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Abstract. An introduction and the state of work of the project for the implemen-

tation of high-precision arithmetic in an overlaying numeration system, which 

provides digit-wise parallelism of operations of addition and subtraction of real 

numbers with restricted carry propagation only by 1–2 bits, is presented. The 

historical origins of ideas behind such numeration systems in the history of math-

ematics, dating back to A.L. Cauchy (1840) and L.E.J. Brouwer (1921), are out-

lined. We explain a simplest overlaying system referred to as "three halves". It is 

built on the binary system by adding a extra (redundant) third digit representing 

an interval overlaying with the intervals of 0 and 1. We demonstrate an addition 

scheme for it, which propagates a carry to next two positions. A simpler scheme 

with carry propagation to only one position is also shown, and we argue that it 

requires two redundant digits and a numeration system base not less than 3. 

Keywords: arbitrary-precision arithmetic, bignum arithmetic, digit-wise paral-

lelism, overlaying numeration system. 

1 Introduction 

Problem statement. Modern problems of mathematical modeling require an increase 

in the calculation accuracy and bit width of numbers, some up to thousands or more 

bits. The digit-wise-parallel implementation of operations on such long numbers faces 

the carry problem: in the usual column addition scheme, the carry is performed in the 

worst case in a time proportional to the bit width, while it is intuitively expected that 

addition can be performed with bit parallelism in one clock cycle. For example, when 

adding two binary numbers in Figure 1 on the left, the fractional part of the result con-

sists of some units; when replacing the least significant digit of the second number from 

0 to 1, there is a carry along the entire mantissa (Figure 1 on the right). There are more 
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complex schemes of carry in logarithmic time [8, Chapter 29], but they have to waste 

the area of the crystal. 

A radical solution could be such a numeration system in which there are no carries 

at all for an unlimited number of digits. However, as mentioned by L.E.J. Brouwer a 

hundred years ago [1], unlimited carriers are present in any positional numeration sys-

tem in which the number of digits coincides with the base of the system. 

Brouwer was worried about a fundamental mathematical problem that arose in the 

development of intuitionistic mathematics: how to represent real numbers and other 

(potentially) infinite mathematical objects in such a way that the Principle of Continuity 

is fulfilled? It is also called the Principle of Finite information [10, 12–14]: 

Any finite part of the result must be returned over some finite part of the argument(s). 

The representation of real numbers is (potentially) infinite towards the lower-order 

bits. The final part of such a representation is a sequence of bits from the most signifi-

cant to some least significant. Arithmetic operations, for example addition, in order to 

satisfy the requirements of intuitionistic mathematics, must return each fragment of the 

representation from the most significant digits, "consuming" a certain finite number of 

argument digits. However, as we see in Figure 1, if the addition operation in the binary 

system produces only ones in a row for the leading parts of the arguments, we do not 

know if it will reset them all to zero at some future moment. Moreover, as we know 

from the first grade, addition and multiplication in a column are performed from low-

order bits to high-order ones, and Brouwer needed other algorithms of operations for 

real numbers - from high-order bits to low-order ones, since infinity in their provision 

goes towards the low-order bits. 

We observe an interesting phenomenon: seemingly completely different questions 

from the opposite areas of theory/practice on the axis of mathematics: the foundations 

of mathematics, on the one hand, and digit-wise parallelization of arithmetic operations, 

on the other, have been faced same pitfalls. This means that the problem is worthy of 

systematically tackling it, but you do not need to expect quick, simple results. 

Approaches to the solution. The first solution we discovered (thanks to 

A.B. Shvorin [15, 16]), close to our work, goes back to the paper by A.L. Cauchy in 

1840 [3]. Cauchy noticed that in numeration systems with base 10, but with an extended 

set of 11 digits from −5 to 5, hyphenations are limited, which can make calculations 

easier and reduce errors. 

To solve his problem of developing arithmetic operations that satisfy the Principle 

of Continuity Brouwer [1] designed a numeration system with base 2 with three digits. 

In such a system, it became possible to sequentially receive the highest bits of the result, 

gradually consuming the bits of the summands, satisfying the Principle of Continuity 

and Finite Information. 

