
Proceedings of the
2nd Workshop on Artificial Intelligence and Formal Verification, Logics, Automata and Synthesis (OVERLAY),

September 25, 2020

A Fixed-point Model-checker for BDI Logics over
Finite-state Worlds∗

Salvatore La Torre1 and Gennaro Parlato2

1University of Salerno, Italy
2University of Molise, Italy

1slatorre@unisa.it
2gennaro.parlato@unimol.it

Abstract

bdi agents are among the most widely studied models of rational agents.
In this architecture, systems are seen as rational agents with certain mental
attitudes such as belief, desire, and intention. In this paper, we consider the
model-checking problem for Ctlbdi, the branching-time logic Ctl augmented
with the BDI modalities, over finite-state structures, and in particular, a proof-of-
concept tool that is based on a translation to a formula in a fixed-point logic. We
give a description of this tool in some details and also discuss some preliminary
evaluations.

1 Introduction
bdi agents, i.e., rational agents having certain mental attitudes of belief, desire, and intention, are
real-world system models that have been heavily investigated in the literature [11]. Their use in the design
and implementation of safety-critical applications has also motivated the study and the development of
tools for correctness verification (see [3, 4, 1]).

A common specification language that is used to express the specification for bdi agents is Ctl∗bdi.
Ctl∗bdiis obtained by extending Ctl∗ [6] with the belief, desire, and intention modal operators. In a
recent research [9, 10], the model-checking problem for Ctl∗bdi (and its fragment Ctlbdi) over finite-state
structures is shown to be Pspace-complete. This logic is a semantic restriction of the possible-worlds
semantics given by Rao and Georgeff [12, 13] where the worlds are modeled as Kripke structures and
the bdi relations are captured by finite-state automata. In [10] is also given a fixed-point algorithm to
decide the model-checking question. Further, for the logic Ctlbdi, the decision algorithm is formulated in
a fixed-point calculus that can be directly translated to the input language of BDD-based model checker
Mucke [2], thus yielding a proof-of-concept tool to decide Ctlbdi.

In this paper, we report on the current status of our tool. In particular, after describing the overall
architecture, we recall the decision algorithm and then by a case study we describe our encoding in the
fixed-point calculus. We also synthesize a benchmark which is based on the given case study and can
be varied in size such that it could be used to perform a scalability analysis of our approach. However,
here we only report on some preliminary experiments where we use small values of the parameters. The
reason is that the tool is not yet fully automatized and thus it would not be feasible to handle large input
models. As future work, we plan to improve this by also integrating the translation with modules within
the Getafix framework [7, 8] that parses models described as Boolean programs.

∗This work was partially supported by GNCS 2020 and FARB-UNISA 2018-2019 grants.
Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

48 Salvatore La Torre, and Gennaro Parlato

Λ(σ, ψ, u) := Λσat ∨ Λσ¬ ∨ Λσ∨ ∨ Λσ∀© ∨ Λσ∃© ∨ Λσ∀U ∨ Λσ∃U ∨ ΛσB ∨ ΛσD ∨ ΛσI where:

1. Λ0
at := Atomic(ψ) ∧ ¬Label(ψ, u)

2. Λ1
at := Atomic(ψ) ∧ Label(ψ, u)

3. Λσ¬ := Neg(ψ) ∧ ∃ψ′.(Ready(ψ′, u) ∧ Sub(ψ′, ψ) ∧ Λ(1− σ, ψ′, u))

4. Λσ∨ := Or(ψ)
∧∃ψ′,ψ′′. (Ready(ψ′)∧Sub(ψ′, ψ)∧Ready(ψ′′)∧Sub(ψ′′, ψ)∧(Λ(σ, ψ′, u) oσΛ(σ, ψ′′, u))),

where oσ is ∨ if σ = 1 and ∧ otherwise

5. Λ0
∃© := Existential(ψ) ∧ Next(ψ)

∧ ∃ψ′. (Ready(ψ′) ∧ Sub(ψ′, ψ) ∧ ∀v. (¬SuccT (v, u) ∨ Λ(0, ψ′, v)))

6. Λ1
∃© := Existential(ψ) ∧ Next(ψ)

∧ ∃ψ′. (Ready(ψ′) ∧ Sub(ψ′, ψ) ∧ ∃v. (SuccT (v, u) ∧ Λ(1, ψ′, v)))

7. Λ0
∀© := Universal(ψ) ∧ Next(ψ)

∧ ∃ψ′. (Ready(ψ′) ∧ Sub(ψ′, ψ) ∧ ∃v. (SuccT (v, u) ∧ Λ(0, ψ′, v)))

8. Λ1
∀© := Universal(ψ) ∧ Next(ψ)

∧ ∃ψ′. (Ready(ψ′) ∧ Sub(ψ′, ψ) ∧ ∀v. (¬SuccT (v, u) ∨ Λ(1, ψ′, v)))

