is modeled on the basis 

of the Markov diffusion process. Such processes describe well the behavior of the char-

acteristics of fields that change under the influence of two forces - a short-period one, 

called process diffusion, and a long-period one, called drift. These models generalize 

the decomposition of a time series into a trend, periodic and random component, pre-

sented earlier in the literature, mentioned in [1], [3, 4]. In probability theory, such pro-

cesses are described by stochastic differential equations [6, 7], and their probability 

densities are given by solutions of the Fokker–Planck–Kolmogorov equation [8]. 

The characteristics of those processes are adequately described by such models if 

two basic conditions are met. First, the increment (that is, the difference between two 

sequential points in time) should be much less than the total length of the row, and 

secondly, the field of these characteristics should be sufficiently uniform, that is, the 

behavior at neighboring points in space does not differ much from each other, especially 

if this behavior is viewed over long intervals. For the atmospheric pressure field in a 

relatively small region, which we are considering, these conditions are satisfied. The 

length of the row is 60 years, while the time step, that is, the increment, is one day. And 

the size of the cyclonic atmospheric formation, which basically forms the pressure field, 

is comparable to the dimensions of the entire area under consideration, that is, inside 

the area for one formation it does not change much. It is important to investigate to 

what extent the result depends on the division of the actually observed pressure interval 

(that is, the difference between the maximum and minimum pressure in the entire area) 

into separate sub-intervals, which are used to calculate the frequency (statistical) char-

acteristics when analyzing the variability of this field. 

Methods of diffusion stochastic processes were previously used for various prob-

lems, including for data assimilation problems, in the methods proposed by the authors 

[9, 10]. However, this method has not been widely used to describe the seasonal and 

long-term behavior of atmospheric processes. 
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The work did the following: 

- the characteristics of the models are built, their features are described, in particular 

the features of the seasonal and long-term course, the analysis of the features is carried 

out; 

- time graphs and spatial maps of these characteristics were built, and their analysis 

was carried out. 

- the analysis of resistance to the division of the entire pressure interval (maximum 

minus minimum of the field over the entire region) into frequency sub-intervals was 

carried out. 

2 Probability model 

The variability of a random process, (in our case this is a pressure field), is represented 

in the form 

 dWXtbdtXtadX ),(),(  , (1) 

where X  is a pressure value at moment t and at point with given coordinates, this is 

not explicitly shown, t  is a time, dW  is a standard notation of Gaussian ‘white noise’, 

that is  the generalized random process with zero average and variance equaled 1. Its 

covariance function is equaled to delta-function, that is the following

)()()(   tdWtEdW . Hereafter, 1)(  t , if t or zero otherwise. Besides 

that, ),( xta , ),( xtb  are some functions which are calculated according to the work [6]. 

An expression (1) is understood as  
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In (2) the expression represents the Gaussian random variable )()( uWduuW  with 

zero average and variance du . The stochastic integral theory and all definitions needed 

to understand formulae (1) and (2) can be found in [6, 7].  

According to [6], for definition of coefficients ),( xta  and ),( xtb  the following for-

mulae are used 
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where, x  and y  are the values of the process )(tX  at moment t  and dtt  , respec-

tively; dtxyp )|(  is the probability (conditional probability) of an event that the values 
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ydttX  )(  with condition xtX )( , that is ))(|)(()|( xtPydttXPdtxyp  . 

The problem is posed: to calculate these probabilities and to perform their analysis.  

To statistically determine the conditional probability, one need to have a sample of 

observations (values) x  and y  at a fixed point in space. However, since the area under 

consideration is homogeneous, as noted above, points with these values can be marked 

throughout this area. Namely, the technique for determining these probabilities is as 

follows: at step t, all points in the region are marked where xtX )(  )( maxmin xxx  . 

For simplicity, the values minx , 
maxx  can be considered the same for all t . Let there be 

)(xn  such points. Further, at step dtt   at those and only at those points where 

xtX )(  all points are selected where ydttX  )( . Let there be )(ym  such points. 

