
Semantic Ontology-Based Approach to Enhance Text
Classification

Sonika Malika,b, Sarika Jaina

aNational Institute of Technology, Kurukshetra
bMaharaja Surajmal Institute of Technology

sonika.malik@gmail.com, jasarika@nitkkr.ac.in

Abstract
Text Classification is the process of defining a collection of pre-defined classes to free-text. It has been

one of the most researched areas in machine learning with various applications such as sentiment

analysis, topic labeling, language detection and spam filter etc. The efficiency of text classification

improves, when some relation or pattern in the data is given or known, which can be provided by

ontology. It further helps in reducing the size of dataset. Ontology is a collection of data items that

helps in storing and representing data in a way that preserves the patterns in it and its semantic

relationship with each other. We have attempted to verify the improvement provided by the use of

ontology in classification algorithms. The code prepared in this research and the method developed is

pretty generic, and could be extended to any ontology based text classification system. In this paper, we

present an enhanced architecture that can uses ontology to provide an effective text classification

mechanism. We have introduced an ontology based text classification algorithm by utilizing the rich

semantic information in Disease ontology (DOID). We summarize the existing work and finally

advocate that the ontology based text classification strategy is better as compared to conventional text

classification in terms of different metrics like Accuracy, Precision, Recall, and F-measure etc.

Keywords

Text Classification, Ontology, Semantic AI, Symbolic AI, Statistical AI, Classifier.

1. Introduction

The classification of entities based on the available data

is the foundation for classification techniques. The

available data could be of two types- the information

that we have on hand, and the information that we have

previously used for classification. Either way, an

accurate and precise classification relies on the amount

of information that is available to us. The ways of

processing and analysing information has been

transformed through digitization.

ISIC’21: International Semantic Intelligence Conference, February 25-27,

2021, Delhi, India

📧:sonika.malik@gmail.com (S. Malik); jasarika@nitkkr.ac.in

(S. Jain)

 : 0000-0003-2721-1951(S Malik) 󠇮

©️ 2021 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

There is a plethora of textual data everywhere we look

around, from magazines to journals to papers. There is

a need to systematically categorize and interpret this

information without compromising time. Automated

text classification [1] is one of the most helpful tools for

this.

It’s 󠇮one 󠇮of 󠇮the 󠇮most important and rudimentary features

in Natural Language Processing (NLP) [2], with broad

applications such as sentiment analysis [3], topic

labelling, spam detection [4], and intent detection [5].

Text classifier [6] are made and meant to be

implemented on a diverse range of textual datasets. Text

classification can work on both, structured and

unstructured datasets. To understand the process of

classification and how ontology fits in this process,

there is a hierarchical progression as shown in Figure

1.

Artificial Intelligence (AI) is anticipated to produce

hundreds of billions of dollars in economic value.

However, considering that technology forms part of our

85

mailto:sonika.malik@gmail.com
mailto:sonika.malik@gmail.com
mailto:jasarika@nitkkr.ac.in
https://monkeylearn.com/blog/definitive-guide-natural-language-processing/

everyday lives, many people remain suspicious. Their

key issue is that AI approaches perform like black-

boxes and seems to generate ideas without any

explanation. In addition, many industries recognised

knowledge graphs (KGs) as an effective method for

data processing, management and enrichment [53].

Although KGs are also increasingly recognisable as a

foundations of an AI system that makes explainable AI

via 󠇮 the 󠇮 design 󠇮 concept 󠇮 called 󠇮 “Human-in- the-Loop” 󠇮

(HITL). The AI’s promise is to automatically derive

patterns and rules from massive datasets based on

machine learning algorithms such as deep learning. This

fits very well with particular issues and helps to simplify

classification activities in many situations. The machine

learning algorithms gain the knowledge from historical

information, but they cannot derive new results from it.

Without explanation, there is no confidence. Explain

ability ensures that trustworthy agents in the system are

able to understand and justify 󠇮the 󠇮AI 󠇮agent’s 󠇮decisions 󠇮

[50].

Semantic AI integrates symbolic AI and statistical AI.

It incorporates the approaches like machine learning,

information analysis, semantic web and text mining. It

combines the benefits of AI techniques, primarily

neural networks and semantic reasoning. It is an

improvement of the existing framework used primarily

to create AI-based systems. This brings fast learning

from less trained data, for example chatbots can be

developed without cold-start problem. Semantic AI

incorporates a radically different approach and

therefore complementary skills for additional

stakeholders. Although conventional Machine

Learning is primarily performed by data or information

scientists involved in Explainable AI or semantic AI. At

the heart of Semantic Enriched Artificial Intelligence

architecture, a semantic knowledge graph is used by

providing the means for a more automated data quality

management [7]. For the better quality data and more

options in feature extraction, semantically enhanced

data works as a base. It gives the better accuracy of

classification and prediction intended by machine

learning algorithms. Semantic AI aims to have an

infrastructure to address the knowledge asymmetries

between designers of AI applications and other

stakeholders including customers and decision makers,

in 󠇮 direct 󠇮 reference 󠇮 to 󠇮 AI 󠇮 systems 󠇮 which 󠇮 ‘work 󠇮 like 󠇮

magic’ 󠇮 where only some of the analysts actually

recognise the fundamental techniques [8].

Ontology- Ontology specifies a conceptualization of a

domain in terms of concepts, attributes, and relations

[49]. In simple terms, Ontology is analogous to a

dictionary, which stores the information about entities.

