

Copyright © 2020 for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Applying Machine Learning to the Task of Generating

Search Queries

Alexander Gusenkov 1[0000-0003-4019-7322] and Alina Sittikova 1[0000-0002-9539-764X]

1 Kazan Federal University, Kazan, Russia

gusenkov.a.m@gmail.com, sitti.alina@mail.ru

Abstract. In this paper we research two modifications of recurrent neural net-

works – Long Short-Term Memory networks and networks with Gated Recurrent

Unit with the addition of an attention mechanism to both networks, as well as the

Transformer model in the task of generating queries to search engines. GPT-2 by

OpenAI was used as the Transformer, which was trained on user queries. Latent-

semantic analysis was carried out to identify semantic similarities between the

corpus of user queries and queries generated by neural networks. The corpus was

converted into a bag of words format, the TFIDF model was applied to it, and a

singular value decomposition was performed. Semantic similarity was calculated

based on the cosine measure. Also, for a more complete evaluation of the ap-

plicability of the models to the task, an expert analysis was carried out to assess

the coherence of words in artificially created queries.

Keywords: natural language processing, natural language generation, machine

learning, neural networks.

1 Introduction

Natural language generation is a process of creating meaningful phrases and sentences

in the form of natural language. Two main approaches can be distinguished among the

algorithms for creating texts: methods based on rules and methods based on machine

learning. The first approach allows to achieve high quality texts, but requires

knowledge of the rules of the language and is time consuming to develop [1], while the

second approach depends only on training data, but often makes grammatical and se-

mantic errors in the created texts [2].

Currently, generation of texts using neural networks is being actively researched;

one of the most popular algorithms is recurrent neural networks [3]. The second leading

architecture is the Transformer model [3]. These architectures were considered in the

solution of the generating search queries task.

The purpose of this article is to study the above-mentioned architectures, analyze

their quality and applicability to this task. The use of automatically generated queries

to search engines is relevant, since most companies do not issue their search queries for

free, and a search engine must be tested while being developed. Also, the received que-

ries can be used to improve the efficiency and optimize the search engine.

mailto:gusenkov.a.m@gmail.com

85

Search queries from users of AOL (America Online), which were anonymously

posted on the Internet in 2006, were used in this paper. Although the company did not

identify its users, personal information was present in many queries [4], which compa-

nies are now trying to avoid. Algorithms have been proposed to help preserve user an-

onymity, but the question is whether data that can be safely published is of practical

use. To solve this problem, it is proposed to use automatically generated queries.

1.1 Subject area overview

Natural language text generation algorithms are actively studied and used in many soft-

ware systems, so at the moment there is a large amount of research in this area.

One of the first approaches is the fill-in-the-gap template system. It is used in texts

that have a predefined structure and, if it is necessary to fill in a small amount of data,

this approach can automatically fill in the blanks with data obtained from spreadsheets,

databases, etc. An example of this approach is Microsoft Word mailmerge [5].

The second step was to add general-purpose programming languages to the first ap-

proach that support complex conditionals, loops, etc. This approach is more powerful

and useful, but the lack of language capabilities makes it difficult to create systems that

can generate quality texts.

The next step in the development of template-based systems is the addition of word-

level grammatical functions that deal with morphology and spelling. Such functions

greatly simplify the creation of grammatically correct texts. Next, systems dynamically

create sentences from representations of the values they need to convey. This means

that systems can handle unusual cases without the need to explicitly write code for each

case, and are significantly better at generating high-quality "micro-level" writing. Fi-

nally, in the next stage of development, systems can generate well-structured docu-

ments that are relevant to users. For example, a text that needs to be persuasive can be

based on models of argumentation and behavior change [5].

After moving from templates to dynamic text generation, it took a long time to

achieve satisfactory results. If we consider the generation of texts in natural language a

subsection of natural language processing, then there is a number of the most developed

algorithms – Markov chains [6], recurrent neural networks, long short-term memory

netwroks and the Transformer model. There are text generation tools based on these

methods, for example commercial Arria NLG PLC, AX Semantics, Yseop and others,

as well as open source programs Simplenlg, GPT, GPT-2, BERT, XLNet.

Also, the use of generative adversarial networks for text generation is currently being

researched, since they show excellent results in the task of generating images [7].