Additional digits lead to redundancy in the representation, when the intervals of the 

 

Fig. 1. Adding two numbers with a difference in one least significant bit. 
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numeric axis corresponding to the digits intersect, overlay. Therefore, such systems are 

called overlaying systems. It is thanks to this redundancy and overlaying that it is pos-

sible to "extinguish" the unlimited propagation of carry during addition and to achieve 

digit-wise parallelism only with local interaction of neighboring parallel blocks. Cau-

chy and Brouwer each used one additional digit over and above what is required for 

this reason. You can add more numbers, getting some more benefits (one of which we 

will show below in Figure 6). 

We develop these ideas of the classics further in order to bring numeration systems 

with redundant digits to practice and implementation of circuitry in equipment. 

Other and related works. With the advent of the computer era, and especially in 

recent decades, the development of alternative representations of numbers has become 

very popular. Many works have been published that cannot be reviewed in a short pa-

per. Among the recent achievements, we note the work of the group led by Christiane 

Frougny [4, 5], which studied the necessary conditions for the existence of a parallel 

addition algorithm. 

Another direction with a long history is modular arithmetic based on the residual 

class system (RNS). It is interesting that in the USSR in the 1960s, computers based on 

modular arithmetic were developed in Zelenograd for use in missile defense systems 

[9]. According to B.M. Malashevich [9], the "K-340A" computer was the first in the 

world to overcome the boundary of 1 million op/sec (on numbers with a fixed point in 

the range of ± 1.6×1012), and he believes that modular arithmetic gave a 7-fold increase 

in performance compared to what was achievable on that hardware. From modern 

works, profound results were obtained by a group led by V.S. Knyazkov [6, 7], who 

solved a number of theoretical problems and developed algorithms and implementation 

on graphic coprocessors of all arithmetic operations, including division. Note that divi-

sion required an approximate estimate of intermediate results, which is calculated using 

interval arithmetic. The arithmetic discussed in this paper is essentially interval arith-

metic. This opens the possibility of its application in modular division. 

More detailed historical information about these and other related works can be 

found in the introduction of paper [15]. 

Status of work and content of the paper. In recent years, the authors, together with 

colleagues, have checked the theoretical study of overlaying numeration systems, the 

properties, general and special cases of such systems have been studied [11, 12–16]. 

Currently, the development of circuitry solutions based on FPGAs is underway with 

the further purpose of conducting an experimental study on a number of applied prob-

lems and assessing whether the use of such systems is justified. 

In this paper: 

1. An introduction to overlaying numeration systems and a historical background is 

given. 

2. Digit-wise-parallel schemes of addition with carry of only one and two next digit 

positions in a system with one and two additional digits are demonstrated. As far as 

we know, the observation that such a scheme is possible was made by us for the first 

time. In previous works, the problem of reducing the number of additional digits was 

often solved, which caused a carry to a larger number of digit positions. 
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2 Overlaying Systems 

As a starting point for constructing overlaying systems, consider the familiar binary 

numeration system. Figure 2 shows the interval [0, 1) of the numerical axis. The paren-

thesis from 0 to 1 at the top indicates the range of numbers that start at 0. Divide the 

interval in half. Writing numbers from [0,1/2) starts from 0.0; in the interval [1/2,1) – 

from 0.1, which is shown by the corresponding brackets. 

Before moving on to overlaying systems, we stock up on the observation that repre-

sentations in the positional numeration system, such as 0, 0.0, 0.1, can be considered 

an image of not one really number standing at the beginning of the interval, but the 

interval itself, and, having in mind such semantics, to define arithmetic operations that 

map intervals to intervals. In this case, it is often necessary to give the answer in the 

form of an upper bound, generalizing the resulting intervals to wider ones, since the 

exact intervals will turn out to be unimaginable. This interpretation is not used in con-

ventional positional numeration systems. However, in overlaying systems, on the con-

trary, the standard interpretation as denoting an exact number gives rise to certain prob-

lems, and the interval semantics of operations is convenient and understandable. 