This information usually consists of the features and

relations of the said entities [51, 52]. The immense

importance of ontology is utilised in the research fields,

such as data science, where, it eases information

processing because of its organised structure, as

compared to the more conventional ways of processing

raw data. The formal ontology, thus, represents data in

an organised way and used as a framework [9].

Ontology based text Classification- For Machine

Learning (ML) style classification, algorithms such as

Naive Bayes (NB) [10] or Support Vector Machine

(SVM) [11] etc. are used, where we train a model to

read text as feature vectors and output as one of n

classes. One use of ontology would be to mark-up

entities in the text. In our case, we have a medical

ontology like DOID, whose nodes have information

about various diseases, symptoms, medications, etc.

We could look for these entities in our text and mark

them as single entity - so for example, if we found the

string 󠇮“Lung 󠇮Cancer” 󠇮in 󠇮our 󠇮text 󠇮which 󠇮is 󠇮also 󠇮a 󠇮node 󠇮

in our ontology, we could replace all occurrences of

“Lung 󠇮Cancer” 󠇮with 󠇮a 󠇮single 󠇮token 󠇮“Lung_Cancer” 󠇮and 󠇮

treat this token as a feature for our classification. These

ontology nodes usually contain multiple versions of the

string 󠇮that 󠇮represents 󠇮it. 󠇮For 󠇮example, 󠇮“heart 󠇮attack” 󠇮is 󠇮

also 󠇮known 󠇮as 󠇮“myocardial 󠇮 infarction”, 󠇮 so 󠇮 if 󠇮our 󠇮 text 󠇮

contains either string, they could be normalized down

to one single string and treated as a single feature for

classification. For rule-based classifiers such as

Bayesian Networks or decision tree algorithms [12], we

could also leverage the knowledge in the ontology to

create generalized rules.

The remaining paper has been organised as follows:

Section 2 describes the related work in the field of text

classification. Section 3 defines the background

knowledge. Section 4 presents the assessment of

proposed system. Section 5 describes the comparison

and results and finally paper ends with conclusion and

future scope.

2. Related Work

Angelo A. Salatino, Thiviyan Thanapalasingam,

Andrea Mannocci, Francesco Osborne and Enrico

Motta [13] came up with the Computer Science

Ontology (CSO). The CSO consists up to twenty-six

thousand domains, and as many as two hundred and

twenty-six thousand interpretable relations between

these domains. To support its availability, they also

86

developed the CSO Portal, a web application which

allows users to explore the ontologies and send

feedback.

Angelo A. Salatino, Francesco Osborne and Enrico

Motta [14] introduced the CSO Classifier for automatic

classification of research papers according to the

Computer Science Ontology (CSO). It is an

unsupervised approach. For every research Meta data,

the CSO takes as input, it returns a list of suitable topics

that could be used in classifying the said input research

paper.

Angelo A. Salatino, Francesco Osborne and Enrico

Motta [15] presented a CSO classifier for automatic

classification 󠇮of 󠇮academic 󠇮papers 󠇮according 󠇮to 󠇮CSO’s 󠇮

rich taxonomy of subjects. The aim is to promote the

acceptance of CSOs through the various communities

involved in scholarly data and enable the creation of

new applications that rely on this knowledge base. This

paper proposed four stages:

Figure 1. Concept Hierarchy in Semantic AI [45, 46]

(a) Constructing research ontology, (b) Classifying

new research proposals into disciplines, (c) building

research proposal clusters using text mining, (d)

balancing research proposals and regrouping them by

considering 󠇮applicants’ 󠇮characteristics.

Preet Kaur and Richa Sapra [17] also researched in a

similar domain, wherein, they proposed Ontology-

Based text mining methods for classification of

research proposals as well as external research

reviewers.

Chaaminda Manjula Wijewickrema and Ruwan

Gamage [18] addressed the fallacies in manual

classification and proposed ontology based methods for

fully automatic text classification.

A Sudha Ramkumar, B Poorna and B. Saleena [19]

used WordNet ontology to perform ontology based

clustering of sports related terms, so as to preserve the

semantic meaning behind terms while clustering them.

Nayat Sanchez-Pi, Luis Marti and A.C.B. Garcia [20]

presented a probing algorithm for the automatic

detection of accidents in occupational health control.

The proposal has more accurate heuristics because it

contrasts the relevance of techniques used with the

terms. The basic accident detection problem is divided

into three parts: (i) text analysis, (ii) recognition and

(iii) 󠇮 classification 󠇮 of 󠇮 failed 󠇮 techniques which caused

accidents.

Decker [21] presented a different approach to

categorize research papers by using the words present

in the papers abstract. It is an unsupervised method

which evaluates the relevance of suitable topics for the

research paper on various time scales.

87

 Herrera et al. [22] devised a way to categorize research

papers specific to the domain of physics. They did this

with the help of PACS, which stands for Physics and

Astronomy Classification Scheme. They created a

network like structure where, a PACS code was

assigned to every topic node, and a connection between

two nodes was possible only if their codes co-occur

together in at least one paper.

Ohniwa et al. [23] gave a similar analysis in the field of

biomedicine. They used the Medical Subject Heading

(MeSH).

