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Abstract

A key topic in precision medicine is to develop pharmacological treatments opti-
mised for any given individual (personalised treatments). Model-based approaches
(aka In Silico Clinical Trials, ISCT) aim at achieving this goal, by enabling the
automatic synthesis and verification of personalised treatments via simulation,
before they are actually administered to patients.

In this short paper, we introduce the area of ISCT, and review our approach
to the in silico automatic synthesis of optimal personalised treatments, where
numerical simulation of quantitative models of the human physiology and reactions
to drugs is driven by Artificial Intelligence global search.

1 Introduction
The overall objective of In Silico Clinical Trials (ISCT) is to perform, in silico, the typical activities
carried out to assess safety and efficacy of pharmacological treatments, biomedical devices, or other
therapeutic procedures (see, e.g., [2, 49, 61, 17]). Being entirely model-based, ISCT have the potential
to be a key-enabler of precision medicine, where personalised treatments optimised for a given patient
can be designed (and verified in silico via simulation) before being actually administered. ISCT build on
the availability of computational models (Virtual Physiological Human, VPH, models) for the human
physiology, patho-physiology, and drugs Pharmacokinetics/Pharmacodynamics (PKPD), which also define
the possible physiological differences between different individuals (i.e., the possible phenotypes). Such
models range from networks of biological pathways (qualitative knowledge, e.g., [27, 18]), to mechanistic
quantitative physiology models at different levels of scale (e.g., molecules, [55], cells [22, 3], organs [66, 48],
body compartments [13, 59], tumour growth [52, 26]) up to the whole human body homeostatis (e.g.,
[25, 46]), as well as quantitative models of the PKPD of medicinal drugs (e.g., [32]).

2 Formal framework
VPH models. Large VPH models are often defined as hybrid systems whose dynamics is governed by
Ordinary Differential Equations (ODEs) (e.g., [58, 1, 4]). Model inputs represent drug administrations
and other exogenous actions, while parameters encode inter as well as intra subject variabilities (e.g.,
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[60, 37, 11]). Model outputs define the values of a set of model observables, i.e., the biological quantities
of interest that are measurable in a human patient via clinical assays. Given an assignment λ to the
parameters of a VPH model S and an input function (defining a time-sequence of drug administrations),
the equations in S define the time evolution of the observables (aka the trajectory of S), when the system
is fed with that input function starting from its initial state, and with its parameters set to λ. Of course,
as we are interested in causal VPH models, the time evolution of S up to any time point only depends on
the restriction of the input function up to that time point (see, e.g., [58, 42]).

Complete populations of Virtual Phenotypes. VPH models typically take into account inter-
subject variabilities (i.e., the physiological differences among different individuals) by including parameters
in their equations. Different parameter assignments yield different model evolutions (also wrt. reactions to
drug administrations), thus define different Virtual Phenotypes (VPs). Intuitively, each VP represents a
class of indistinguishable (as long as the VPH model is concerned) individuals. Computing a complete set
of parameter assignments for the model at hand which entail physiologically meaningful evolutions for
the observables is the starting point to obtain a representative population of VPs (hence, ideally showing
all possible phenotypes). Searching for a complete population of (physiologically meaningful) VPs is all
but easy in complex VPH models. In fact, as VPH models are often non-identifiable, over-parameterised,
and with unknown inter-dependency constraints among parameters, most model parameterisations entail
evolutions of the observables which clearly violate the laws of biology. In our previous work [60, 37, 11] we
showed that a statistically complete (with respect to the set of possible model behaviours) population of
(physiologically meaningful) VPs for large non-identifiable ODE-based models can be effectively computed
by exploiting methods based on Artificial Intelligence (AI) global search and statistical model checking,
starting from background domain knowledge and available clinical data.