9. Λ0
∃U := Existential(ψ) ∧ Until(ψ)

∧ ∃ψ′, ψ′′. (Ready(ψ′) ∧ Ready(ψ′′) ∧ Sub(ψ′, ψ′′, ψ) ∧ Λ(0, ψ′′, u)
∧ (Λ(0, ψ′, u) ∨ ∀v. (¬SuccT (v, u) ∨ Λ(0, ψ, v))))

10. Λ1
∃U := Existential(ψ) ∧ Until(ψ)

∧ ∃ψ′, ψ′′. (Ready(ψ′) ∧ Ready(ψ′′) ∧ Sub(ψ′, ψ′′, ψ)
∧ (Λ(1, ψ′′, u) ∨ (Λ(1, ψ′, u) ∧ ∃v. (SuccT (v, u) ∧ Λ(1, ψ, v)))))

11. Λ0
∀U := Universal(ψ) ∧ Until(ψ)

∧ ∃ψ′, ψ′′. (Ready(ψ′) ∧ Ready(ψ′′) ∧ Sub(ψ′, ψ′′, ψ) ∧ Λ(0, ψ′′, u)
∧ (Λ(0, ψ′, u) ∨ ∃v. (SuccT (v, u) ∧ Λ(0, ψ, v))))

12. Λ1
∀U := Universal(ψ) ∧ Until(ψ)

∧ ∃ψ′, ψ′′. (Ready(ψ′) ∧ Ready(ψ′′) ∧ Sub(ψ′, ψ′′, ψ)
∧ (Λ(1, ψ′′, u) ∨ (Λ(1, ψ′, u) ∧ ∀v. (SuccT (v, u) ∧ Λ(1, ψ, v)))))

13. Λ0
B := bel(ψ) ∧ ∃ψ′. (Ready(ψ′) ∧ Sub(ψ′, ψ) ∧ ∃v. (SuccB(v, u) ∧ Λ(0, ψ′, v)))

(similarly for desire and intention formulas)

14. Λ1
B := bel(ψ) ∧ ∃ψ′. (Ready(ψ′) ∧ Sub(ψ′, ψ) ∧ ∀v.(¬SuccB(v, u) ∨ Λ(1, ψ′, v)))

(similarly for desire and intention formulas)

Figure 1: Formal definition of the relation capturing the fulfillment of subformulas at the nodes of GM.

2 Branching-time BDI logic over finite-state worlds
In this section, we briefly and informally recall the logic Ctlbdi over finite-state worlds and the main
known results. For the details we refer the reader to [10].
Syntax. Ctlbdi formulas are inductively defined starting from atomic propositions by applying the
logical connectives, the path quantifiers coupled with a temporal operator such as next (©) and until (U),
and the belief (bel), desire (des), and intention (int) operators.
Semantics. The meaning of the formulas from Ctlbdi is defined according to a possible world semantics

49

where each possible world is not an instantaneous state but a transition system. All the worlds are
synchronized over a shared branching-time structure whose time points (nodes) represent the instantaneous
states. The meaning of the belief-desire-intention (bdi) operators is then given through accessibility
relations that relate the possible worlds at each time point and thus can possibly vary over time, while
the meaning of temporal operators is related to the temporal accessibility relation defined by the the
branching-time structure.

A finite-state structure constrains a general Ctlbdi structure such that:

• the shared branching-time structure is a full k-ary tree for an integer k > 0 (i.e., an infinite tree
where each node has exactly k children),

• each of the worlds is defined by a Kripke structure whose tree unrolling from its unique initial state
is contained into the shared branching time structure (i.e., each transition is mapped to a child from
1 through k and from each state there is at most an outgoing transition corresponding to a given
child i),

• each bdi relation is defined by a finite automaton that takes as input sequences over the alphabet
{1, . . . , k}, i.e., an automaton that maps paths of the tree-structure to the worlds modeling the bdi
attitude.

For a structureM, a world w and a Ctlbdi formula ϕ we denote that ϕ is fulfilled onM starting
from w asM, w |= ϕ.
Model-checking. The Ctlbdi model-checking problem over finite-state structures asks whetherM, w |=
ϕ holds for given finite-state structure M, world w and Ctlbdi formula ϕ. In [10], we show that this
problem is Pspace-complete and give a fixed-point algorithm to decide it. This algorithm relies on
the construction of a finite graph GM that captures the semantics of M as the cross product of its
Kripke structures and automata synchronized over the sequences from alphabet {1, . . . , k}. The graph
has different kinds of edges depending on whether they capture the successor in a Kripke structure or I
accessibility. Then, starting from the atomic propositions, the algorithm labels the nodes of GM similarly
to the standard labeling algorithm to decide Ctl model-checking (see [5]).