Mai et al [24] showed that the performance of their

model, which was only trained using titles, was as good

as the models trained by mining the full texts of papers

and articles. They developed their approach using deep

learning techniques. As training set, they used

scientific papers from EconBiz and PubMed,

respectively annotated with the STW Thesaurus for

Economics (approximately five thousand classes) and

MeSH (approximately twenty-seven thousand classes).

Cook et al. [25] developed a method of allocation of

papers to reviewers optimally, to aid the selection

process.

Arya and Mittendorf [26] suggested a rotation based

method for the assignment of projects.

Choi and Park [27] offered a solution for Research and

Development proposal classification, which was text

mining based.

Girotra [28] proposed a study for the evaluation of

portfolio projects.

Sun et al. [29, 30] developed a mechanism for

assessment of reviewers, who would evaluate the

research papers. Mehdi Allahyari, Krys J. Kochut and

Maciej Janik [31] proposed a way of dynamic

classification of textual records in dynamically

generated classes.

Rudy Prabowo, Mike Jackson, Peter Burden and

Heinz-Dieter Knoell [32] developed a web page

classifier. Its classification was with reference to the

Dewey Decimal System and Library of Congress

Classification schemes.

3. Background Knowledge

In this section we have discussed the pre-processing

steps for textual data and Machine Learning classifiers

that are being used in our research.

3.1. Pre-Processing Textual data

According to the official documentation, the Natural

Language Toolkit (NLTK) [48] is a platform used for

building Python programs that work with human

language data for applying in statistical Natural

Language Processing (NLP). It is a useful tool in

python, which helps in processing a diverse range of

languages by providing algorithms for it. This tool is

powerful because it is free and open source. Also, one

does not need to look for any special tutorials when

using the NLTK, as its official documentation is very

well described. The most common algorithms used in

NLTK are tokenization, lemmatization, part of speech

tagging etc. These algorithms are essentially used to

preprocess textual data. The preprocessing takes place

in five parts:

Tokenization- A token is the fundamental building

block of any linguistic structure, such as a sentence or

a paragraph. The process of tokenization is to break

these structures down into tokens. Tokenizer could be

of two types – a 󠇮 sentence 󠇮 tokenizer’s 󠇮 tokens 󠇮 are 󠇮

sentences. It, therefore, breaks paragraphs down into

sentences. A work tokenizer identifies words as tokens.

It, hence, disintegrates sentences into words.

Stemming- A stem is the root word or phrase from

which different forms of that word could be derived.

Stemming is the process of identifying all the words

that were derived from the same stem and reduce them

or normalize them back to their stem form. For

example, connection, connected, connecting word

reduce to a common word "connect".

Lemmatization- Sometimes, we may encounter words

that have different stems but the same final meaning. In

such a case, there is a need for a dictionary lookup to

further reduce the stems to their common meaning, or

the base word. This base word is known as lemma, and

hence the name lemmatization. For example, the word

"better" has "good" as its lemma. Such cases are missed

out during stemming because these two words not at all

alike, and would need a dictionary lookup where, their

meanings can confirm the lemma.

POS Tagging- It stands for Part of Speech, and just as

the name suggests, it identifies the various parts of a

linguistic structure like a sentence. The different parts

could be an adjective or a noun or a verb. It does so by

studying the structure of the sentences and observing

the arrangement of words and the relation between the

various words.

3.2. Text classification and classifiers

88

The idea behind text classification is to group text into

categories using machine learning. It finds use in many

relevant areas such as sentiment analysis, emotion

analysis, etc. There have been many classifiers

developed for each classification category. As stated

previously, text classifier is made and meant to be

implemented on a diverse range of textual datasets. Text

classification can work on both, structured and

unstructured datasets. Both types of datasets find

numerous applications in various fields. The

Classification process in machine learning can be

explained very simply. First, we assess and analyze the

training dataset for boundary condition purposes. Next,

we predict the class for new data using the information

obtained and learned during the training phase. This is

essentially the whole process of classification.

Classification could be either supervised or

unsupervised. Supervised classification [33] of works

on the principle of training and testing, and uses labeled

data, i.e. predefined classes, for prediction. In the

training phase, the model is made to learn some

predefined classes by feeding it labeled or tagged data.

In 󠇮 the 󠇮 testing 󠇮 phase, 󠇮 the 󠇮 efficiency 󠇮 of 󠇮 the 󠇮 model’s 󠇮

prediction or classification is measured by feeding it

unobserved data. In other words, it can only predict

those classes in the testing phase which, it has learnt in

the training phase. Some common examples of

supervised classification are spam filters, intent

detection, etc. Unsupervised classification [34, 35]

involves classification by the model without being fed

the external information. In this, the algorithm of the

model tries to group or cluster data points based on

similar traits, patterns and other common features that

can be used to tie two data points together. A common

example where unsupervised classification is really

helpful is the search engines. They create data clusters

based on insights generated from previous searches.

This type of classification is extremely customizable

and dynamic as there is no need for training and tagging

for it to work on textual datasets. Thus, the

unsupervised classification is language compatible.

The classifiers used for text-classification could be ML

based, such as Naïve-Bayes Classifier, Decision Tree

Classifier [36] etc., or it can be based on Neural

Network architecture such as Artificial Neural

Network, Convolutional Neural Network etc. [37].

The machine learning based classifiers that can be used

for text classification are:

(a) Naive Bayes classifier [38, 39] - It uses the Bayes

theorem to predict values. This algorithm is good for

multi-class classification. Consider a data point x, in a

multi-class scenario with three classes- A, B and C.