Human Patient Digital Twins. A Digital Twin (DT) is a digital representation of the physiology of
interest of a given patient, and of their reactions to relevant drugs (PKPD). The availability of a DT of a
patient would open-up a plethora of new clinical opportunities in the area of precision medicine, starting
from the automatic in silico synthesis of optimal personalised treatments. In order to build a DT for a
patient, we exploit the clinical data available for that patient (in the form of a clinical record C), as well as
a complete population P of VPs for a VPH model S defining the physiology and PKPD of interest for our
envisioned treatments. A clinical record C is defined as a pair (u(C),o(C)), where u(C) is a time-series of the
(past) clinical actions (e.g., drug administrations) performed on the patient, and o(C) = {o(C)

i }
p
1 is a set of

p time series of clinical measurements performed on that patient, regarding the p biological quantities
corresponding to the observables of S. DTs are defined in terms of a function η(C, λ) which measures the
mismatch between clinical measurements in C and the trajectory of VP (i.e., the model parameterised with)
λ ∈ P, when fed with the very same input function u(C) as the one reported in C. In [57], η(C, λ) is the
average, over the p available time series of measurements in C, Mean Absolute Percentage Error (MAPE)
between o(C)

i and the trajectory of the corresponding observable of S parameterised with λ and fed with
u(C). The digital twin P(C) associated to clinical record C is then the set of all VPs λ in our (complete)
population P having a mismatch η(C, λ) up to a given threshold δ ∈ R0+: P(C) = {λ ∈ P | η(C, λ) ≤ δ}.
In other words, the digital twin of a human patient is a digital representation of the patient physiology
and reaction to drugs, in the form of all VPs entailing model behaviours that are consistent (up to an
average MAPE δ) with the patient clinical measurements available in C.

3 Computing optimal personalised treatments
Below, we review our recent work [43, 57], where we perform the automatic in silico synthesis, via
intelligent search, of personalised treatments optimised for a given patient, using the patient DT computed
from an available clinical record.

Treatment optimisation is performed with respect to a user-defined criterion. In Section 4, we show
experimental results in applying our algorithm to seek for an effective personalised treatment that uses a
minimum quantity of drug (i.e., a lightest still effective treatment). Although this is just an example, such
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optimality criterion is a relevant proxy in the attempt to minimise the probability and severity of adverse
effects of the employed drugs.

Let S be a VPH model defining the physiology and PKPD of interest of our envisioned treatment,
and C be the clinical record of the patient for whom an optimal personalised treatment is sought. Our
approach to optimal treatment computation takes as input a finite set of possible clinical actions (defining
e.g., the possible drugs to be administered with their portfolio of dosage patterns), as well as treatment
invariants and goals. The latter inputs define conditions that must be, respectively, always and eventually
satisfied by a successful treatment (aka safety and liveness properties). Our algorithm searches, in the
space of possible sequences of clinical actions, a treatment which, if administered to all VPs of the digital
twin P(C) associated to the human patient at hand (represented by clinical record C), always satisfies
treatment invariants (safety) and ends-up to satisfy the treatment goals (effectiveness). Our algorithm is
based on intelligent backtracking guided by heuristics to efficiently explore the space of possible treatments
of bounded length (our search space). At any step, our algorithm exploits a black-box simulator (e.g.,
[33]) to compute the effects of the envisioned treatment prefix on all the VPs of P(C).

4 A case study
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Figure 1: ISCT results.

In [43, 57] we used our algorithm to perform an ISCT aimed
at computing optimal personalised treatments for the down-
regulation phase of an assisted reproduction treatment on
21 human patients, for whom we had retrospective clinical
records (data courtesy of Pfizer Inc. and Hannover Medical
School) totalling around 800 measurements. Assisted repro-
duction treatments are complex and challenging, with low
average success rates (around 30%) even in the top clinics,
and with many factors that, to date, can be hardly kept under full control [28, 24, 29].

To perform our ISCT, we used the state-of-the-art non-identifiable ODE-based VPH model described
in [53] of the human female HPG axis and of the PKPD of downregulation drugs, and exploited the
availability of a statistically complete population P of VPs for such a model, as computed in [60, 37].