Figure 1 gives the relation that captures the labeling of GM nodes with the fulfilled sub-formulas. This
definition uses predicates to denote the successors in the graph GM, to relate formulas to sub-formulas,
and to denote whether a sub-formula is an atomic proposition, the negation/disjunction of formulas,
universally/existentially quantified, a next/until/belief/desire/intention formula. Additionally, Ready(ψ, u)
denotes the formula ∃σ.Λ(σ, ψ, u).

In particular, the following theorem holds:

Theorem 1. [10] Given a Ctlbdi formula ϕ, a finite-state structureM and a world w,
M, w |= ϕ iff Λ(1, ϕ, u) holds true

where u is the initial state of GM corresponding to w.

3 Proof-of-concept tool
In this section we give an overview of a prototype tool called bdi-checker for solving the model-checking
problem of Ctlbdi. The underling search space engine uses Binary Decision Diagrams to implement the
algorithm’s operations as well as to represent the set of reachable states during the analysis. To illustrate
our translation we consider a case study taken from [10]. We finally elaborate a benchmark starting from
this case study to evaluate the tool.
Case study. We consider a simple scenario where a robot can essentially perform two tasks: getting
a beer from the refrigerator and opening the door. The only uncertainties in the environment are the
presence or not of a beer can in the refrigerator and of a person at the door house. We can model these as
beliefs and thus have four different Kripke structures one for each of the possible beliefs.

In the beginning, all the beliefs are possible and thus all the worlds are belief-accessible. As soon
as the robot realizes that no beer is in the refrigerator only the two worlds matching this belief become
accessible. Also, if the doorbell rings, the robot changes its beliefs about the presence of a person at the

50 Salvatore La Torre, and Gennaro Parlato

TRANSLATION INTO
PREDICATES

COMPOSE
FIXED-POINT

FORMULA
M

• Transition systems nodes

• AP labeling

• temporal, belief, desire,
intention successors

• Subformula representation
• Subformula relation
• Subformula types

Predicates

Fixed-point
algorithm

MUCKE

YES/NO

counter-
example

Figure 2: Tool architecture.

house door. After opening the door, the robot becomes again agnostic on whether there is a person at
the door. After sensing that no beer is in the refrigerator instead its beliefs about the content of the
refrigerator will not change forever (this might be changed by adding a further event that a delivery man
brings some beer cans).

Robot desires and intentions can be modeled by adding more worlds “refining” the belief related worlds.
To keep the description simple, in this version of the paper we omit a detailed discussion of such aspects.

We consider two Ctlbdi formulas: ϕ1 = ∀�(bel br → ∃♦ bb), i.e., “whenever the robot believes that
a beer can is in the refrigerator, she can possibly bring it back”, and ϕ2 = ∀�(bel br → ∃� bb), i.e.,
“whenever the robot believes that a beer can is in the refrigerator, she can always bring it back”. The first
one is fulfilled on our structure, while the second one is not.
Architecture. The tool architecture is shown in Figure 2. bdi-checker takes as input a finite-state
structure M and a Ctlbdi formula ϕ, and returns as result “YES”, if the model M meets the specification
ϕ, and a counter-example witnessing that M does not satisfy ϕ, otherwise.

The first internal module of bdi-checker, called TRANSLATION INTO PREDICATES, takes as input
M and ϕ and transforms them into a series of definitions of Boolean predicates. In particular, we define
the predicates used in the definition of formula Λ given in Figure 1: we encode the nodes of graph GM
from the Kripke structures and the automata ofM, and capture the successor relations using predicates;
and from ϕ we encode the subformulas used in the labeling algorithm and capture their syntactic type
again by using predicates.

For our case study, we encode the nodes of the Kripke structures and the automata of M as integers,
and thus the nodes of GM as tuples of integers. The generated predicates use this encoding. As an
example, the predicate encoding the labeling of GM vertices with formulas is defined as follows:

bool Label(Formula f, GVertex u) (
(u.w=0 & Lab1(f,u.s0))

| (u.w=1 & Lab2(f,u.s1))
| (u.w=2 & Lab3(f,u.s2))
| (u.w=3 & Lab4(f,u.s3))

)

where Lab1, Lab2, Lab3, and Lab4 are the predicates capturing the labeling of the four Kripke structures

51

of M , w is the u component denoting the current Kripke structure (i.e, the current world), and s0, s1,
s2, and s3 denote the u components corresponding to the states of the respective Kripke structures.