Using Naïve Bayes, we try to predict whether the data

point x belongs to class A or B or C, by calculating its

probability for the three classes as given in Eq. 1.

𝑃(𝐴|𝐵) = (𝑃(𝐵|𝐴).𝑃(𝐴))/𝑃(𝐵)

(1)
This 󠇮algorithm 󠇮is 󠇮called 󠇮‘Naïve’ 󠇮because it assumes that

all the features are independent of each other as defined

in Eq. 2.

𝑃(𝑓1 , 𝑓2, 𝑓3 … 𝑓𝑛) = 𝑃(𝑓1) = 𝑃(𝑓2) = ⋯ 𝑃(𝑓𝑛)

 (2)
There are further two categories of the NB Classifier

one is Gaussian NB Classifier and other one is

multinomial NB Classifier.

The Gaussian Naïve-Bayes classifier is used when a

dataset has continuous values of data. It uses the

Gaussian Probability Distribution function (values are

centered on mean and as the graph grows, the values

decrease). The Multinomial Naive Bayes algorithm

assumes the independence of features, and the

multinomial component of this classifier ensures that

the distribution is multinomial in its features.

 (b) Decision Tree [38] - It is a highly intuitive

algorithm which uses greedy approach. To construct a

decision tree, we have to perform the following steps –

(1) select a feature to split the data, (2) select a method

to split the data on the said feature. It has the internal

working algorithm as: (i) Create/Select a node. (ii) If

the node is pure, output the only class. (iii) If no feature

is left to split upon, and the node is impure, output the

majority class. (iv) Else find the best feature to split

upon. Recursively call on this split. Go to b.

(c) K-Nearest Neighbor [38, 40] - Consider a scenario

where we have to predict to which class, the testing

point belongs to, by considering all the features at once.

Such is the working of KNN algorithm as shown in

Figure 2. To predict the class of the testing data point,

we check its vicinity. To classify the testing point, we

Figure 2. KNN

check a specific number of points (1, 3, 5, 7, etc.) and

whichever class is in majority among those, that one is

89

predicted. To select the nearest point, we have to

consider its distance from the other points. The distance

metric can be (a) Manhattan distance, (b) Euclidian

Distance, (c) Minkowski distance.

(d) Random forest [38, 41] - It is an extension of the

decision tree classifier. This algorithm uses multiple

combinations of decision trees to accurately predict

testing data. The random forest classifier overcomes

the over-fitting problem of decision trees by building

multiple decision trees and going with the majority

result. 󠇮The 󠇮trees’ 󠇮outputs 󠇮vary 󠇮because 󠇮each 󠇮tree 󠇮is 󠇮built 󠇮

with random data and random features. To generate

randomness in trees, we use two techniques-

(i) 󠇮Bagging: 󠇮 If 󠇮we 󠇮 have 󠇮 ‘m’ 󠇮 data 󠇮 points, 󠇮we 󠇮 select 󠇮 a 󠇮

subset 󠇮of 󠇮‘k’ 󠇮out 󠇮of them. 󠇮For 󠇮‘n’ 󠇮trees, 󠇮n*k 󠇮subsets 󠇮are 󠇮

selected. Data points can be considered with

replacement as the selection is random; therefore, these

trees are called bag trees.

(ii) Feature Selection: In the training phase, some

features are selected at random in this technique, with

the condition that the selection is performed without

replacement.

(e) SVM Classifier [38, 42] - It is a very powerful

algorithm and overcomes the limitation of logistic

regression. As logistic regression uses sigmoid

function, the value predicted for a testing data point is

close to 0.5. This causes the problem of incorrect

prediction. So, SVM uses the rules of logistic

regression only, but exponentially increases the value,

so that the values predicted do not fall in the range (-1,

1).

 This cost function changes to the following equation

in SVM as given in Eq.2.

(𝜃) = 𝐶 ∑[𝑦(𝑖) 𝑐𝑜𝑠𝑡1 (𝜃𝑇𝑥(𝑖)) + (1 − 𝑦(𝑖)𝑐𝑜𝑠𝑡0(𝜃𝑇 𝑥(𝑖))] +

0.5 ∑(𝜃𝑖)2

(3)
(f) Logistic Regression [38]: It is a primitive

classification algorithm which uses the sigmoid

function as in Eq. 4 at its core to perform classification.

𝐹(𝑥) =
1

1 + 𝑒−𝑥

(4)
As the sigmoid has an exponential function, the graph

moves exponentially either towards 0 or 1 with a slight

change in x.

The cost function of the binary logistic regression is

given in Eq. 5.
𝐸(ℎ(𝑥))= ∑(−𝑦𝑖 log (ℎ(𝑥)) − (1 − 𝑦𝑖) log (1 − ℎ(𝑥)))

(5)

(g) Bagging Classifier [43]: A Bagging Classifier is an

ensemble Meta estimating system that fits base

classifiers in each of the random subsets of the original

data sets and then combines their individual predictions

to form a final prediction. Usually, such a meta-

estimator can be used to minimize the variance of a

black-box estimator by randomization.

4. Proposed Study

The classification by Machine Learning algorithms is

supposed to improve with the use of ontology. We aim

to verify this fact by studying and comparing values of

metrics such as accuracy, precision, recall and F1 score

for ontology based text classification and conventional

text classification.

