

Copyright © 2020 for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

One Approach to Computational Load Balancing within

the Node of Hybrid Computing System

Tat'yana Baranova1[0000-0002-2003-3737], Alexander Bugerya1[0000-0002-9698-458X],

Ekaterina Gladkova1[0000-0001-9536-4867] and Kirill Efimkin1[0000-0002-1087-7645]

1 Keldysh Institute of Applied Mathematics, Miusskaya sq., 4, 125047, Moscow, Russia

shurabug@yandex.ru

Abstract. The issues of the computations distributing within single node of a

hybrid computing system for applied programs with computation-intense opera-

tions are considered in this paper. There are two methods proposed: a method

for static distribution of computations and a method for automatic balancing of

the computational load during program execution, which is based on periodic

analyzing the CPU load by the executed program and making decision whether

redistribution of computational load is needed. The proposed methods are im-

plemented in an applied program that solves a gas dynamic problem using the

computing resources of the multicore central processor and graphics accelera-

tors. The results of program execution with various data distributions were ob-

tained and analyzed, both with and without the mechanism for automatic bal-

ancing of the computational load.

Keywords: parallel programming, programming automation, computational

load balancing, hybrid computing architectures, NORMA language, automatic

program generation.

1 Introduction

In the modern world there are a huge number of different problems to solve and it

requires significant computing power. We have computation-intense problems in

science and industry, in business and for individual purposes. Typical examples of

such resource-intense problems are numerical methods in solving mathematical phys-

ics equations (e.g., modeling of processes occurring in a nuclear reactor), modeling of

physical, chemical and biological processes. New challenges of this kind are constant-

ly emerging. Modern computing systems for such problems to solve provide the pos-

sibility of parallel computing. Therefore if the program is effective and up to date it

must be parallel.

There are various methods to automate the development of parallel programs.

Monographs [1, 2] are devoted to the subject. There were strictly formulated mathe-

matical basis of joint study of parallel numerical methods and parallel computing

systems and investigated the task of mapping the program on the architecture of a

293

parallel computer. The idea of automatic mapping of given sequential program on

parallel computing system is generally stated there as a NP-complete problem. This

fact explains the up to date lack of a practical satisfactory universal method for the

development of parallel programs.

The theoretical difficulties arising in the development of parallel programs are ag-

gravated by the constant development and complication of computing systems archi-

tectures. These possibilities, on the one hand, provide a new potential for accelerating

computations, and, on the other hand, arise the problem of utilizing this potential,

developing methods and programming tools in the context of these new possibilities.

In addition to general purpose central processor unit (CPU) modern computing sys-

tems typically contain additional computing units designed to quick and energy-

efficient parallel mass computing operations same for a large amount of data being

processed. Examples of such computer units include graphic processor units (GPUs)

and Xeon Phi accelerators. To be effective the parallel program must provide all the

computer units at its disposal with continuous data loading for calculations. It should

also ensure that computing is synchronized where it is necessary when accessing

shared data to minimize computer units outages during synchronization and access to

other resources both software and hardware. If some computer units process the

amount of data allocated to them faster than others and then stand out of action wait-

ing for synchronization there is a need to redistribute the processed data between the

computer units while the program is running.

The solution of the problem of data distribution between the computer units is

called computational load balancing. In case periodic solution of this problem is

needed during program execution it will be called dynamic balancing of the computa-

tional load. The effectiveness of the program as a whole depends to a large extent on

the successful implementation of this problem.

Research in the field of creating both programming methods for new architectures

and the implementation of these methods in language tools for parallel programming

is very active, and supported by manufacturers of computer systems. A fairly com-

plete classification of architectures, methods and means of parallel programming is

presented on the site [3], which is devoted, in particular, to parallel computing tech-

nologies. One approach could be noted of those already implemented. It is based on a

perfectly reasonable symbiosis of the parallel compiler and hints from the program-

mer, made in the form of special software directives, for example [4, 5].

