
Proceedings of the
2nd Workshop on Artificial Intelligence and Formal Verification, Logics, Automata and Synthesis (OVERLAY),

September 25, 2020

Finite vs. Infinite Traces in Temporal Logics

Alessandro Artale and Andrea Mazzullo1 and Ana Ozaki2

1KRDB Research Centre – Free University of Bozen–Bolzano
2University of Bergen, Norway
1{artale,mazzullo}@inf.unibz.it

2ana.ozaki@uib.no

1 Introduction
The first-order temporal language that we consider in this paper, TUQL [10], is obtained by extending
the classical first-order language with the until temporal operator U . This language can be interpreted
over infinite linear structures, often based on the strict linear order of the natural numbers, in which case
we speak of infinite traces (for more details on syntax and semantics of TUQL, see [3] and references
therein). Decidable fragments of first-order temporal logic [11, 10], and in particular temporal description
logics [14, 1, 13] (combining linear temporal logic operators with description logics (DLs)) on infinite
traces have been extensively investigated as temporal formalisms for knowledge representation.

Besides this semantics defined on infinite linear structures, attention has been devoted also to finite
traces, which are temporal structures based on time-flows isomorphic to (finite) initial segments of the
natural numbers [6, 8, 9]. The finiteness of the time dimension is indeed a natural restriction in many
application domains (planning, process modelling, runtime verification, etc.). Moreover, the two semantics
behave quite differently, as witnessed by the following examples. The TUQL formula

2+∀x(P (x)→©2+(¬P (x) ∧ ∃yR(x, y) ∧ P (y))),

which admits only models with an infinite domain of objects [13], is unsatisfiable over finite traces (here
2+ and 3+ are the reflexive versions of the usual future-time operators box 2 and diamond 3, while
© is the strong next operator). On the other hand, the formula last, defined as ¬©> (or, equivalently,
2⊥), is satisfied only at the last instant of a finite trace, and thus it never holds on models with an
infinite ascending chain of instants, while ©⊥ cannot be satisfied, neither on finite nor on infinite traces.
Therefore, on finite traces, differently from the infinite case, we have that formulas of the form ©ϕ are not
equivalent to ¬©¬ϕ, and the strong next behaves differently from its weak counterpart, (abbreviating
¬©¬), for which it holds that ϕ is satisfied at a given instant iff ©ϕ or last is satisfied.

Given the differences with the infinite case, the main purpose of our line of research is to establish
semantic and syntactic conditions which characterise when the distinction between reasoning on finite and
infinite traces can be loosened. Several approaches have been considered to preserve the satisfiability of
formulas from the finite to the infinite case, so to reuse algorithms developed for the infinite case [5, 7].
We focus on equivalences between formulas, determining conditions that guarantee when it is preserved
from finite to infinite traces, as well as conditions preserving equivalences in the other direction, from
infinite to finite traces. This approach opens interesting research directions towards the application of
efficient finite traces reasoners [12] to the infinite case.

After a summary of results contained in a paper published at IJCAI 2019 [3], where we also provide a
uniform framework for semantic notions to bridge finite and infinite trace semantics, in Section 2 below we

Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

24 Alessandro Artale, Andrea Mazzullo, Ana Ozaki

present original work on formulas for which satisfiability from finite to infinite traces is preserved. Finally,
we report in Section 3 previously obtained [2, 4, 3] complexity results for temporal DLs on finite traces.

2 Finite vs. Infinite Traces
There are examples of temporal formulas, such as 2>, that are satisfiable both on finite and infinite traces.
Others, however, are satisfiable only on finite traces, witness 3last, or only on infinite traces, as 2+©>.
It is then natural to ask under which circumstances we can ensure that satisfiability on finite and infinite
traces coincide, so that solvers can limit themselves to the construction of a finite trace and avoid the
step of building the lasso of an infinite trace. We are also interested in an analogous question concerning
equivalences between formulas. For instance, we have that 32(ϕ ∨ ψ) and 32ϕ ∨32ψ, which are not
equivalent on infinite traces, are equivalent on finite traces [5]. Similarly, formulas 2+3+ϕ and 3+2+ϕ
are both equivalent to 3+(last ∧ ϕ) on finite traces [8], but are not equivalent on infinite traces. On the
other hand, we have that last is satisfiable on finite traces, thus ⊥ and last turn out to be equivalent
only on infinite traces. In the following, we report selected (although slightly rephrased) results from [3],
where we additionally propose a uniform framework of semantic properties that ensure when formula
satisfiability and equivalences between formulas are preserved between the finite and the infinite case. The
properties help to understand in which cases the distinction between the two can be harmlessly blurred.

