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Abstract

We present a preliminary formalization based on transition systems of de-
centralized contact tracing protocols for smart devices equipped with Bluetooth
trasmitters. In our model the behaviour of individual users, via their app, is
modelled as a timed automata with a local unbounded memory. Protocol config-
urations consist of the current state of a shared server and a finite set of local
states containing the states of individual users. The transition system models
the interaction between devices in the same physical location and between a sigle
device and the shared server. In the paper we address different research directions
concerning semi-automated verification based on automated reasoning tools of the
considered class of protocols, theoretical issues related to the expressiveness of the
resulting class of formal models, and data-driven analysis of the logs collected on
the server as well as on user devices.

1 Introduction
The goal of contact tracing is to make people aware of possible contacts with positively diagnosed people
so that they should possibly have an infection test [16]. For pandemic diseases, reporting a positive
diagnosis is mandatory. Contact tracing methods, e.g., smartphone apps, are aimed at investigating who
could have been contaminated by a positively diagnosed person and alert them. After the COVID-19
pandemic, several protocols have been proposed as an automated support for this task. The Pan-European
Privacy-Preserving Proximity Tracing (PEPP-PT) proposed both centralized and decentralized solutions.
As a decentralized solution, they propose the Decentralized Privacy-Preserving Proximity Tracing (DP3T),
and the specifications of ROBERT4 and NTK5. Both centralized and non-centralized systems require a
central server for alerts and typically differ in the way ephemeral identifiers are generated. In general the
system architecture is based on a smart app, a notification server as in Publish/Subscribe architectures,
and a possibly trusted server. An important notion here is that of ephemeral identifiers, i.e., identifiers
that are frequently changed either by a trusted authority/server or by the app itself in order to reduce
the risk of a malicious use of private user data from third parties (e.g. the Paparazzi’s attack [3, 16]).
Ephemeral identifiers are kept locally in the smart app. In centralized versions of the protocol, ephemeral
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identifiers are downloaded from a trusted server. In decentralized versions, ephemeral identifiers are
created by the app. The smart app installed on the user device, e.g. the Immuni app in Italy, makes use
of the Bluetooth interface to broadcast the currently valid ephemeral identifier. The communication range
of the Bluetooth interface is tuned so as to reach the distance for a possible contagious contact. The app
collects all identifiers received by other apps located in the same physical place and stores them locally.
Identifiers whose temporal marks fall out of the incubation period are deleted from memory. When users
are diagnosed to be infected, they can release a report to the shared server. The server is used to make
the report (a log containing ephemeral identifiers) available to each user interested in checking potential
contacts with infected users. This step can be implemented in several different ways depending on the
system architecture and on the role of the authority in the whole process. One possibility is to send the
report to a central log database. Users can then consult the database to check if they crossed their way
with infected users, i.e., they share some ephemeral identifier with one of them.

Taking inspiration from [1, 10, 11, 12, 9, 8], in this extended abstract we present a preliminary
formalisation of decentralized contact tracing protocols based on transition systems, a mathematical tool
typically used in abstract semantics of concurrent and distributed systems. In our specification, users
apps are modelled as timed automata with a local memory. System configurations consist then of the
current shared server state (a sort of global memory) and a multiset of local states of user instances. In
the first part of the paper we describe a mathematical presentation of contact tracing protocols aimed at
introducing a formal language to describe protocol properties and possible verification procedure for the
resulting models. In the last part we highlight possible future directions concerning both semi-automated
verification and more theoretical issues.

2 Contact Tracing Systems
In this section we introduce a possible formalization of a decentralized contact tracing protocol. To specify
the protocol rules and behavior (computation), we will use a transition system defined on configurations
consisting of a set of states of individual users. User configurations contain a local memory needed to
store the list of broadcasted and collected identifiers. System configurations contain a global memory that
gathers user logs and a set of user states that corresponds to the current number of registered indivuals.
To simplify the model, we fix the number of agents and simulate dynamic injection by randomly selecting
the initial value of local clocks used to define validity of ephemeral identifiers (i.e. local clocks may have
different values).