4.1. Conventional Text Classification

In the conventional classification the framework had

three main phases, (i) Dataset generation (ii) Model

training and testing (iii) Analyzing/Classifying results

as shown in Figure 3.

1. 1. Dataset Generation: A premature knowledge

database of disease-symptom associations was

available on [45] which consist of three columns named

as disease name, count of disease occurrence and the

symptoms; however, it needed modification to be used

for our research. Also some new information was

added to the dataset so that matching could be done

precisely. Thus the final dataset created, is the one that

was used for this proposed research. The modified

dataset and the ontology are compatible as they consist

of 󠇮classification/output 󠇮feature 󠇮“disease 󠇮name” 󠇮and 󠇮the 󠇮

matching 󠇮 feature 󠇮 “disease 󠇮 description”. 󠇮 After 󠇮 the 󠇮

ontology and a working dataset were obtained, cleaning

and preprocessing of the dataset was done, NLTK is

used for processing the dataset. A synthetic dataset is

also generated which involves creating new data using

programming techniques. In this research we created

multiple entries using the random feature value

selection of same class. For example, consider a disease

having 10 symptoms. We randomly select a subset of

these 10 symptoms and generate a new entry for the

dataset involving fewer symptoms and the disease

name. This process helps to bind the symptom values

to the disease and generate strong positive relation

between feature values (symptoms) and class (disease).

2. Model Training/Testing: This phase involves using

dataset and applying machine learning classifiers to it.

90

As the dataset initially contains text keywords, it needs

to be converted into numbers using count vectorizer

module. After this the training data is ready for feeding

to the classifier for training. The classifiers used are

KNN, SVM, Logistic Regression, Decision Tree and

Random Forest etc. After training we can use the model

for predictions on testing data. The ratio of training and

testing data is 80 and 20 respectively.

2. 3. Analyzing/ Classifying Results: To analyze the

results, we compare the disease predictions for the

testing data with the actual disease class. After

comparing we calculate the classification metrics like

accuracy, precision, recall, F1-score. After this

computation we can compare the performance of

multiple classifiers based on metrics. Also we can

verify which classes seem to perform well base on

individual class-wise precision and recall values.

Figure 3. Conventional Text Classification

4.2. Ontology Based Text
Classification

For the purpose of this research, we have used the

Human Disease Ontology, which was hosted at the

website for the Institute of Genome Sciences,

Maryland School of Medicine [44]. This ontology is

comprehensive hierarchical controlled vocabulary for

human disease representation. It consists of unique

label for each disease which acts as identifier. The

owl file of the ontology was exported to csv file using

Protégé. We have presented a second phase between

dataset generation and Model training/Testing, in

which a hybrid approach for text classification is used

to optimize it. The presented methods/phases are: (i)

Dataset generation, (ii) Ontology Matching (iii)

Model Training and Testing iv) Analyzing and

classifying results as shown in Figure 4 (b).

The phases i, iii and iv are explained earlier in section

4.1.

Ontology Matching: In this phase the keywords

formed from the description of the disease are

matched with the keywords of ontology nodes. All

the matched nodes are possible classes which can be

used to create the subset of the data for efficient

model training. The use of priority based matching

helps us to further limit classes. In our research for

ontology matching each keyword is assigned two

numbers to specify its priority. The first number

describes frequency of the keyword and second

number describes whether the keyword can be

91

lemmatized or not. If it cannot be lemmatized it is

assigned as 1 otherwise 0. Thus each keyword has

syntax (name, first priority number, second priority

number). The steps for ontology matching are given

in Figure 4(a).

Figure 4. (a) Ontology Matching (b) Ontology Based Text Classification

Algorithm 1: Ontology Based Text Classification

The Ontology matching function used in this Algorithm refers

to Algorithm 4.2

DOID: Disease Ontology

data_x, data_t= synthetic_data_generation (Knowledge_base)

 // Phase1

x_train, x_test, y_train, y_test =train_test_split (data_x, data_y)

Ontology_tree= Loading_Ontology ()

 //Phase 2

for i in range (1, len (Knowledge_base))

Keywords_for_matching =Keywords_formation

(Knowledge_base)

all_classes= set (data_y)

for z in range (0, len (x_test))

keywords=keywords_selection (Keywords_for_matching,

y_test[z])

possible_classes=Ontology_matching (tree, keywords)

for i in range (0, len (possible_classes))

for j in range (0, len (all_classes))

if set (word_tokenize (possible _classes[i])). subset (set

(word_tokenize (all_classes[j])))

final_classes. append(all_classes[j])

else

continue

for i in range (0, len(y_train))

 if y_train[i] in final _classes

indices_to_use. append[i]

 else

 continue

 reduced_x_train, reduced_y_train = reducing_dataset

(x_train, y_train, indices_to_use)

training_data = count_vectorizer.fit_transform (reduced.

x_train) //Phase 3

testing_data = count_vectorizer. transform (x_test[z])

classifer.fit (training_data, reduced_y_train)

prediction = classifier. predict(testing_data)

predictions. append (prediction)

accuracy_score = accuracy (predictions, y_test)

 //Phase 4

precision_score = precision (predictions, y_test)

recall_score = recall (predictions, y_test)

F1-score = F1-score (predictions, y_test)