In this case another constructive approach to problems of developing parallel pro-

grams is worked out [6]. It determines limits of automatic parallelizing in the particu-

lar program and gives the facilities for automatic generation of the effective parallel

program. This approach uses the non-procedural NORMA language [7] as a pro-

gramming language.

This article will propose and consider the method of organizing automatic dynamic

computational load balancing within a single node of a hybrid computing system,

which has one or more CPUs and one or more additional computer units. The issue of

the distribution of computational load between the nodes of the computing system is

not considered in this work. The presented method was designed to be used in the

NORMA programming system [6] in compiling programs for computer systems with

294

graphics accelerators (GPU). But this method itself is universal and does not depend

on the type of specific hybrid computing system and software used. It seems to the

authors it can be successfully applied in the development of parallel programs with

computation-intense operations both in manual programming and in the case of auto-

matic approach.

The proposed method was successfully tested on a gas dynamics program with

computation-intense operations. It was tested on parallel systems with hybrid archi-

tecture (with NVIDIA GPUs).

2 Static computational load distribution method

The issue of the distribution of computational load within the single node of the hy-

brid computing system is considered. Each of such nodes has one or more central

processor units, CPUs. Since all modern CPUs are multi-core and have access to all

the RAM of the node, it doesn't matter how many of them are in the node – their en-

tire totality is always considered by the application program and operating system as a

single multi-core processor. There is also one or more special computer units in the

hybrid computing system (accelerator, GPU or Xeon Phi, or perhaps some other).

Their number is already important as each such computer unit has access and can

process data only from its own memory.

An effective parallel program should use all available computing power. Accord-

ingly, in the node of a hybrid computing system, the entire amount of computational

output must be somehow distributed between the CPU and the accelerators. Calcula-

tions done on CPU should be performed using multi-thread programming technolo-

gies, such as OpenMP. Calculations performed on the accelerator should be done

using technology available for this type of accelerator, such as NVIDIA CUDA for

NVIDIA GPU.

The process of automatic static distribution of computation between CPU and GPU

when compiling programs written in the NORMA language is detailed in the pa-

pers [8, 9]. The methods and the ideas outlined in these articles can be applied to any

parallel program and any other type of accelerators. In short, these methods are as

follows. In the NORMA language, an operator describing some calculations can be

done on the domain. The domain is an analogous to the mathematical concept of the

grid. Thus the operator describes a set of identical calculations produced at points

(grid nodes) of domain of any type. As a rule calculations at each point of the domain

do not depend on the values at other points calculated in the same operator at the

same iteration step. Then the calculations done by one operator are independent at

each domain point and can be processed in parallel.

To distribute such calculations between CPU and accelerators it is proposed that

each such operator is performed on both the CPU and each accelerator available in the

system. But the entire domain of such an operator (or rather, the array of points of this

domain) is distributed among the computer units and each computer unit performs the

operator only for the points distributed to it. To allow the computer unit to perform

the operator for its points it is also necessary that the arrays of the variables defined

295

on these domain points both required for calculations and those that are calculated as

a result of the performed operator are also physically distributed between the memory

of the CPU and the memory of each accelerator. That is, in fact, the process of com-

putational distribution comes down to the process of data distribution and then to the

synchronized performing calculations by each computer unit over the intended part of

the common data.

The following approach is proposed for the distribution of such variables. At first,

the entire amount of data processed is divided into two unequal parts: the area pro-

cessed by the CPU and the area processed by the accelerator (accelerators). The size

of the areas is chosen according to the expected ratio of the CPU performance and the

total performance of the accelerators. Then, if there are several accelerators their areas

are divided into the corresponding number of subareas and distributed equally among

them. There is an example of such distribution on Fig. 1.

Fig. 1. Distribution of the processed data among the areas.

Each computer unit performs calculations with the data that has been occurred in its

area (subarea). Additionally, the problem of data transmission between areas and

subareas could be solved if necessary.

3 Dynamic computational load distribution method

The boundary between the CPU area and the accelerator area can be fixed or may be

being modified while the program runs. By changing the area boundary periodically

the program performs a dynamic balancing of the computational load which will be

discussed further. While changing the size of the GPU area the size of each accelera-

tor's subareas is recalculated accordingly.