2 Data collection

User queries in English from the 2006 AOL search engine were selected as data for

training neural networks. Researchers try to avoid using this data in their work, as it

86

can be considered revealing, but this paper uses only the texts of the requests them-

selves, without the IDs of users and websites, that is, without using personal infor-

mation. The initial data are presented in the form shown in Fig. 1.

Fig. 1. Initial training data.

Queries longer than 32 words and erroneous requests containing no information were

removed from the corpus. Duplicate queries and queries containing website names have

also been removed, as they are not natural language examples. In total, 100 thousand

queries were randomly selected for training. Fig. 2 shows examples of data after pre-

processing.

Fig. 2. Data after preprocessing.

The queries were separated into character-tokens, each character was assigned with a

natural number, the entire corpus was encoded using this dictionary.

3 Recurrent networks

Recurrent neural networks (RNN) are a family of neural networks where the connec-

tions between the elements form a directed sequence [8]. They can use their internal

memory to process sequences of arbitrary length, and they are also good at identifying

the dependencies between tokens.

87

However, recurrent networks learn slowly, and their ability to memorize long de-

pendencies is limited due to the vanishing gradient problem [9].

Two types of recurrent networks were implemented; they are most often used in the

task of generating texts in natural language – Long Short-Term Memory Network [10]

and Gated Recurrent Unit [11]. Studies have shown that these types of networks have

comparable accuracy, and, depending on the task, one network can be more accurate

than the other.

3.1 Long short-term memory networks

Long short-term memory network (LSTM) is a deep learning system that avoids the

vanishing and exploding gradient problems [10]. LSTM networks can memorize sig-

nificantly longer sequences of characters. They use gates, which are internal mecha-

nisms that can control information flow. Fig. 3 shows the standard form of the LSTM

cell.

Each cell has 3 gates: input, output and forget gates. The forget gate vector is calcu-

lated as:

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓),

where 𝑥𝑡 is the input vector, ℎ𝑡−1 is the output vector of the previous cell, σ is sigmoid

function, 𝑊𝑓, 𝑈𝑓 , 𝑏𝑓 are weight matrices and bias vector.

Fig. 3. LSTM cell.

Next, the input gate updates the state of the cell:

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖),

ĉ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐).

Then the new value of cell state is calculated:

𝑐𝑡 = 𝑓𝑡°𝑐𝑡−1 + 𝑖𝑡°ĉ𝑡,

88

where 𝑐𝑡−1 is the state of the previous cell. Finally, an output vector decides what the

next hidden state should be

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜),

ℎ𝑡 = 𝑜𝑡°tanh(𝑐𝑡).

The results are passed to the next cell.

3.2 Gated Recurrent Unit

The second implemented model is a network with Gated Recurrent Unit (GRU), which

is a new generation of recurrent neural networks, similar to a long short-term memory

network [11]. However, compared to LSTM, this type of networks has fewer parame-

ters, and therefore these models are trained faster. The GRU has only 2 gates: update

and reset gates. Fig. 4 shows a standard GRU cell.

Fig. 4. GRU cell.

Update gate acts as input and forget gates in LSTM and is calculated as:

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧).

Reset gate is calculated as

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟).

Output vector of GRU cell is calculated as

ℎ𝑡 = 𝑧𝑡°ℎ𝑡−1 + (1 − 𝑧𝑡)°𝜎(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡°ℎ𝑡−1) + 𝑏ℎ).

89

3.3 Attention mechanism in recurrent neural networks

Attention mechanism is a technique used in neural networks to identify dependencies

between parts of input and output data [12].

Attention mechanism allows a model to determine the importance of each word for

the prediction task by weighing them when creating the text representation. The ap-

proach with a single parameter per input channel was used [13]:

𝑒𝑡 = ℎ𝑡𝑤𝑎,

𝑎𝑡 =
exp(𝑒𝑡)

∑ exp(𝑒𝑖)
𝑇
𝑖=1

,

𝑣 = ∑𝑎𝑖ℎ𝑖

𝑇

𝑖=1

.

Here ℎ𝑡 is the representation of the word at time step t, 𝑤𝑎 is the weight matrix for the

attention layer, 𝑎𝑡 are the attention importance scores for each time step, v is the rep-

resentation vector for the text.

4 Implementation of recurrent networks

All neural networks were implemented in Python 3.7 in Google Collab [14], since it

has the ability to use GPUs, which significantly decrease the training time of the mod-

els. For the implementation of neural networks, we chose the Keras library [15], which

is a high-level add-on over TensorFlow. This library greatly simplifies the development

of neural networks, since it already has ready-made implementations of the main layers,

activation and loss functions. The Adam optimizer (Adaptive Moment Estimation [16])

is used. It is an algorithm in which the learning rate is adjusted for each parameter.