Now let's look at the simplest overlaying numeration system, which we call "three 

halves". The base of the system is still 2, that is, it can be considered binary. However, 

now we will have three digits: in addition to 0 and 1, there is another additional one, 

which we represent as ½. This number will represent the interval [1/4,3/4). The num-

bers, as well as the smaller intervals included in it, will get another image of 0.½ in the 

first two digits. This interval is shown in Figure 3 in parenthesis below the number axis. 

Note that the left and right halves of this interval are written using three digits in two 

ways, for example, the right side – in the form of 0.10 and 0.½ (lower bracket in Figure 

3). 

We have obtained a system in which an alphabet of a larger number of digits is used 

to represent numbers and intervals of the same precision. This requires additional hard-

ware resources per digit. But it is precisely this redundancy that makes it possible to 

"extinguish" the carriers, "absorb" them with additional digits. To see this, it is neces-

sary to formally describe the tables of addition and subtraction operations. Some of 

them are given in paper [14]. Tables of operations for overlaying systems are ambigu-

ous, and the option can be selected from other considerations – aesthetic, practical or 

circuit design. 

 

Fig. 2. Intervals corresponding to digits in the usual binary notation. 
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As is known from the theory and practice of conventional positional systems, sym-

metric systems with opposite numbers (like the one used by Cauchy [3]) have certain 

advantages. First, the negation of a number is trivial, and the subtraction algorithm is 

completely analogous and symmetric to addition. Secondly, the rounding error, in our 

case, the intervals, is calculated symmetrically, without bias in any direction. Symmetry 

requires an odd number of digits and is easily implemented, for example, in the ternary 

numeration system with digits –1, 0, 1, as was the case in the Soviet computer "Setun" 

[2]. It is also beneficial to do this in a binary system with overlaying based on three 

digits.  

Figure 4 shows a system with numbers 1, 0, 1. Compared with Figure 3 all labels 

and designations are shifted by –½ and multiplied by 2. As in Figure 3, the interval 

indicated by the lower parenthesis in Figure 4 is written in two ways: 0.11 and 0.01. 

 

Fig. 4. Intervals corresponding to digits in symmetric system with base 2 and three digits 1, 

0, 1. 

 

Fig. 3. Intervals corresponding to digits in systems with base 2 and additional digit ½. 
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3 Addition Schemes 

Let us illustrate how addition schemes with carry look in classical numeration sys-

tems and in overlaying systems with extra digits.  

 

Figure 5 shows the simplest classical scheme for the bitwise addition of two num-

bers. Inputs a and b are the corresponding digits of two numbers. On the left are the 

most significant digits, on the right are the least significant ones. The digits are num-

bered in ascending order towards the least significant digits. Since the sum of s digits a 

and b can be greater than the base of the numeration system, it is split into a hyphen 

and a digit by the operation DivMod modulo the base of the numeration system. The 

diagram clearly shows the path of potentially unlimited carry from right to left: ... +, s, 

DivMod, +, s, DivMod, +, s, DivMod ... 

Figure 6 shows the computational schemes for the symmetrical “three-halves” over-

lay addition system from Figure 4. Here the DivMod operation is replaced by two op-

erations – carry Π and the weighted sum Σ, calculated by the following formulas: 

Π(𝑥, 𝑦)  =  (2𝑥 + 𝑦 + 1)/4, 
Σ(𝑥, 𝑦, 𝑧)  = −2𝑥 + 𝑦 + 𝑧. 

The carry is now limited to two digits. All calculation paths are finite and have the 

form: +, s, Π, Σ. 

The diagram can be simplified by using a base of at least 3 and two additional digits. 

It is shown in Figure 7. Here the carry is "absorbed" by one digit position. This happens 

when the system has a base of at least 3 and contains two additional digits. Here the 

calculation paths are +, s, DivMod, +. 

 

Fig. 5. Addition in the classical positional numeration system. 
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4 Conclusions 

The paper and the report provide an introduction to the topic of high-precision arith-

metic with redundant representation of numbers and the concept of an overlaid numer-

ation system, in which digit-wise parallelism of addition and subtraction of real num-

bers is possible due to limited carry from a digit position to the next ones. Multiplication 

and division are also speeded up as they use parallel addition and subtraction.  