In order to assess the need to adjust the position of the area boundary the process of

estimating the overall efficiency of calculations in the current distribution of the com-

putational load is started periodically (for example, at each n step of the iteration). As

a result of this process it is decided whether to maintain the current position of the

area boundary or to shift it to some value in one direction or another. In case of a shift

it is necessary to redistribute the data occurred in the other area or subarea and this

data starts to be processed by another computer unit.

CPU area GPU area

subarea GPU1 subarea GPU2 subarea GPU3

296

4 The method to determine whether you need to adjust

the distribution of the load

To determine the overall effectiveness of the calculations it is proposed to use the

method based on the evaluation of the program's use of the CPU resource. Developing

this method we assume that the program that solves the computational problem

should be constantly engaged in computing and completely consume the resource of

the computer units. There may be sure synchronization points when individual pro-

cesses and threads can wait for other processes and threads but the waiting time

should be quite short comparing to the computing time. If the program periodically

waits for some external events and spends considerable time in stand by, then this

method couldn’t be applied to such a program.

So, ideally, a computing program should create a 100% CPU load. If the program

is hybrid and uses calculations on the accelerator along with the calculations on the

CPU, then, if the accelerator processes the data allocated to it more slowly than the

CPU its ones, the program will stand by in synchronization points waiting for the

accelerator to execute. And, as a result, the CPU load will be less than 100%. It's easy

and quick for the program to get the information about its consumption of CPU’s

resource. In UNIX family OS, for example, it is done by a system call

clock_gettime(...). A call with a CLOCK_REALTIME parameter gives a total sys-

tem time and with the CLOCK_PROCESS_CPUTIME_ID parameter gives the

processor time consumed by the running program. If these two parameters are detect-

ed over a period, then the rate of CPU load by this program during this period can be

calculated according to the following formula:

CPUload = tCLOCK_PROCESS_CPUTIME_ID / Nthread / tCLOCK_REALTIME * 100%,

where t is an appropriate time, and Nthread is the number of CPU threads running.

The next issue is how to interpret the resulting CPU load. We resume that ideally a

computing program should have a CPU load 100%. But it will also be 100% if the

accelerator processes its data faster than the CPU and the program doesn’t stand by

waiting for the accelerator to terminate. To be able to diagnose such a situation and to

allow the program to spend some time in synchronization points with other processes

it is suggested that the eligible CPU load is considered an empirical value of 95%. In

other words it is allowed that the CPU stands by waiting for the accelerator but for a

short period of time no more than 5% of the total CPU’s load. If the value of the CPU

load is more than that is considered eligible, then it is necessary to reduce its area

(and, accordingly, to increase the accelerator area). If, on the contrary, less than eligi-

ble – then to increase the CPU area.

But shifting the area boundaries entails starting data redistribution process and it

can take considerable time to complete. Therefore, it is highly desirable to avoid the

situation of constant changes from decreasing to increasing areas and vice versa. Thus

an eligible CPU load is proposed to consider not a specific value but a small range,

for example, from 85% to 95%.

297

If the CPU load has been estimated periodically (for example, at each n step of the

iteration) for the time interval expired since the previous estimation, one can decide

whether to leave the current distribution of the data (if the CPU load is in the eligible

range) or increase the CPU area (if the CPU load is below the range) or reduce the

CPU area (if the CPU load is above the range). It is also important to determine how

much it is necessary to shift the boundary of areas. It is obvious that the more the

CPU load rate differs from the needed the more the area boundary should be changed.

On the other hand, moving the areas boundary should be careful when the size of one

area highly exceeds the size of the other. As even a small boundary shift can signifi-

cantly alter the amount of data being processed which in turn can fundamentally

change the balance of computational load between the CPU and the accelerator. A

sudden change in the ratio of areas size may cause the reverse changes in return at the

next step. And if the response is also sharp it will cause constant changes which

should be avoided as it was explained earlier. Therefore, near the extreme values of

the relative size of the areas the algorithm for moving the areas boundary should be

carefully implemented to shift the boundary to small extent.