Also, the Learning Rate Scheduler function [17] is used as a callback, which allows

calculating the learning rate coefficient using a specific function.

The general architecture of the model is shown in Fig. 5.

The preprocessed data was divided into training and validation sets, which consti-

tuted 80% and 20% of the corpus, respectively. The training data is fed into the Em-

bedding layer, which converts numbers into vectors that reflect the correspondence be-

tween the character sequences and the projections of those sequences. The resulting

representations are input to the first LSTM layer (GRU), its output is passed to the

second LSTM layer (GRU), and the third in the same way. Next, the output data from

the Embedding layer and these three layers are combined and fed to the Attention-

WeightedAverage layer. The representation vector obtained from the attention layer is

a high-level encoding of the entire text, which is used as input to the final fully con-

nected layer with Softmax activation for classification [13].

90

Fig. 5. Architecture of the model.

To check how well the model has trained for a particular epoch, the Categorical Cross-

Entropy loss function is calculated as

𝐿(𝑦, �̂�) = −∑ ∑ (𝑦𝑖𝑗 log(�̂�𝑖𝑗))
𝑁
𝑖=0

𝑀
𝑗=0 ,

where �̂� are the predicted values.

We conducted experiments with changing the number of LSTM layers (GRU) in the

model (2 and 3 layers), as well as adding a Dropout layer after the Embedding layer,

which randomly excludes a given number of neurons to prevent network from overfit-

ting and to generalize the model better. Networks with 3 recurrent layers and Dropout

performed better.

Bidirectional models of these networks were also trained. Bidirectional recurrent

neural network is a model proposed in 1997 by Mike Schuster and Kuldip Paliwal [18],

which allows to consider the context of a word not only to the left of it but also to the

right of the sequence. A general view of bidirectional neural networks is shown in Fig.

6.

91

Fig. 6. a) Unidirectional neural network; b) Bidirectional neural network.

In the case of the generating search queries task, the bidirectional model has shown

itself to be better than the unidirectional one; the obtained values of the loss function

after training the models for 30 epochs are shown in Table 1.

Table 1. Loss function values.

 LSTM GRU Bi-LSTM Bi-GRU

Loss 1,48 1,58 1,30 1,37

Validation

Loss
1,6 1,62 1,56 1,57

The value of the loss function decreased on the training data, however, on the validation

data, the improvement was less significant, which suggests that the bidirectional model

in this task does not learn so well but rather “remembers” the sequences of symbols.

With the help of the implemented model, queries with different "temperatures" were

generated. This is a parameter that affects the chance of choosing an unlikely character.

5 Transformer

Transformer is a deep learning model, which was introduced in 2017 [19]. A general

view of its architecture is shown in Fig. 7.

Transformers consist of stacks of equal numbers of encoders and decoders. Encoders

process input sequences and encode data to show information about them and their

characteristics. Decoders do the opposite, they process the information received from

the encoder and generate output sequences. All encoders have the same structure and

consist of two layers: self-attention and feed-forward neural network. The input se-

quence being fed into the encoder first passes through the layer of internal attention,

which helps the encoder to look at other words in the input sentence while encoding a

particular word. The output of this layer is sent to the feedforward neural network. The

same network is applied independently to each word. The decoder also contains these

92

two layers, but in between there is an extra layer of attention that allows the decoder to

identify the relevant parts of the input sentence.

Internal attention allows the model to see dependencies between the word being pro-

cessed and other words in the input sequence, which help to better encode the word.

After all decoders, a fully connected Softmax layer is used, which converts the ob-

tained values into probabilities, from which the largest value is then selected, and the

word corresponding to it becomes the output for this time step.

Fig. 7. Transformer architecture.

5.1 GPT-2 architecture

GPT-2 is a large language model based on Transformer, created by the non-profit com-

pany OpenAI, with parameters ranging from 117 million to 1.5 billion, trained on a

dataset of 8 million web pages [20]. GPT-2 learns with a simple goal: to predict the

next word, given all the previous words in some text.

GPT-2 is built using only decoder blocks, which have the same structure as the

Transformer model described above.