Algorithm 2: Ontology Matching

def ontology_mathing (tree, keywords):

 nodes_to_search= []

 found_nodes = []

 priority_1 = []

 priority_2 = []

 priority_3 = []

 for i in range (0, len (keywords)):

92

 if keywords[i][1]! = 1:

 priority_1. append (keywords[i][0])

 else:

 if keywords[i][2] == 1:

 priority_2. append (keywords[i][0])

 else:

 priority_3. append (keywords[i][0])

 priority_1_count = 0

 priority_2_count = 0

 priority_3_count = 0

 for i in range (0, len(tree)):

 priority_1_count = 0

 priority_2_count = 0

 priority_3_count = 0

 for j in range (0, len(priority_1)):

 if priority_1[j]. lower () in [x. lower () for x in tree[i].

keywords]:

 priority_1_count=priority_1_count+1

 else:

 continue

 for j in range (0, len(priority_2)):

 if priority_2[j]. lower () in [x. lower () for x in tree[i].

keywords]:

 priority_2_count = priority_2_count + 1

 else:

 continue

 for j in range (0, len (priority_3)):

 if priority_3[j]. lower () in [x. lower () for x in tree[i].

keywords]: priority_3_count = priority_3_count + 1

 else:

 continue

 if priority_1_count+priority_2_count+

priority_3_count>=1:

 found_nodes. append ((tree[i]. entity))

 else:

 continue

 classes= []

 for i in range (0, len(found_nodes)):

 classes. append(found_nodes[i])

 classes=list(set(classes))

 # print(classes)

 return classes

5. Classification of Various Algorithms
with and without Ontology

Parameters used for evaluation and comparison of the

model when used with ontology v/s when used

without ontology is accuracy, precision, recall, and

F1 score.

Accuracy describes the intuitiveness achieved by a

model after training. It takes into account all the

correctly predicted observations from the list of all

predictions.

Accuracy = Number of correct predictions/ total

number of Predictions

Accuracy =
TP+TN

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁

Precision- Sometimes, a classifier may label a class

as true for classification of some raw data, when in

fact, it should have been false. This is the case of a

false positive. Precision takes into account the false

positives as well.

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃

Recall- When a classifier marks a class as negative

for an unobserved data item, when in fact, it

should’ve 󠇮been 󠇮true, 󠇮 it 󠇮 is 󠇮a 󠇮case 󠇮of 󠇮a 󠇮false 󠇮negative. 󠇮

Recall accounts for the sensitivity of a model by

taking into account the false negatives.

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁

F1 Score is the weighted average of Precision and

Recall. Therefore, it factors in false positives as well

as false negatives. In case of an uneven class

distribution, F1 score becomes more important than

accuracy. Other times, when false negatives and

positives have the same cost, accuracy may be treated

as the superior evaluation parameter.

F1 Score =
2∗(𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

Where TP- True Positive

 TN- True Negative

 FP- False Positive

 FN- False Negative

In reference to the Table 1, the values of the metrics

Accuracy, Precision recall and F1-score have the

same magnitude. This is due to the fact that the FP &

FN values are same in magnitude as there is less

number of records per disease. This results in an

equal value of precision, recall, F1-score for each

class as shown in Table 2.

It can also be observed that decision tree classifier

shows the highest boost in accuracy, precision, recall

and F1 score being 0.75 for simple classification, and

0.85 for ontology based classification. There is a 10%

improvement in metrics for 500 test cases and 6% for

100 test cases for decision tree classifier. It is

followed by the KNN Classifier, which shows the 5%

improvement for both 100 & 500 test cases. Rest

other classifiers have shown improvement in metrics

of around 1% - 3% as shown in Table 1.

93

Table 1
 Comparison Table for different classifiers based on ontology and without ontology 100 & 500 Test Cases

Classifier Parameter 100 Test Cases 500 Test Cases

 Without
Ontology

With Ontology Without
Ontology

With Ontology

Naïve-Bayes Accuracy 0.98 1.0 0.97 0.978

Precision 0.98 1.0 0.97 0.978

Recall 0.98 1.0 0.97 0.978

F1 Score 0.98 1.0 0.97 0.978

Decision Tree

Accuracy 0.74 0.80 0.758 0.852

Precision 0.74 0.80 0.758 0.852

Recall 0.74 0.80 0.758 0.852

F1 Score 0.74 0.80 0.758 0.852

KNN

Accuracy 0.81 0.86 0.818 0.854

Precision 0.81 0.86 0.818 0.854

Recall 0.81 0.86 0.818 0.854

F1 Score 0.81 0.86 0.818 0.854

Random Forest

Accuracy 0.96 0.97 0.932 0.952
Precision 0.96 0.97 0.932 0.952

Recall 0.96 0.97 0.932 0.952
F1 Score 0.96 0.97 0.932 0.952

SVM

Accuracy 0.98 1.0 0.986 0.992

Precision 0.98 1.0 0.986 0.992

Recall 0.98 1.0 0.986 0.992

F1 Score 0.98 1.0 0.986 0.992

Bagging Accuracy 0.87 0.89 0.894 0.912

Precision 0.87 0.89 0.894 0.912

Recall 0.87 0.89 0.894 0.912

F1 Score 0.87 0.89 0.894 0.912

Logistic
Regression

Accuracy 0.99 1.0 0.982 0.99

Precision 0.99 1.0 0.982 0.99

Recall 0.99 1.0 0.982 0.99

F1 Score 0.99 1.0 0.982 0.99

Table 2
Values of Precision, recall & F1-score for SVM classifier for each class

Diseases Precision Recall F1-Score

Alcohol Dependence 1.0 1.0 1.0
Influenza 1.0 1.0 1.0
Neoplasm 1.0 1.0 1.0

Hernia 1.0 1.0 1.0
Fibrous Tumor 1.0 1.0 1.0
Osteomyelitis 1.0 1.0 1.0
Pancreatitis 1.0 1.0 1.0
Cholecystitis 1.0 1.0 1.0