Then )(/)()|( xnymdtxyp  . Obviously it really is a probability. Further, the calcu-

lation of the coefficients is carried out according to formulas (3) and (4). Such a method 

for determining the coefficients was previously published for a slightly different prob-

lem in [9, 10]. In this case, as can be seen from the description of the method, the result 

depends on the number of sub-intervals into which the entire interval of the pressure 

field variability is divided (that is, the maximum minus the minimum of the field over 

the area). Experiments were carried out on splitting into 20 and 60 intervals. Also, to 

avoid the unrealistic case 0)( xn , the sub-intervals were selected such as to choose 

at least one value of )(tX  in each sub-interval. 

3 Observational data and computation results  

The paper considers the field of atmospheric pressure in the area bounded by coordi-

nates 62°N-80°N and 30°E-90°E, that is, the region of Russia, from the Baltic coast 

near St. Petersburg to Severnaya Zemlya and the Yenisei in Siberia. On the one hand, 

this region is wide enough to neglect the local features of atmospheric processes; on the 

other hand, it is sufficiently homogeneous, since the sizes of large atmospheric for-

mations are comparable to the dimensions of the entire region. By time, pressure data 

were recorded from January 1, 1948 to December 31, 2008, daily in a one-degree grid. 

The data were obtained at the Hydrometeorological Center of Russia (HMC) and were 

used earlier in some works, for example, in [11]. 

Fig. 1(a-d) presents the pressure fields in the considered area on January 1, with the 

time-interval 20 years (1948–2007). 

Figures 1 demonstrate that the pressure fields have the long-term variability but ho-

mogeneous enough with respect to the space, since the areas of approximately equaled 

pressure take most of space domain. Some exemption can be seen in 1987 but even in 

this case the pressure gradient is not large, its value is approximately 10 gpa per 

1000 km. Therefore, this field may be considered as homogeneous with the large con-

fidence level and the aforementioned methods can be applied.  
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c)                                                                 d) 

Fig. 1. Observed pressure fields in the considered area on January 1: a) 1948, b) 1967, c) 1987, 

d) 2007 years. 

According to the given observational data, using formulas (3) and (4), the coeffi-

cients were constructed for each X as the pressure values in the considered area for a 

specific day. In this case, the division of the entire range of pressure values was carried 

out into 20 and 60 intervals. We present only the 60 sub-interval discretization.  

The next figures illustrate the behavior of average value of coefficients ),( xta  and 

),( xtb , their seasonal and decadal variability.  

Fig. 2(a-d) shows the behavior of the average coefficient ),( xta  for 2007 when di-

vided into 20 intervals. From formula (1) it is seen that the average for the process dX  

will be 0),( xta . However, the sample mean ),( xta  may not coincide with the theo-

retical mean, and this difference needs to be analyzed. 2007 is taken as indicative, in 

other years the picture is similar. In these figures, it is noteworthy that the spread of the 

coefficient ),( xta  around the mean value equal to zero is very small in summer, in July, 

and rather large in the transitional months – April and October, especially in October. 

Moreover, the deviation from zero is generally positive. This means that atmospheric 

formations (cyclones and anticyclones) in the area under consideration mainly change 
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in the direction of increasing pressure, that is, the incoming cyclone (and most of them) 

does not deepen, that is, the pressure does not decrease. 

 

 

 

 

 

 

 

 

 

 

 

a)                                                                         b) 

 

 

 

 

 

 

 

 

 

 

c)                                                                 d) 

Fig. 2. Behavior of the average coefficient ),( xta , for 2007 year а) January; b) April; c) July; 

d) October. 

Fig. 3 shows the annual variability for the ),( xta  on January 15 during the period 

1948–2008 years. The long-term variability of the pressure increment expressed in val-

ues of ),( xta , taken on 15 of each months demonstrates that there are the quasi-period-

ical oscillations with well-pronounced 11-year cycle and a weakly pronounced quasi-

biannual cycle. These cycles are very well-known in geoscience and caused both solar 

activity and biannual wind and baric oscillations, cited by many authors, for instance 

[12].  