As a result, the algorithm that determines the magnitude of the area boundary can

be described by a function of two variables – a deviation from the eligible CPU load

and the current relative size of the areas.

The proposed method can be algorithmized and is suitable for a wide range of

computational tasks and does not depend on the characteristics of a particular compu-

ting system. Therefore, it can be used for automatic balancing of the computational

load. It is planned to implement it in the NORMA compiler [10]. The main goal is

that the compiler would automatically generate all the necessary code to determine

the CPU load, to decide whether to shift the boundary of the areas, and to redistribute

the data being processed. In the meantime, the method is "manually" implemented in

some gas dynamics solving applied program, and the next chapter gives the results of

its application.

5 The results of the proposed method applying

The method of automatic balancing of computational load was implemented in a hy-

brid applied program that solves gas dynamics problem. The program use MPI tech-

nology to engage several nodes of distributed computer system, OpenMP technology

for multicore CPU computing within a single node and NVIDIA CUDA technology

for GPU computing.

The results below were obtained from K-100 computational cluster [11] using Intel

15.0.0, nvcc compiler version 6.5, and Intel MPI Library 5.0 Update 1. The program

starts 4 MPI processes, each runs on its own computational cluster node with 12 CPU

cores and 3 GPUs. Tests were conducted with different number of GPUs, from 1 up to

3, and the method worked properly regardless of the number of GPUs. But because

this program is well-suited to GPU calculations, the share of CPU calculations was

very small. Therefore, further data for starts using only 1 GPU is given so that the

CPU's contribution to the overall computation gets more noticeable and the running

298

processes become more visible. The program also ran on K-60 computational clus-

ter [11] with more powerful GPUs. The method of automatic balancing of the compu-

tational load also worked well there, but the share of calculations on the CPU was

even less - 4% with only 1 GPU.

The diagram of the program’s execution time at different values of the GPU area

size is presented on Fig. 2. The first 10 columns correspond to program starts with

fixed-boundaries areas and without the automatic balancing of the computational

load. In this case the GPU area size is set from 100% (when the CPU is not used at

all) to 83%. The last 4 columns are starts using automatic computational load balanc-

ing, with different initial GPU area size: 100%, 75%, 50% and 0%.

310

295

280 277 274 271
276

288
294

307

273 272

295

764

260

270

280

290

300

310

320

100% 95% 90% 89% 88% 87% 86% 85% 84% 83% d100 d75 d50 d0

GPU area size, %

Ex
e

cu
ti

o
n

 t
im

e
, s

e
c.

Fig. 2. Program execution time correlated to GPU area size.

The diagram shows that the least execution time is achieved when GPU area size is

set to 87% (and 13% CPU area size respectively). Then with small enlargement of

CPU area size the program's execution time begins to grow rapidly – in fact, as much

as the CPU area size grows, because it is time of the CPU work that begins to deter-

mine the operation time of the entire program.

Of particular interest there are columns that correspond to the starts with the use of

automatic computational load balancing. They show that if the initial distribution of

the computational load has been chosen roughly correct (d100 – the initial GPU area

size is 100% and d75 – the initial GPU area size is 75%), then total program's execu-

tion time is close to the ideal. But if the initial distribution has not been chosen cor-

rectly (d50 and, in particular, d0), the program spends considerable time to get to its

proper distribution.

There are graphs of areas size changes corresponding to the iteration step for pro-

gram starts with automatic computational load balancing on Fig. 3. The values of

computational load have been analyzed and adjusted at each 100th step of the itera-

tion.

299

Fig. 3. Changing the GPU area size corresponding to the iteration step.

The diagram shows that d100 and d75 starts have already got to the ideal distribution

at the 4th adjustment. The ideal distribution for the given program on the set hardware

could be seen on Fig. 2. and considered 87% GPU area size. D50 start has already

spent more steps on adjustment and as a result the total time of its execution is notice-

ably longer. D0 start has been moving cautiously away from zero size of the GPU

area for a very long time, the average values of areas distribution have been being

already passed much faster and finally it has also got to the same ideal distribution,

87% for the GPU area size. But it has taken 150 adjustments and considerable time

has been wasted.