Pneumocystis 1.0 1.0 1.0

94

Dysphagia 1.0 1.0 1.0
Psychotic disorder 1.0 1.0 1.0

Hepatitis C 1.0 1.0 1.0
Cerebrovascular Disease 1.0 1.0 1.0

Depression 1.0 1.0 1.0
Hepatitis 1.0 1.0 1.0

Hypothyroidism 1.0 1.0 1.0
Hepatitis B 1.0 1.0 1.0

Arthrogryposis 1.0 1.0 1.0
Manic Disorder 1.0 1.0 1.0

Tonic-clonic Seizures 1.0 1.0 1.0
Migraine 1.0 1.0 1.0
Anxiety 1.0 1.0 1.0

Hepatocellular Carcinoma 1.0 1.0 1.0
Asthma 1.0 1.0 1.0

Congestive Heart Failure 1.0 1.0 1.0
Hypertensive 1.0 1.0 1.0

Chronic Kidney 1.0 1.0 1.0
Cirrhosis 1.0 1.0 1.0

Blood Coagulation 1.0 1.0 1.0
Melanoma 1.0 1.0 1.0

Lymphatic System Disease 1.0 1.0 1.0
Dependence 1.0 1.0 1.0

Bipolar Disorder 1.0 1.0 1.0
Candidiasis 1.0 1.0 1.0

Hypoglycemia 1.0 1.0 1.0
Sinus Tachycardia 1.0 1.0 1.0

Transient Cerebral Ischemia 1.0 1.0 1.0

The order of classifier w.r.t its magnitude is as follows:

The bagging classifier follows next with the values of the

parameters being 0.87 each in simple text classification,

and 0.89 in ontology based classification. Random Forest

Classifier comes next, as it shows the values of the

parameters as 0.96 and 0.97 in each classification case.

Naïve-Bayes Classifier and the SVM classifier have the

same values of all the parameters as 0.98 for simple

classification and 1.0 for ontology based text

classification. Now we will come to Logistic Regression,

which can be labelled as best classifier with the values of

metrics as 0.99 for simple Text classification while 1.0 for

ontology based text classification. There is minute

difference in the value of metrics of these classifiers. Also

the order of the increasing accuracy of various classifiers

(with or without using ontology) goes on as:

 Decision Tree Classifier < KNN Classifier <

Bagging Classifier < Random Forest Classifier <

Naïve Bayes Classifier < SVM classifier < Logistic

Regression.

6. Conclusion and Future Scope

In this paper, the observations show that the ontology

based classification stands at a higher level than the

classification without ontology. The general pattern

indicates towards a more accurate and precise

classification using an ontology. All the parameters that

were used (accuracy, precision, recall, and F1 Score)

showed an elevation of 1% to 3% when the classification

was done with the help of ontology. It can be deduced that

using the ontology increased the efficiency of

classification. This advantage can be attributed to the fact

the number of possible classes for classification reduced

while, in turn, reduces the time taken for training purpose.

The results also indicate towards a more comparable

accuracy level amongst the classifiers when the ontology

95

was used. his study, while proving the importance and

benefits of ontology, still has a lot of scope for future

improvements. Future work is needed to improve the

dataset of diseases used in this project, as there was no

official dataset available for the human disease ontology.

Most of the work has been done on a limited dataset

obtained from converting the available ontology into a

dataset. There is also a need to optimize the code used for

ontology matching after the data preprocessing has been

done. One could also move on from machine learning

towards deep learning and build a neural network for this

dataset to further improve the results of the classification

in the future.

References

1. V. Korde “Text classification and classifiers: A

survey,” 󠇮 International Journal of Artificial

Intelligence & Applications (IJAIA) 3(2) (2012): 85-

99.

2. A. Gelbukh, Natural Language Processing, IEEE Fifth

International Conference on Hybrid Intelligent

Systems (HIS'05), Rio de Janeiro, Brazil (2006).

3. A. Agarwal, B. Xie, I. Vovsha, O. Rambow and R.

Passonneau, 󠇮 “Sentiment 󠇮 Analysis 󠇮 of 󠇮 Twitter 󠇮 Data

(2011). In Proc. WLSM-11.

4. Bhowmick and S.M. Hazarika, E-mail spam filtering:

a review of techniques and trends. In: Kalam A, Das

S, Sharma K (eds) Advances in electronics,

communication and computing. Lecture notes in

electrical engineering, 443. Springer, Singapore, 583–

590. 2018. https://doi.org/10.1007/978-981-10-4765-

7_61

5. S. Akulick and E.S.Mahmoud, Intent Detection

through Text Mining and Analysis. In Proceedings of

the Future Technologies Conference (FTC),

Vancouver, Canada, 29–30 November 2017; 493–

496.