GPT-2 does not use words as input but tokens obtained using the Byte Pair Encoding

(BPE) method. It is a data compression technique in which the most common pairs of

93

consecutive bytes of words are replaced by bytes that do not appear in those words [23].

This method provides a balance between character and word representations, which

allows it to cope with large corpuses of data.

Internal attention in GPT-2 also uses masking, which blocks information from to-

kens to the right of the position that is being calculated.

5.2 GPT-2 implementation

A medium size GPT-2 model with 345 million parameters was used, consisting of 24

decoder blocks.

The model was further trained using fine-tuning on the corpus of search queries in

English which were also used to train recurrent neural networks. Using the resulting

model search queries were generated.

We used the model implementation available at https://github.com/nshepperd/gpt-2.

The model was trained for 1000 steps.

6 Latent semantic analysis

Latent Semantic Analysis (LSA) is a natural language processing technique for analyz-

ing dependencies between collections of documents and the terms they contain [24].

This method uses a term document matrix that describes the frequency of occurrence

of terms in a collection of documents. The elements of such a matrix can be weighted,

for example, using TF-IDF: the weight of each element of the matrix is proportional to

the number of times the term occurs in each document, and inversely proportional to

the number of times the term occurs in all documents in the collection. After compiling

the term-document matrix, its singular value decomposition is carried out, i.e. it is rep-

resented as 𝐴 = 𝑈𝑆𝑉𝑇, where matrices U and V are orthogonal, and S is a diagonal

matrix, the values of which are called singular values of matrix A. This expansion re-

flects the basic structure of dependencies present in the original matrix, allowing to

ignore noise [25].

6.1 Implementation of latent semantic analysis

To carry out latent semantic analysis, the gensim library for Python was used [26]. We

created a corpus of 10,000 documents containing human-written reference searches.

Frequently occurring official words of the English language (prepositions, articles) and

words that occur once were then removed from it, since they do not help to calculate

the semantic relationship between documents. Using the Dictionary class of the gensim

library, a dictionary was created with words and their indices, then using the doc2bow

method of this class, all documents were presented in a bag of words format. The TFIDF

model was applied to the resulting data corpus, and the LsiModel class performed sin-

gular value decomposition. The requests generated using neural networks were to-

kenized and, using a dictionary created on the reference corpus, transformed into a bag

94

of words format. Finally, using the MatrixSimilarity class, semantic similarities be-

tween these corpuses were calculated using a cosine measure.

7 Results of evaluating generated queries

Comparing each document, in this case a query, with documents from the corpus with

real queries, the method returns a value from -1 to 1, reflecting the semantic similarity

of the documents. The analysis results are shown in Table 2.

Table 2. Results of latent semantic analysis.

 GRU LSTM Fine-tuned GPT-2

Mean 0,0065 0,006 0,0035

Average number of

values greater than

0,7

16 14 9

Average number of

values greater than 0
4000 4659 2684

The corpus of real queries is varied, so the average value of the result of comparing

each generated document with all documents from the reference corpus differs slightly

from zero. At the same time, for each query artificially created using GRU and LSTM

networks, there are on average 16 and 14 semantically close documents, when the val-

ues are greater than 0.7, and for the GPT-2 model, this number is 9 documents. Also,

for each request generated by the GPT-2 model, out of 10,000 compared documents,

2684 have a value greater than 0, and for LSTM and GRU networks, 4659 and 4000,

respectively. From this, we can conclude that LSTM and GRU used more words se-

mantically similar to words from the training data when generating queries than GPT-

2. This makes sense, since the first two models were trained from scratch on the input

data, while the main training of the last model took place on a completely different

corpus, it was only fine-tuned in order to generate queries suitable for structure. It is

also important to take into account that the comparison was carried out with 10 thou-

sand reference queries, although the models were trained on 100 thousand, therefore

not all dependencies were taken into account, however, the obtained values are suffi-

cient for analysis.

The analysis results show that the generated queries have similar semantics to the

corpus of real user queries, but at the same time they do not repeat them literally, that

is, they are new queries in meaning.

The GRU and LSTM networks were trained by characters and could have generated

non-existent words, so it was decided to test them. Each word from the queries was

checked for existence using a corpus containing more than 466 thousand English words,

available at https://github.com/dwyl/english-words. In the queries generated by the

GRU network, 141 words out of 4431 were not found, and in the queries of the LSTM

95

model - 166 out of 4325. The words that were not found contained typos or mistakes in

words that the models remembered. Therefore, it may be worth preprocessing the data

by correcting typos and errors of this kind. However, queries with typos can be useful

depending on the task in which they will be applied. So, for example, when they are

used to test a new search engine or to optimize it, they will be more relevant with typos,

as they have a greater similarity with real user queries.