One may note that in the beginning of calculations, in 1948 year the graphs contains 

the sharp splash which will not observe further. This can be explained due to the exist-

ence of noise and badly processed data in the beginning of the archive. Then all data 

are extensively processed, cleaned and smoothed.  

Fig. 4 (a-d) shows the behavior of the average coefficient ),(2 xtb  for 2007 year and 

Fig. 5 contains the annual variability for this coefficient calculated at January 15 during 

entire period. 
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Fig. 3. Graph for coefficient ),( xta  from 1948 until 2008 years (measured at 0 o'clock Jan 15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

a)                                                                         b) 

 

 

 

 

 

 

 

 

 

 

 

c)                                                                 d) 

Fig. 4. Behavior of ),(2 xtb , for 2007 year: а) January; b) April; c) July; d) October. 
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Figs. 3 and 4 demonstrate the tendencies in ice fraction for 2 different time-periods. 

Fig. 3 shows the model prediction on 2027 started from 2000 and Fig. 4 shows the 

difference between 1965–2016 for low resolution model. It is clearly visible the ten-

dency to the ice thickness everywhere in Arctic except some zones in the East of Rus-

sia and to the eastward from Novaya Zemlya. The low resolution model shows the 

global fall of ice thickness during 40-year period everywhere except Severnaya Zem-

lya archipelago. Some questions arise the slight increase of the ice thickness in Baltic 

Sea but this can be explained because the increase is not significant, it is about 30 cm 

and this is really observed in January. 

 

 
 

Fig. 5. Graph for coefficient ),(2 xtb  from 1948 until 2008 years (measured at 0 o'clock Jan 15). 

In Figs. 4 and 5 one can see that the coefficient ),(2 xtb  quite well corresponds to 

the coefficient ),( xta , with some differences. So, from Fig. 5 that the seasonal variation 

for the coefficient ),(2 xtb  is less pronounced, for example, it is almost invisible in April 

or July, and the interannual variation reflects the 11-year cycle worse (although it also 

exists) and the quasi-biannual cycle is better than the coefficient ),( xta . Neither 

coefficient ),( xta  nor ),(2 xtb  contain any linear trends. There is also a strong surge in 

1948, explained above. 

 Fig. 6 shows the spatial location of the coefficient ),( xta , a total of 4 values for 

January 15, 1948, 1968, 1988 and 2008, interval 20 years. 

It is seen that the jumps in the values of this coefficient are sufficiently localized and 

do not exceed 5 gpa/day with different signs. The spatial arrangement of this coefficient 

over the area is uniform, no noticeable localization zones are observed, and it should 

also be noted that the isolines of the values of the coefficient ),( xta  are quite local in 

comparison with the dimensions of the area itself (shown in different colors). This 

indicates the local cause of pressure changes on a large scale. 
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c)                                                                         d) 

Fig. 6. Coefficient ),( xta  on January 15: а) 1948; b) 1968; c)1988; d) 2008 years. 

The coefficient ),(2 xtb  (Fig. 7) is more chaotic, its distribution over space is not as 

common as for the coefficient ),( xta . In addition, it can be concluded that the spatial 

location of the coefficient ),(2 xtb  is more localized and concentrated in continuous 

zones (except for the values for 2008). In terms of amplitude, the range of this 

coefficient is significantly larger than for the coefficient ),( xta , but locally it occupies 

a smaller size of the entire area. 
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c)                                                                  d) 

Fig. 7. Coefficient ),(2 xtb  for January 15: а) 1948; b) 1968; c) 1988; d) 2008 years. 
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It can also be noted that with an increase in the discretization into the number of 

intervals, graphs 3 and 5 become smoother, Figs. 4 and 6 are more pronounced, but 

they qualitatively coincide. Therefore, the results of the work are qualitatively inde-

pendent of the number of divisions. However, for the correctness and reliability of the 

calculations, it is required that, when the whole interval is broken down, each sub-in-

terval must contain at least one observation, so that the conditional probabilities can be 

correctly calculated using formulas (3) and (4). 