We start by observing that, for first-order formulas (FOL) without temporal operators but interpreted
on traces, there is no distinction between reasoning over finite or infinite traces.

Theorem 1 (Cf. [3]). Formulas without temporal operators (FOL) are equivalent (resp., satisfiable) on
finite traces if, and only if, they are equivalent (resp., satisfiable) on infinite traces.

As a further step, we study cases where diamond and box operators (reflexive or not) are allowed and
consider the problem of equivalences between formulas. We provide classes of formulas whose syntactic
structure ensures that being equivalent on finite traces implies being equivalent also on infinite traces,
or, vice-versa, formulas for which, given their construction, it is guaranteed that equivalences on infinite
traces are preserved for the finite case. In the following, given TUQL formulas ϕ,ψ, we write ϕ ≡F ψ
(resp., ϕ ≡I ψ) if ϕ is equivalent to ψ on finite (resp., infinite) traces.

Let 3+-formulas ϕ,ψ be constructed according to the following grammar, where P is a predicate:

3+ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ∃xϕ | P (~τ) | ¬P (~τ).

Moreover, we call 3-formulas the formulas generated by allowing further 3ϕ in the grammar rule for
3+-formulas, while 3+∀-formulas are obtained by allowing also ∀xϕ in the grammar rule for 3+-formulas.
We have the following result for the formulas so constructed.

Theorem 2 (Cf. [3]). The following holds:

1. for all 3+-formulas ϕ,ψ, ϕ ≡F ψ if and only if ϕ ≡I ψ;

2. for all 3+∀-formulas ϕ,ψ, ϕ ≡I ψ implies ϕ ≡F ψ;

3. for all 3-formulas ϕ,ψ, ϕ ≡F ψ implies ϕ ≡I ψ.

In [3], we provide examples showing that the results of Theorem 2 are tight, meaning that it is not
possible to extend the grammar rule for 3+-formulas with ∀xϕ, and we cannot extend the grammar rule
for 3+∀-formulas with 3ϕ.

We define now the 2+-formulas ϕ,ψ, constructed according to the rule (with P being a predicate):

2+ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ∀xϕ | P (~τ) | ¬P (~τ).

The set generated by further allowing 2ϕ in the construction of 2+-formulas is the set of 2-formulas,
and we call 2+∃-formulas those obtained by allowing ∃xϕ in the grammar rule for 2+-formulas.

Theorem 3 (Cf. [3]). The following holds:

25

1. for all 2+-formulas ϕ,ψ, ϕ ≡F ψ if and only if ϕ ≡I ψ;

2. for all 2+∃-formulas ϕ,ψ, ϕ ≡I ψ implies ϕ ≡F ψ;

3. for all 2-formulas ϕ,ψ, ϕ ≡F ψ implies ϕ ≡I ψ.

Again, it can be seen in [3] that the results of Theorem 3 are tight, in that we cannot extend
the grammar rule for 2+-formulas with ∃xϕ, and it is not possible to extend the grammar rule for
2+∃-formulas with 2ϕ.

Finally, in the rest of this section (that contains original material), we investigate which fragments of
first-order temporal logic have the property that satisfiability on finite traces is preserved on infinite traces.
As already mentioned, in these cases, reasoners can be more efficient and avoid the steps to construct the
lasso that shows that an infinite trace satisfying a given formula exists.

We show that satisfiability from finite to infinite traces is preserved for a class of formulas containing
both 3+ and 2+. Given a finite trace F = (∆F, (In)n∈[0,l]), we denote by Fω the infinite trace that results
from extending F with (Il)ω—an infinite repetition of the last instant Il of F. We say that ϕ is Fω if for
all finite traces F and all assignments a, it satisfies:

F |=a ϕ⇔ Fω |=a ϕ.

Clearly, for any Fω formula ϕ, satisfiability is preserved from finite to infinite traces. Syntactically, we
have that this property is satisfied by a class of formulas constructed as follows. Let 3+2+-formulas ϕ,ψ
be constructed according to the following rule (with P predicate symbol):

3+ϕ | 2+ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ∃xϕ | ∀xϕ | P (~τ) | ¬P (~τ).

The next theorem shows that the language generated by the grammar rule for 3+2+-formulas contains
only formulas whose satisfiability on finite traces implies satisfiability on infinite traces.

Theorem 4. Any 3+2+-formula is Fω.

Proof. Our theorem is a consequence of the following claims, where we write Fn for the suffix of a finite
trace F starting from time point n.

Claim 1. For all finite traces F, all assignments a, and all 3+2+-formulas ϕ, if F |=a ϕ then Fω |=a ϕ.