Due to the fact that neural networks cannot understand the meaning of a sentence,

although they often find the correct dependencies between tokens, an expert (manual)

analysis was carried out to assess the quality of the generated search queries.

From the queries generated by each model, 100 queries were randomly selected. It

was determined whether each search query makes sense, whether it is similar to a real

possible user query. It should be noted that this assessment is subjective. Queries were

considered "good" if the words in them were consistent with each other.

The analysis results are shown in Table 3.

Table 3. Results of expert analysis.

 GRU LSTM Fine-tuned GPT-2

Good query 72 73 81

Bad query 28 27 19

The table shows that the GRU and LSTM networks showed almost the same results,

while GPT-2 is slightly better. During the analysis, it was observed that the GPT-2

model generates shorter queries than the other two models.

The results of the analysis showed that the GRU and LSTM networks have approx-

imately the same quality when solving the task of generating search queries, and the

GPT-2 model was worse in automatic analysis, but better in expert judgment. There-

fore, this model is better suited for generating search queries, since the significance of

the expert judgment is higher than the automatic one, although for more accurate results

it is worth carrying out this assessment with the help of other experts.

8 Conclusion

In the course of this work, we researched the leading models used to generate texts in

natural language and their ability to solve the task of generating queries for search en-

gines and we conducted their comparative analysis. Two neural networks are fully im-

plemented: a network with a long short-term memory and a network with a gated re-

current unit. The GPT-2 architecture based on the Transformer model was researched;

it was also fine-tuned using the corpus of real user requests.

Latent semantic analysis showed that the GPT-2 model performs worse than the

other two networks. However, the automatic metrics for evaluating the generated text

do not always reflect the quality of the model, since at the moment it is impossible to

assess the meaningfulness of the texts using the algorithm. To solve this problem, an

96

expert analysis of the generated texts was also carried out, according to the results of

which the GPT-2 model was better than the other two models. At the same time, the

LSTM and GRU networks showed approximately the same quality according to the

results of all analyses performed.

Acknowledgments. This work was subsidy of the Russian fund of fundamental re-

search, grant agreement 18-07-00964.

References

1. van Deemter, K., Krahmer, E., Theune, M.: Real vs. template-based natural language

generation: a false opposition? (2005) https://wwwhome.ewi.ut-

wente.nl/~theune/PUBS/templates-squib.pdf, last accessed 2020/06/15

2. Xie, Z.: Neural Text Generation: A Practical Guide (2017)

https://arxiv.org/pdf/1711.09534.pdf, last accessed 2020/06/15

3. A Comprehensive Guide to Natural Language Generation (2019) https://me-

dium.com/sciforce/a-comprehensive-guide-to-natural-language-generation-

dd63a4b6e548, last accessed 2020/06/15

4. Arrington, M.: AOL proudly releases massive amounts of user search data (2006)

https://techcrunch.com/2006/08/06/aol-proudly-releases-massive-amounts-of-user-

search-data/, last accessed 2020/06/15

5. Reiter, E.: NLG vs Templates: Levels of Sophistication in Generating Text (2016).

https://ehudreiter.com/2016/12/18/nlg-vs-templates, last accessed 2020/06/15

6. Gagniuc, P.: Markov Chains: From Theory to Implementation and Experimentation.

USA, NJ: John Wiley & Sons (2017).

7. Press, O., Bar A., Bogin B., Berant J., Wold L.: Language Generation with Recurrent

Generative Adversarial Networks without Pre-training (2017).

https://arxiv.org/pdf/1706.01399.pdf, last accessed 2020/06/15

8. Williams, R., Hinton G., Rumelhart D.: Learning representations by back-propagat-

ing errors (1986). http://www.cs.utoronto.ca/~hinton/absps/naturebp.pdf, last accessed

2020/06/15

9. Hochreiter, S., Bengio Y., Frasconi P., Schmidhuber, J.: Gradient Flow in Recurrent

Nets: the Difficulty of Learning Long-Term Dependencies (2001).