We will use the standard notation ∪,∩, \,⊆,⊂, and ∈ to indicate set operations. Furthermore, we
will use P(D) to indicate the powerset of D. For simplicity, for an element e ∈ D and a set M , we will
use e ∪M as an abbreviation for {e} ∪M . Finally, we will use 〈e1, . . . , en〉 to denote tuples of elements
in D. In the rest of the paper we assume that users are uniquely identified via a denumerable set U of
identifiers (user identifiers assigned upon registration). Similarly, we assume that ephemeral identifiers
are represented via a denumerable set E of labels. Both sets come equipped with standard comparison
operators such as = and 6=. Furthermore, we introduce a timestamp domain T needed to identify validity
periods of ephemeral identifiers. For simplicity, we consider days as time units and model time elapsing
transitions according to them. Elements in T are totally ordered and can be compared with equality =
and with the less than ordering <. As a convention, we add a special value ⊥ (undefined time instant).

We fix a parameter δ > 0 for defining validity periods of ephemeral identifiers. Namely, ephemeral
identifiers are considered to be valid if and only if they have been generated in the period [ct− δ, ct], where
ct is the current time. The parameter δ represents the estimated incubation period of the virus. Identifiers
with time stamp ct− δ need not to be considered in the query step. We will also fix a second parameter γ
with 0 < γ < δ to denote the frequency for rotating ephemeral in the user app. Rotation is needed for
security reasons, e.g., to reduce the risk of data leakage (visited locations, contact details). During the
validity time of an ephemeral identifier, the same user can broadcast several different identifiers (δ/γ fresh
identifiers). All these identifiers must be maintained in memory to be used when crosschecking them with
identifiers of other users.
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2.1 Transition System
Contact tracing systems are designed so as to be equipped with a shared (centralized or distributed) server
that is used to propagate reports to all registered users (a sort of notification system as in Publish/Subscribe
architectures). The server can be viewed as a (distributed) register in which reports of positive users are
first collected and then made publicly available to other users for inquiries about their health status. To
abstract away from possible implementations, we model the shared server as a global memory defined via
the map G : U × E → T such that G(u, e) denotes the last time user u generated or received (depending
on the type of adopted protocol) the ephemeral identifier e. We assume here that identifiers are unique
and that they are generated in a given day (a timestamp included in the report).

Users (or, better, user apps) can be modelled as individual processes in a concurrent system. Processes
interact by sending and receiving messages (identifiers) only when they are in the same physical location.
For the sake of this presentation, we abstract away from physical locations and model physical contact
using non-determinism, i.e., at each step we non-deterministically select the set of users that receive
the identifier broadcasted by a given app. In a sense, a receiver group can be viewed as an abstract
representation of a physical location. Users need to maintain in local memory the current ephemeral
identifiers, updated every γ time units, as well as the sets of broadcasted and received identifiers. Based
on all the above mentioned assumptions, user states are tuples of the following form: 〈q, u, e, c, S,R〉 where

• q ∈ {0, 1, 2} is the user status: negative, possibly positive, and positive, respectively;

• u ∈ U is the user id;

• e ∈ E is the current valid ephemeral identifier that the user can broadcast to his/her neighbors;

• c ∈ T is the current value of the timer used to update the identifier;

• S : E → T and R : E → T are mappings that represent the local memory, namely the set of sent
and received identifiers by user U . Timestamps are used here for checking their validity.

– If S(e) > 0, than S(e) maintains the last time user u sent e;
– if R(e) > 0, than R(e) maintains the last time user u received e.

We will use C to denote the set of all possible user states defined on U and E, and P(C) the powerset of
C. The global state of a contact tracing system can be defined as a tuple 〈G,∆, t〉, where G is the server
state, ∆ ∈ P(C) is a set of user states, each one carrying a unique user identifier, and t ∈ T is the current
(global) time. We assume here that in the initial global state t = 0, user states contain distinct ephemeral
identifiers, and local timers are initialized with random values to simulate injections of users at different
times, and the local mappings S and R of user states are such that S(x) = R(x) = ⊥ for all x ∈ E.