Proof of Claim 1. We show that F |=a ϕ implies Fω |=a ϕ. The proof is by induction. For the base case, it
is straightforward to see that the statement holds for all formulas of the form P (~τ) and ¬P (~τ), with P
predicate symbol. Assume now that the claim holds for ϕ and there is a finite trace F and an assignment
a such that F |= ϕ′. We argue that Fω |=a ϕ′, where ϕ′ is as follows.

• For ϕ′ = 3+ϕ: by assumption F |=a 3+ϕ. This means that there is n ∈ [0, l] such that F, n |=a ϕ. In
other words, Fn |=a ϕ. By the inductive hypothesis, if Fn |=a ϕ then (Fn)ω |=a ϕ. So Fω |=a 3+ϕ.

• For ϕ′ = 2+ϕ: by assumption F |=a 2+ϕ. This means that for all n ∈ [0, l] we have that F, n |=a ϕ.
In other words, Fn |=a ϕ for all n ∈ [0, l]. By the inductive hypothesis, for all such n, if Fn |=a ϕ
then (Fn)ω |=a ϕ. So Fω |=a 2+ϕ.

• For ϕ′ = ∃xϕ: by assumption F |=a ∃xϕ. This means that there is d ∈ ∆ such that F |=a[x7→d] ϕ.
By the inductive hypothesis, Fω |=a[x7→d] ϕ. Then, by the semantics of ∃, Fω |=a ∃xϕ.

• For ϕ′ = ∀xϕ: by assumption F |=a ∀xϕ. This means that for all d ∈ ∆ we have that F |=a[x 7→d] ϕ.
By the inductive hypothesis, Fω |=a[x7→d] ϕ for all d ∈ ∆. Then, by the semantics of ∀, Fω |=a ∀xϕ.

• The remaining cases can be proved by a straightforward application of the inductive hypothesis.

Claim 2. For all finite traces F, all assignments a, and all 3+2+-formulas ϕ, if Fω |=a ϕ then F |=a ϕ.

Proof of Claim 2. We show that Fω |=a ϕ implies F |=a ϕ. The proof is by induction. For the base case,
it is again easy to check that the statement holds for all formulas of the form P (~τ) and ¬P (~τ), with P
predicate symbol. Assume that the claim holds for ϕ and there is a finite trace F and an assignment a
such that Fω |= ϕ′. We argue that F |=a ϕ′, where ϕ′ is as follows.

26 Alessandro Artale, Andrea Mazzullo, Ana Ozaki

• For ϕ′ = 3+ϕ: by assumption Fω |=a 3+ϕ. This means that there is n ∈ [0,∞) such that
Fω, n |=a ϕ. In other words, Fω,n |=a ϕ, where Fω,n is the suffix of Fω starting from time point
n. If n ≥ l (the last time point of F) then, by definition of Fω, since Fω,n = Fω,l, we have that
Fω,l |=a ϕ. Let Fl be the finite trace with only the last time point of F. As Fω,l = (Fl)ω, we have
that (Fl)ω |=a ϕ. By the inductive hypothesis, Fl |=a ϕ. So F |=a 3+ϕ. If n < l then, by the
inductive hypothesis, Fn |= ϕ, where Fn is the suffix of F starting from time point n. So F |=a 3+ϕ.

• For ϕ′ = 2+ϕ: by assumption Fω |=a 2+ϕ. This means that for all n ∈ [0,∞) we have that
Fω, n |=a ϕ. In other words, Fω,n |=a ϕ for all n ∈ [0,∞), where Fω,n is the suffix of Fω starting from
time point n. For all n ∈ [0, l] (recall that l is the last time point of F), we have that Fω,n = (Fn)ω

and so, (Fn)ω |=a ϕ. By applying the inductive hypothesis on all n ∈ [0, l], we conclude that Fn |=a ϕ
for all such n. In other words, F, n |=a ϕ for all n ∈ [0, l]. This means that F |=a 2+ϕ.

• The remaining cases can be proved by a straightforward application of the inductive hypothesis.