We then encode the seven subformulas of ϕ1 as integers in the interval [0, 6] (according to the syntax
tree of ϕ1 starting with 0 for ϕ1 itself, and then proceeding top-down and left-to-right). With such an
encoding, we define the predicates used in Figure 1. For example, we have the following definitions:

bool Atomic(Formula f) (f=5 | f=6)
bool Universal(Formula f) (f=0)
bool Until(Formula f) (false)

Once, all the predicates are defined, the original model-checking question, that is, determining whether
M, w |= ϕ, can be translated in the following clause:

(exists GVertex u. Lambda(true,0,u)),
which, in our case study, simply asks the backend solver to verify whether a vertex of GM exists where the
input formula ϕ1 holds true. Thus, in the second module, called COMPOSE FIXED-POINT FORMULA,
we just put together the predicates computed by the first module with the fixed-point algorithm given in
Figure 1 and the above clause.

The last module just invokes the backend solver Mucke on the built formula and returns its outcome.
Evaluation. To evaluate our prototype tool we have elaborated a benchmark by extending the given
case study with the layout of the environment. A layout is given as a bi-dimensional grid where the
refrigerator, the door, the lounge (the base position of the robot) and some obstacles are positioned. This
benchmark is parameterized on the size of the grid, the number of instances and the positioning of the
objects (refrigerator, door, lounge, and obstacles). This will allow us to evaluate the scalability of the
approach by varying the parameters. However, to date, we have only exercised our tool on a simple
scenario (2× 2 grid) against the two different Ctlbdi formulas given above. The tool has performed quite
well: it gives the right answer in a fraction of a second with BBD maximum size of 1134. We were unable
to perform a systematic evaluation since most of the translations in our tool are still performed manually
which prevents us to manage large benchmarks. As future work, we plan to complete the automatization
of the modules of our tool and then perform a full evaluation over the described benchmark.

References
[1] M. Benerecetti, F. Giunchiglia, and L. Serafini. Model checking multiagent systems. J. Log. Comput.,

8(3):401–423, 1998.

[2] A. Biere. µcke - efficient µ-calculus model checking. In O. Grumberg, editor, Computer Aided
Verification, 9th International Conference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings,
volume 1254 of Lecture Notes in Computer Science, pages 468–471. Springer, 1997.

[3] J. Blee, D. Billington, G. Governatori, and A. Sattar. Levels of modality for BDI logic. J. Applied
Logic, 9(4):250–273, 2011.

[4] R. H. Bordini, M. Fisher, W. Visser, and M. J. Wooldridge. Verifying multi-agent programs by model
checking. Autonomous Agents and Multi-Agent Systems, 12(2):239–256, 2006.

[5] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science, Volume
B: Formal Models and Sematics (B), pages 995–1072. The MIT Press/Elsevier, 1990.

[6] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize synchronization
skeletons. Sci. Comput. Program., 2(3):241–266, 1982.

[7] S. La Torre, P. Madhusudan, and G. Parlato. Analyzing recursive programs using a fixed-point
calculus. In M. Hind and A. Diwan, editors, Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009,
pages 211–222. ACM, 2009.

52 Salvatore La Torre, and Gennaro Parlato

[8] S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parameterized concurrent programs
using linear interfaces. In T. Touili, B. Cook, and P. B. Jackson, editors, Computer Aided Verification,
22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings, volume
6174 of Lecture Notes in Computer Science, pages 629–644. Springer, 2010.

[9] S. La Torre and G. Parlato. Model checking bdi logics over finite-state worlds. In Proceedings of
the 1st Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis
co-located with the 18th International Conference of the Italian Association for Artificial Intelligence
(AI*IA 2019), Rende (CS), Italy, November 19-20, 2019, pages 11–16, 2019.

[10] S. La Torre and G. Parlato. On the model-checking of branching-time temporal logic with BDI
modalities. In A. E. F. Seghrouchni, G. Sukthankar, B. An, and N. Yorke-Smith, editors, Proceedings
of the 19th International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’20,
Auckland, New Zealand, May 9-13, 2020, pages 681–689. International Foundation for Autonomous
Agents and Multiagent Systems, 2020.

[11] J.-J. C. Meyer, J. Broersen, and A. Herzig. Bdi logics. In Handbook of Epistemic Logic, pages 453–498.
College Publications, 2015.

[12] A. S. Rao and M. P. Georgeff. Modeling rational agents within a bdi-architecture. In J. F. Allen,
R. Fikes, and E. Sandewall, editors, Proceedings of the 2nd International Conference on Principles of
Knowledge Representation and Reasoning (KR’91). Cambridge, MA, USA, April 22-25, 1991., pages
473–484. Morgan Kaufmann, 1991.

[13] A. S. Rao and M. P. Georgeff. A model-theoretic approach to the verification of situated reasoning
systems. In R. Bajcsy, editor, Proceedings of the 13th International Joint Conference on Artificial
Intelligence. Chambéry, France, August 28 - September 3, 1993, pages 318–324. Morgan Kaufmann,
1993.

	Introduction
	Branching-time BDI logic over finite-state worlds
	Proof-of-concept tool