We now define a transition system to describe the operational semantics of contact tracing protocols.
In this preliminary study, we abstract away from cryptographic operations and focus on data management
steps. To simplify the definitions, for ∆ ∈ P(C), we will use ∆ ⇐ x, t to denote the set obtained by
updating every user state σ = 〈q, u, e, c, S,R〉 ∈ ∆ into the new user state σ′ = 〈q, u, e, c, S,R′〉 s.t.
R′(x) = t and R′(y) = R(y) for every y 6= x. Similarly, for σ = 〈q, u, e, c, S,R〉 ∈ C we will use σ ⇒ x, t
to denote the new user state 〈q, u, e, c, S′, R〉 s.t. S′(x) = t and S′(y) = S(y) for y 6= x.
Let us first consider the phase in which a device broadcasts ephemeral identifiers to other devices in the
same location. Let ∆ ∈ P(C) be the current set of user states. We non-deterministically single out the
sender user σ ∈ C and a group of receivers Π ∈ P(C), containing only users in state q < 2, by requiring
that ∆ = σ ∪ Π ∪ Γ for σ ∈ ∆, Π,Γ ∈ P(C). The effect of the transitions is to update the state of sender
and receivers:

〈G, σ ∪Π ∪ Γ, t〉 → 〈G, σ′ ∪Π′ ∪ Γ, t〉

where σ = 〈0, u, e, c, S,R〉, Π contains only user states with local state q < 2, σ′ = (σ ⇒ e, t), and
Π′ = (Π⇐ e, t).
Global and local memory can be reset from time to time as specified in the following three rules.

〈G,∆, t〉 → 〈G′,∆, t〉
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where, for every u ∈ U, e ∈ E, G′ is obtained by settingG′(u, e) = ⊥ ifG(u, e) < t−δ, andG′(u, e) = G(u, e)
otherwise.

〈G, σ ∪∆, t〉 → 〈G, σ′ ∪∆, t〉

where σ = 〈q, u, e, c, S,R〉 and σ′ = 〈q, u, e, c, S′, R′〉 s.t., for every e ∈ E, S′(e) = ⊥ if S(e) < t− δ, and
S′(e) = S(e) otherwise, and R′(e) = ⊥ if R(e) < t− δ, and R′(e) = R(e) otherwise.
We consider now the report phase in a protocol formulation in which users who are diagnosed as positive
submit as a report a copy of the log of all broadcasted identifiers i.e. they copy S in the global memory G.
Other formulations are possible, e.g., the report may consist of the mapping R instead of S.

〈G, σ ∪∆, t〉 → 〈G′, σ′ ∪∆, t〉

where σ = 〈0, u, e, c, S,R〉, σ′ = 〈2, u, e, c, S,R〉 and, G′(u, x) = S(x) for every x ∈ E, and for every v 6= u
and y ∈ E, G′(v, y) = G(v, y). We assume here that users in state 2 need to register to re-enter, i.e.,
return to state 0, into the system.
Let us now consider the query phase. In this phase users crosscheck the set of received identifiers with
the global memory. If valid ephemeral identifiers are contained in the intersection with a time stamp
compatible with the incubation period, than the user updates its state to 1.

〈G, σ ∪∆, t〉 → 〈G, σ′ ∪∆, t〉

where σ = 〈0, u, e, c, S,R〉, there exists v, x s.t. G(v, x) = R(x) = s, t− δ ≤ s ≤ t and σ′ = 〈1, u, e, c, S,R〉.
We assume here that users in state 1 need to register again into the system to return to state 0.
The final part of the specification is related to time elapsing steps and ephemeral identifiers update. We
model this step by incrementing global time, local clocks, and controlling whether or not the validity time
of identifiers expired.

〈G,∆, t〉 → 〈G,∆′, t+ 1〉

where ∆′ is obtained from ∆ as follows. Assume that ∆ = {σ1, . . . , σk}. Furthermore, let F =
{x1, x2, . . . , xk} be a set of fresh identifiers, i.e., such that they do not occur in ∆. We define ∆′ =
{σ′

1, . . . , σ
′
k} in such a way that for each i : 1, . . . , k if σi = 〈q, u, e, c, S,R〉, then

• if q = 0 then

– if c = γ − 1, then σ′
i = 〈q, u, xi, 0, S,R〉, i.e., we update the current ephemeral identifier with a

fresh value;
– otherwise if c < γ − 1, then σ′

i = 〈q, u, e, c+ 1, S,R〉, i.e., we update the local counter.