3 Complexity Results
We briefly mention here the complexity results recently obtained for different fragments of TUQL [2, 4].
In [2], we consider the fragment with a single free variable, unary and binary predicates, and temporal
operators applied just to unary predicates (contained in the so-called monodic fragment [10]), in particular
the description logic (DL) TUALC—the temporal extension of the DL ALC with the until temporal
operator on concepts. A TUALC concept is an expression of the form:

C,D ::= A | ¬C | C uD | ∃R.C | C U D,

where A is a concept name (unary predicate) and R is a role name (binary predicate). A TUALC axiom is
either a concept inclusion (CI) of the form C v D, or an assertion of the form A(a) or R(a, b). Formulas
in TUALC have the form: ϕ,ψ ::= α | ¬ϕ | ϕ ∧ ψ | ϕ U ψ, where α is a TUALC axiom. We studied
the complexity of checking satisfiability of formulas in: TUALC interpreted over finite traces; TUALC
interpreted over k-bounded traces, i.e., finite traces with at most k (given in binary) instants; and in
TU (g)ALC, the restriction of TUALC to global CIs (GCIs), i.e., with formulas only of the form 2+(T)∧φ,
where T is a conjunction of CIs (now true at all time points) and φ does not contain CIs, interpreted over
k-bounded traces. We obtained the following.

Theorem 5 (Cf. [2]). Formula satisfiability in TUALC on finite traces is ExpSpace-complete, while it
reduces to NExpTime-complete in TUALC on k-bounded traces, and to ExpTime-complete in TU (g)ALC
on k-bounded traces.

In [4], we consider temporal extensions of DL-Lite, i.e., the logic TUDL-LiteNbool with roles and concepts
so defined:

R ::= L | L− | G | G−, C ::= ⊥ | A | ≥ qR | ¬C | C1 u C2 | C1 U C2

where now roles can be either local (L, varying in time) or global (G, not varying in time), and can have
inverses (L−, G−). Formulas are as before, with either CIs or GCIs. We consider various FO fragments
(core, krom, horn) and the case where just 2,© are in front of concepts. We obtain the following.

Theorem 6 (Cf. [4]). TUDL-LiteNbool and T2©DL-LiteNhorn formula satisfiability on finite traces is
ExpSpace-complete. Allowing only GCIs, TU (g)DL-LiteNbool, TU (g)DL-LiteNcore, T2©(g)DL-LiteNbool and
T2©(g)DL-LiteNhorn on finite traces are PSpace-complete.

For traces with at most k time points, given in binary as part of the input, the following holds.

Theorem 7 (Cf. [4]). TUDL-LiteNbool and TUDL-LiteNhorn formula satisfiability on k-bounded traces are
NExpTime-complete. Allowing only GCIs, TU (g)DL-LiteNcore and TU (g)DL-LiteNbool on k-bounded traces
are PSpace-complete.

27

References
[1] A. Artale and E. Franconi. Temporal description logics. In Handbook of Temporal Reasoning in

Artificial Intelligence, pages 375–388. Elsevier, 2005.

[2] A. Artale, A. Mazzullo, and A. Ozaki. Temporal description logics over finite traces. In 31st
International Workshop on Description Logics, (DL’18), 2018.

[3] A. Artale, A. Mazzullo, and A. Ozaki. Do you need infinite time? In Proc. of the 28th Int. Joint
Conference on Artificial Intelligence (IJCAI-19), Macao, China, August 10-16, 2019. AAAI Press.

[4] A. Artale, A. Mazzullo, and A. Ozaki. Temporal DL-Lite over finite traces (preliminary results). In
32nd International Workshop on Description Logics, (DL’19), Oslo, Norway, 18-21 June, 2019.

[5] A. Bauer and P. Haslum. LTL goal specifications revisited. In ECAI, pages 881–886, 2010.

[6] S. Cerrito, M. C. Mayer, and S. Praud. First order linear temporal logic over finite time structures.
In LPAR, pages 62–76, 1999.

[7] G. De Giacomo, R. De Masellis, and M. Montali. Reasoning on LTL on finite traces: Insensitivity to
infiniteness. In AAAI, pages 1027–1033, 2014.

[8] G. De Giacomo and M. Y. Vardi. Linear temporal logic and linear dynamic logic on finite traces. In
IJCAI, pages 854–860, 2013.

[9] V. Fionda and G. Greco. The complexity of LTL on finite traces: Hard and easy fragments. In AAAI,
pages 971–977, 2016.

[10] D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional Modal Logics:
Theory and Applications, volume 148. Elsevier, 2003.

[11] I. M. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragment of first-order temporal logics.
Annals of Pure and Applied Logic, 106(1-3):85–134, 2000.

[12] J. Li, L. Zhang, G. Pu, M. Y. Vardi, and J. He. LTLf Satisfiability Checking. In ECAI, pages
513–518, 2014.

[13] C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal description logics: A survey. In TIME, pages
3–14, 2008.

[14] F. Wolter and M. Zakharyaschev. Temporalizing description logics. In FroCoS, pages 104–109, 1998.

	Introduction
	Finite vs. Infinite Traces
	Complexity Results