6 Conclusion

The proposed method of automatic computational load balancing, despite of its sim-

plicity, can be successfully used when solve computation-intense problems on hybrid

computing systems. Tests have shown that the described method implementation

gives the program its ideal distribution of the computational load and in the case of a

small change in the load the method gives the opportunity to cope with such changes

quickly. This method is independent neither from the hardware of the hybrid compu-

ting system nor from the software chosen for solving the applied problem.

References

1. Voevodin, V.V.: Matematicheskie modeli i metody v parallelnykh protsessakh. Nauka,

Moscow (1986).

2. Voevodin, V.V., Voevodin, Vl.V.: Parallelnye vychisleniia. BKhV-Peterburg, S. Peter-

burg (2002).

3. Informational Analytical Center, http://parallel.ru/index_eng.html, last accessed

2020/11/25.

G
P

U
 a

re
a

si
ze

, %

Step of the iteration (*100)

d100

d75

d50

d0

87

http://parallel.ru/index_eng.html

300

4. OpenACC, http://openacc.org, last accessed 2020/11/25.

5. DVM-system, http://www.keldysh.ru/dvm, last accessed 2020/11/25.

6. Sistema NORMA, http://www.keldysh.ru/pages/norma, last accessed 2020/11/25.

7. Andrianov, A.N., Baranova, T.P., Bugerya, A.B., Gladkova, E.N., Efimkin, K.N.: Iazyk

NORMA. Preprinty IPM im. M.V.Keldysha (2019), ISSN 2071-2898 (Print), ISSN 2071-

2901 (Online), No 132, 48 p., doi:10.20948/prepr-2019-132.,

http://library.keldysh.ru/preprint.asp?id=2019-132, last accessed 2020/11/25.

8. Andrianov, A.N., Baranova, T.P., Bugerya, A.B., Efimkin, K.N.: Raspredelenie vychisle-

nii v gibridnykh vychislitelnykh sistemakh pri transliatsii programm na iazyke NORMA.

Vychislitelnye metody i programmirovanie (2019), ISSN 1726-3522, M.: NIVTs MGU

im. M.V. Lomonosova, Vol. 20, № 3, P. 224–236, DOI: 10.26089/NumMet.v20r321,

http://num-meth.srcc.msu.ru/zhurnal/tom_2019/pdf/v20r321.pdf, last accessed 2020/11/25.

9. Andrianov, A.N., Baranova, T.P., Bugerya, A.B., Efimkin, K.N.: Metody raspredeleniia

vychislenii pri avtomaticheskom rasparallelivanii neprotsedurnykh spetsifikatsii. Superk-

ompiuternye dni v Rossii: Trudy mezhdunarodnoi konferentsii. 23–24 sentiabria 2019 g.,

g. Moskva. Pod. red. Vl.V. Voevodina. M.: MAKS Press (2019), ISBN 978-5-317-06007-

7, e-ISBN 978-5-317-06244-6, P. 59–70, DOI: 10.29003/m680.RussianSCDays,

URL: http://russianscdays.org/files/2019/pdf/59.pdf, last accessed 2020/11/25.

10. Andrianov, A.N., Bugerya, A.B., Efimkin, K.N, Koludarov, P.I.: Modulnaia arkhitektura

kompiliatora iazyka Norma+. M.: Preprint IPM im. M.V. Keldysha RAN (2011), No 64,

16 p., http://keldysh.ru/papers/2011/prep64/prep2011_64.pdf, last accessed 2020/11/25.

11. Tsentr kollektivnogo polzovaniia IPM im. M.V. Keldysha RAN, http://ckp.kiam.ru/?hard,

last accessed 2020/11/25.

http://www.keldysh.ru/dvm
http://www.keldysh.ru/pages/norma
http://library.keldysh.ru/preprint.asp?id=2019-132