https://www.bioinf.jku.at/publications/older/ch7.pdf, last accessed 2020/06/15

10. Hochreiter, S., Schmidhuber, J.: Long-Short Term Memory (1997). http://web.ar-

chive.org/web/20150526132154/http://deeplearn-

ing.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf, last accessed 2020/06/15

11. Heck, J., Salem, F.: Simplified Minimal Gated Unit Variations for Recurrent Neural

Networks (2017). https://arxiv.org/abs /1701.03452, last accessed 2020/06/15

12. Bahdanau, D., Cho, K., Bengio, Y.: Neural Machine Translation by Jointly Learn-

ing to Align and Translate (2016). https://arxiv.org/pdf/1409.0473.pdf, last accessed

2020/06/15

https://wwwhome.ewi.utwente.nl/~theune/PUBS/templates-squib.pdf
https://wwwhome.ewi.utwente.nl/~theune/PUBS/templates-squib.pdf
https://arxiv.org/pdf/1711.09534.pdf
https://medium.com/sciforce/a-comprehensive-guide-to-natural-language-generation-dd63a4b6e548
https://medium.com/sciforce/a-comprehensive-guide-to-natural-language-generation-dd63a4b6e548
https://medium.com/sciforce/a-comprehensive-guide-to-natural-language-generation-dd63a4b6e548
https://techcrunch.com/2006/08/06/aol-proudly-releases-massive-amounts-of-user-search-data/
https://techcrunch.com/2006/08/06/aol-proudly-releases-massive-amounts-of-user-search-data/
https://ehudreiter.com/2016/12/18/nlg-vs-templates
https://arxiv.org/pdf/1706.01399.pdf
http://www.cs.utoronto.ca/~hinton/absps/naturebp.pdf
https://www.bioinf.jku.at/publications/older/ch7.pdf

97

13. Felbo, B., Mislove, A., Søgaard, A., Rahwan, I., Lehmann, S.: Using millions of

emoji occurrences to learn any-domain representations for detecting sentiment, emo-

tion and sarcasm (2017). https://arxiv.org/pdf/1708.00524.pdf, last accessed

2020/06/15

14. Bisong, E.: Google Colaboratory. In: Building Machine Learning and Deep Learn-

ing Models on Google Cloud Platform (2019) Apress, Berkeley, CA.

15. Chollet, F.: Keras (2015). https://keras.io, last accessed 2020/06/15

16. Kingma, D., Ba, J. Adam: A Method for Stochastic Optimization (2014).

https://arxiv.org/abs/1412.6980, last accessed 2020/06/15

17. Learning Rate Scheduler. https://keras.io/api/callbacks/learning_rate_scheduler/,

last accessed 2020/06/15

18. Schuster, M., Paliwal, K.: Bidirectional recurrent neural networks (1997).

https://www.researchgate.net/publication/3316656_Bidirectional_recurrent_neu-

ral_networks, last accessed 2020/06/15

19. Vaswani, A., Shazeer, N., Parmar, N.: Attention Is All You Need (2017).

https://arxiv.org/pdf/1706.03762.pdf, last accessed 2020/06/15

20. Radford, A., Wu, J., Child, R., Luan, D.: Language Models Are Unsupervised Mul-

titask Learners (2018). https://d4mucfpksywv.cloudfront.net/better-language-mod-

els/language-models.pdf, last accessed 2020/06/15

21. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidi-

rectional Transformers for Language Understanding (2018).

https://arxiv.org/pdf/1810.04805.pdf, last accessed 2020/06/15

22. Brown, T., Mann, B., Ryder, N., Subbiah, M.: Language Models Are Few-Shot

Learners (2019). https://arxiv.org/abs/2005.14165, last accessed 2020/06/15

23. Gage, P.: A New Algorithm for Data Compression (1994). https://www.derczyn-

ski.com/papers/archive/BPE_Gage.pdf, last accessed 2020/06/15

14. Deerwester, S., Harshman, R.: Indexing by Latent Semantic Analysis (1987).

https://www.cs.bham.ac.uk/ ~pxt/IDA/lsa_ind.pdf, last accessed 2020/06/15

25. Nakov, P.: Getting Better Results with Latent Semantic Indexing (2009).

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.59.6406

&rep=rep1&type=pdf, last accessed 2020/06/15

26. Rehurek, R., Soika, P.: Software Framework for Topic Modelling with Large Cor-

pora (2010). Proceedings of the LREC 2010 Workshop on New Challenges for NLP

Frameworks. University of Malta.