For each arm of our ISCT, the associated human patient was digitally represented by a DT defined
by the set of VPs in P with a mismatch threshold δ = 35%. Our 21 DTs contained 11 VPs each on
average. Hence, 21 instances of our optimal personalised treatment computation algorithm were launched
embarrassingly in parallel for 15 days on a HPC infrastructure in search for effective lightest treatments
personalised for our 21 patients. Figure 1 compares the overall amount of drug used by our personalised
treatments against the amount of drug used by the reference treatment currently in use at University
Hospital Zurich. The overall drug saving is always at least 40% (∼ 60% on average).

5 Related work
Data-driven approaches to design individualised treatments have been investigated (e.g., [50, 19]). However,
when clinical data for the patient at hand is scarce, such approaches cannot be applied. For example, in
our case study hormones blood concentrations are not measured every day, since those measurements are
costly and invasive. In these cases, model-based approaches, exploiting PharmacoKinetics (PK), as, e.g.,
[65], are used instead to build populations of VPs, which are leveraged to optimise and individualise drug
doses [63]. In our setting, we have to face with complex non-identifiable VPH models, e.g., [25, 46, 53]
defining the underlying biological mechanisms. Such models are hybrid systems usually defined by highly
non-linear ODEs (e.g., [4]) whose inputs are discrete event sequences (e.g., [38, 40, 41]). To find an optimal
treatment means to find an optimal plan in hybrid domains. In the literature, there are techniques to
model planning problems in hybrid domains, e.g., PDDL+ [20, 62]. However, most of PDDL+ planners
can deal only with linear dynamics (e.g., [12]), although some attempts to handle non-linear dynamics do
exist (e.g., [10]). Model-checking techniques are also used to find plans (e.g., [6, 7, 14, 15]) and optimal
controls (e.g., [16, 47, 56]). However, the typical complexity of the ODEs defining VPH models relevant
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for clinical practice makes such models out of reach for symbolic approaches, and appoints numerical
integration as the only viable means to compute (black-box) the model evolutions under a given input
function. In particular, even considering that clinical actions have constant and equal duration (as, e.g.,
in [30]), no reasoning or inference can be made on action effects in a black-box setting as ours, because
the only way to interact with the models is through numerical simulation. As a consequence, classical
approaches to compute, through inference, a dynamic preference order among the candidate actions to be
tried during search (as those exploited in, e.g., classical planning, planning for white-box hybrid systems
or (Q)CSP, SAT or local search solvers, see e.g., [54, 5, 21, 23, 34, 8, 9, 35, 44]) cannot be directly applied.

The automated synthesis of rational decisions and plans in black-box environments is common in
several other application domains of high industrial relevance, like smart grids (e.g., [36, 39, 45]), games
(e.g., [31]) and real-time manoeuvring of unmanned aerial vehicles (e.g., [51]).

6 Conclusions
In this paper we reviewed our recent work on the in silico automatic synthesis of optimal personalised
treatments in healthcare. Our algorithms are based on the numerical simulation of models of the human
physiology and drugs PKPD guided by AI global search. We showed the application of our approach by
computing personalised treatments for the downregulation phase of an assisted reproduction protocol,
which are effective on the patient at hand, but minimise the overall amount of drug used.

The possibility to optimise in silico a complex treatment for a given human patient before its actual
administration shows the potential of model-based approaches in precision medicine. This however calls
for qualified VPH models (see, e.g., [64]), which is currently one of the major obstacles for the uptake of
in silico methods in clinical practice. Indeed, the results of our ISCT (conducted using a state-of-the-art
experimentally validated VPH model) are very promising, but must be taken with care. In particular, the
actual effectiveness of the personalised treatments generated by our algorithm needs to be assessed in
vivo, in order to verify the accuracy of the model in predicting the patient reactions to non-standard drug
dosing patterns, as those computed by our algorithm.
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