• if q > 0, then σ′
i = 〈q, u, e, c, S,R〉, i.e., we leave the user state unchanged.

A computation is a sequence of configurations σ0σ1 . . . that, starting from an initial configuration
σ0 with a certain number of users, contains configurations such that σi → σi+1 for i ≥ 0. The above
described formal semantics can be extended in order to model different ways to handle fresh identifiers
creation (via a shared server, etc) as well as to model explicitly physical locations and user movement
from location to location. The proposed transitions system however can already by used as an abstract
representation of a decentralized version of the protocol.

As an example, consider a configurations σ0 = 〈G,∆, 0〉 in which ∆ consists of three user states a, b,
and c in their initial state (local state equal to 0, empty memory, distinct ephemeral identifiers ia, ib, and
ic respectively). We can then apply a broadcast step to a sender a and a non-deterministically selected
subset of ∆, e.g. {b, c}. User a will update Sa s.t. Sa(ia) = 0 whereas b, c will update their R memories
s.t. Rb(ia) = Rc(ia) = 0. Starting from the new configuration σ1, we can apply k time elapsing steps and
reach configuration σ2 with clock k. We can then apply another broadcast step to sender b and receiver a
so that Sb(ib) = Ra(ib) = k. We can then apply a report step moving a to state 2 and copying its memory
S to G, thus having G(a, ia) = 0. In the query step user b will move to state 1, i.e., receives a notification
by the server, only if k ≤ δ.
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3 Verification and Data-driven Analysis
The formalization of contact-tracing protocols has several interesting applications. First of all, we plan
to apply Automated Reasoning techniques based on SMT solvers in order to validate a parameterized
formulations of decentralized versions of the protocol in the input language of Infinite-state Model Checkers
such as Cubicle as discussed in previous works on distributed algorithhms [6], and Publish/Subscribe
architectures [8]. In this setting it is possibile to exploit the combination of the Theory of Arrays and
Arithmetics to finitely express and then validate automatically such a protocol for an arbitrary number of
users. In this context the idea is to represent the state of individual users as cells of an unbounded arrays
possibly containing a subfields unbounded arrays representing their local memory. Indeed, in Cubicle it is
possible to express transition systems operating on multidimensional unbounded arrays. In the considered
case study, the set of user states can be represented as unbounded tables indexed on process identifiers
and, for each process, the local memory can be represented again as an unbounded table e.g. containing
the list of sent or received identifiers. In tools such as Cubicle, and more in general in several other
examples of infinite-state model checkers, symbolic search procedures can be applied in order to validate
the protocol specification againts safety and restricted types of liveness properties. As an example of
correcteness property, let us consider the following correspondence property (typical of cryptograohic
protocols): if user u is in state 1, then there exists a positive user v that emitted an identifier in state t
received by u at time t′ s.t. t− t′ < δ or sim. This property can be formulated as a coverability problem

Integrity properties can also be modelled by modeling malicious agents and equipping them with the
possibility of sniffing data sent by the users, e.g., identifiers, reports, user credentials in order to obtain
information on user position and contacts etc.

Concerning computability issues, it seems possible to define further abstractions or restricted versions
of the proposed formalization in order to exploit decidability and complexity results for ad hoc networks
(they model receivers groups via broadcast messages) [10, 11, 1], and asynchronous broadcast networks
(they model local memories) [13]. Furthermore, it would be interesting to consider abstractions based on
Population Protocols [14] a class of concurrent systems that could be used to model a pandemic behaviour
in a population. Another interesting connection arises from the fact that this class of protocols appears to
naturally enjoy various boundedness notions that have been studied towards the verification of data-aware
business processes [5]. On the one hand, ephemeral identifiers are subject to expiration, and consequently
are akin to fading fluents in [7], and go well with the notion of recency bound in [2]. On the other hand,
while a user can in principle encounter unboundedly many other users over the whole timeline, it is
reasonable to assume that only boundedly many will be met in a fixed timespan, a property resembling
that of bound-by-resources in [15].

Data-driven analysis of the user and server logs are also an interesting research direction more related
to more classical Artifical Intelligence techniques. In particular data mining and prediction techniques
could be applied here in order to infer potential clusters and links between them as well as to extract
prediction models for the diffusion of the virus as proposed by Yoshua Bengio in [4].
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