Computational schemes were presented with a carry by 2 digits for the "three halves" 

system with one additional digit compared to binary and with a carry by one position 

for systems with two additional digits and with a base of at least 3. 

We are developing circuit designed solutions for the implementation of such arith-

metic operations in FPGAs with the further aim of conducting an experimental study 

of the effect and usefulness of such arithmetic on various applied problems. 

It is surprising that despite a rather long history of theoretical study of such systems, 

we do not know that they have been brought to a convenient practical implementation 

and widespread testing on applied problems. Perhaps, with all attempts, the desired 

efficiency was not achieved, and negative results were obtained, which, unfortunately, 

are not accepted to be published in modern science. On the other hand, it is possible 

that such arithmetic was inadequate to the previous level of hardware development. For 

example, today's large volume of circuits loaded into FPGAs creates qualitatively new 

opportunities than were available before. Understanding the algorithmic problems that 

still need to be solved and realizing the usefulness only for a limited class of problems, 

we nevertheless believe that it is necessary to provide users with an implementation of 

 

Fig. 6. Overlaid positional addition with one additional digit. 
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long numbers based on overlaying systems (as well as other representations) in a way 

convenient for programmers for easy experimentation with problems that require high 

precision and interval arithmetic. 

For applied mathematicians, the ability to freely experiment with new tools is a key 

factor in their development and bringing them to widespread practice. Mathematicians 

do not hesitate to answer "yes, come on!" when asked if you want to recalculate your 

problem with high accuracy and find out how much rounding errors affect the result, 

even if you need to leave it on a (super) computer overnight instead of getting an answer 

within an hour on a laptop. But as soon as you tell them that for this you need to rewrite 

their favorite program in C / C ++ or Fortran, replacing operations in arithmetic expres-

sions with calls to library functions, or recode the program in another language like 

Python, in which long arithmetic is immediately built into realization, another reaction 

follows: “no, don't; I'd better go and think." 

New high-precision arithmetic – be it modular, overlapped, or simply long-repre-

sented in a positional system, whether implemented in a central processing unit or in 

an accelerator like GPGPU or FPGA - must be seamlessly integrated with popular lan-

guages. The transition from programs with ordinary arithmetic (on the types int, long, 

float and double) to programs with high-precision arithmetic should, in the simplest 

case, be carried out only by setting some options to the compiler. The implementation 

of such tools is not a task of developing new representations, algorithms and programs 

for operations on numbers (which this paper is devoted to), but a common system pro-

gramming task that requires known resources. Unfortunately, we are not aware of such 

systems. Their absence is one of the possible obstacles to the development of this di-

rection. 

 

Fig. 7. Addition in overlaid positional system with two redundant digits. 
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In addition to various mathematical problems, where long arithmetic in hundreds, 

thousands or more bits can help to obtain new information from a computational ex-

periment, we will point out two more classes where the overlaying numeration system 

can be advantageous: 

1. Overlaying arithmetic is essentially interval arithmetic: a finite set of digits has the 

semantics of an interval to which all numbers beginning with this set belong. Thus, 

it is applicable wherever interval arithmetic is required to assess the accuracy of 

calculations. Such arithmetic has a fundamental drawback: the intervals "spread out" 

too quickly and often do not provide any useful information. Therefore, interval 

arithmetic should be used in conjunction with long numbers so that it can be easily 

recalculated with greater precision, when the accuracy of the current result is insuf-

ficient. 

2. Operations in overlaying systems are performed from the most significant bits to the 

least significant ones. (Recall that it was for this reason that L.E. Brouwer used it 

[1]). Due to this, arithmetic expressions can be implemented by pipelined circuits 

for FPGAs, "pumping" long numbers from high-order digits to low-order ones. It 

will be parallelism of a different type: not the simultaneous processing of many dig-

its, which was discussed above, but sequential, pipelined. In this case, it becomes 

possible to control the accuracy dynamically, "pulling" from the computational 

schema as many result digits as needed, "pumping up" the required number of argu-

ment digits. 

These are topics for future research. 
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