4 Conclusions and Outlook 

Several characteristics were obtained in this study that reflect both long-term and short-

term behavior of the pressure increment in the Northern region of Russia over 60 years. 

Knowledge of such characteristics is very useful for medium and long-term forecasts 

of weather and climate change, as well as for modeling the dynamics of currents in the 

North Seas of Russia, especially when calculating pilotage along the Northern Sea 

Route. In addition, the knowledge and forecast of the characteristics obtained in the 

work will make it possible to calculate and determine the confidence limits of possible 

pressure values, and hence a number of derivatives of this value, for example, geo-

strophic wind, which will allow applying this knowledge in determining extreme val-

ues, such as strong winds, extreme waves and a number of other characteristics. 

This work was carried out with partial support from the Russian Foundation for 

Basic Research, project 18-29-10085 mk and within the framework of the topics 0149-

2019-0004, and ‘Mathematical methods for data analysis and forecasting’. 

References 

1. Kendall, M., Stuart, A., Ord, J.K.: The Advanced Theory of Statistics. Volume 3: Design 

and Analysis, and Time-Series. Fourth edition (1983). 

2. Murphy, J.: Technical analysis of the futures markets. A Comprehensive Guide to Trading 

Methods and Applications. New York Institute of Finance (1986).  

3. Prival'skij. V.E.: Statisticheskaya predskazuemost' srednej godovoj temperatury vozduha 

severnogo polushariya. Doklaly AN SSSR, 257 (6), 1342–1345 (1981). 
4. Belyaev, K.P., Muzychenko, A.C., Selemenov, K.M.: Statisticheskie harakteristiki formiro-

vaniya anomalij poverhnostnoj temperatury vody. Sb. Statisticheskie zakonomernosti 

klimaticheskoj izmenchivosti okeanov, red. Lappo S.S. Gidrometizdat, Leningrad, 65-72 

(1988). 
5. Balasmeh, O., Babbar, R., Karmaker, T.: Trend analysis and ARIMA modeling for forecast-

ing precipitation pattern in Wadi Shueib catchment area in Jordan. Arabian Journal of Geo-

sciences, 12, 27 (2019). https://doi.org/10.1007/s12517-018-4205-z. 

6. Gihman, I., Skorohod, A.: Vvedenie v teoriyu sluchajnyh processov. Nauka, Moscow 

(1965). 
7. Nazarov, A., Terpunov, A.: Teoriya veroyatnostej i sluchajnyh processov. Izd-vo Tomskogo 

Gosuniversiteta (2010). 

8. Risken, H.: The Fokker–Planck Equation: Methods of Solutions and Applications. Springer 

(1984). 

https://doi.org/10.1007/s12517-018-4205-z


61 

 

9. Belyaev, K., Kuleshov, A., Tanajura, K., Tuchkova, N.: Metod korrekcii raschetov 

dinamicheskoj modeli dannymi nablyudenij i ego primenenie k analizu dinamiki Atlan-

ticheskogo okeana. Matematicheskoe Modelirovanie, 27 (2), 20–32 (2015). 

10. Tanajura, C.A.S., Belyaev, K.: On the oceanic impact of a data-assimilation method in a 

coupled ocean-land-atmosphere model. Ocean Dynamics, 52 (3), 123–132 (2002). 
11. Popov, S.K.: Vliyanie morskogo l'da na prilivnye kolebaniya urovnya morya i skorosti tech-

enij v Barencevom i Belom moryah. Trudy Gidrometcentra RF, Gidrometeorologicheskie 

issledovaniya i prognozy, 4 (370), 137–155 (2018). 
12. Devyatova, E.V., Mordvinov, V.I.: Kvazidvuhletnee kolebanie vetra v nizkoshirotnoj 

stratosfere i volnovaya aktivnost' atmosfery zimoj v severnom polusharii. Izvestiya RAN 

FAO, 47(5), 608–621 (2011). 

 