6. K.Das and R.N. Behera, 󠇮 “A 󠇮 Survey 󠇮 on 󠇮 Machine 󠇮

Learning: 󠇮 Concept, 󠇮 Algorithms 󠇮 and 󠇮 Applications,” 󠇮

International Journal of Innovative Research in

Computer and Communication Engineering 2(2),

2017.

7. Blumauer, PoolParty Semantic Suite,

2018,URL:https://www.poolparty.biz/semantic-ai/

8. https://www.slideshare.net/semwebcompany/semanti

c-ai

9. T. Berners-Lee, James Hendler and Ora Lassila,

Scientific American: Feature Article: The Semantic

Web: May 2001

10. K.A. Vidhya, G. Aghila, 󠇮“A 󠇮Survey 󠇮of 󠇮Naïve 󠇮Bayes 󠇮

Machine Learning approach in Text Document

Classification”, 󠇮 (IJCSIS) 󠇮 International 󠇮 Journal 󠇮 of 󠇮

Computer Science and Information Security, 7, 2010.

11. T. JOACHIMS, Text categorization with support

vector machines: learning with many relevant

features. In Proceedings of ECML-98, 10th European

Conference on Machine Learning (Chemnitz,

Germany, 1998), 137-142.

12. D. E. Johnson, F. J. Oles, T. Zhang, T. 󠇮 Goetz, 󠇮 “A 󠇮

decision-tree-based symbolic rule induction system

for text Categorization”, 󠇮 by 󠇮 IBM systems journal,

41(3) 2002.

13. A.A. Salatino, T. Thanapalasingam, A. Mannocci, F.

Osborne and E. Motta, 󠇮“Classifying 󠇮Research 󠇮Papers 󠇮

with 󠇮 the 󠇮 Computer 󠇮 Science 󠇮 Ontology,” 󠇮 Knowledge 󠇮

Media Institute, The Open University, MK7 6AA,

Milton Keynes, UK, 2018.

14. A.A. Salatino, F. Osborne and E. Motta, The

Computer Science Ontology: A Large-Scale

Taxonomy of Research Areas, 17th International

Semantic Web Conference, Monterey, CA, USA,

October 8-12, 2018, Proceedings, Part II

15. A. Salatino, F. Osborne, E. Motta. The CSO classifier:

Ontology-driven detection of research topics in

scholarly articles. In: A. Doucet et al. (eds.) TPDL

2019: 23rd International Conference on Theory and

Practice of Digital Libraries. Cham, Switzerland:

Springer, 2019, pp. 296–311. doi: 10.1007/978- 3-

030-30760-8_26.

16. J. Ma, W. Xu, Y. Sun, E. Turban, S. Wang, O. Liu,

“An 󠇮Ontology-Based Text-Mining Method to Cluster

Proposals 󠇮 for 󠇮 Research 󠇮 Project 󠇮 Selection,” 󠇮 IEEE 󠇮

Transactions on Systems, Man, and Cybernetics Part

A: Systems and Humans, 42(3), 2012.

17. P. Kaur, R. Sapra, “Ontology 󠇮Based 󠇮Classification and

Clustering of Research Proposals and External

Research 󠇮 Reviewers”, 󠇮 International 󠇮 Journal 󠇮 of 󠇮

Computers & Technology, 5(1) 2013, ISSN 2277-

3061

18. C.M. Wijewickrema, R. Gamage, An Ontology Based

Fully Automatic Document Classification System

Using an Existing Semi-Automatic System, National

Institute of Library and Information Sciences,

University of Colombo, Colombo, Sri Lanka, 2013.

19. Sudha Ramkumar, B. Poorna, B. Saleena, Ontology

based text document clustering for sports, Journal of

Engineering and Applied Sciences, 2018.

20. Nayat Sanchez-Pi, Luis Marti and A.C.B. Garcia,

“Improving 󠇮 ontology-based 󠇮 text 󠇮 classification: 󠇮 An 󠇮

occupational 󠇮health 󠇮and 󠇮security 󠇮application,” 󠇮Article

96

https://ieeexplore.ieee.org/author/37393548800
https://ieeexplore.ieee.org/xpl/conhome/10583/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10583/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10583/proceeding
https://www.researchgate.net/profile/Alexy_Bhowmick
https://www.researchgate.net/profile/Shyamanta_Hazarika
https://doi.org/10.1007/978-981-10-4765-7_61
https://doi.org/10.1007/978-981-10-4765-7_61
https://www.poolparty.biz/semantic-ai/
https://www.slideshare.net/semwebcompany/semantic-ai
https://www.slideshare.net/semwebcompany/semantic-ai

Journal of Applied Logic · September 2015

21. S.L. Decker, B. Aleman-meza, D. Cameron and I.B.

Arpinar, Detection of Bursty and Emerging Trends

towards Identification of Researchers, the Early Stage

of Trends (2007).

22. M. Herrera, D.C. Roberts and N. Gulbahce, Mapping

the evolution of scientific fields. PLoS ONE. 5(5),

2010.

23. R.L. Ohniwa, A. Hibino and K. Takeyasu, Trends in

research foci in life science fields over the last 30 years

monitored by emerging topics, Scientometrics. 85(1),

2010.

24. F. Mai, L. Galke, and A. Scherp, Using Deep Learning

for Title Based Semantic Subject Indexing to Reach

Competitive Performance to Full-Text, JCDL 󠇮 ’18 󠇮

Proceedings of the 18th ACM/IEEE on Joint

Conference on Digital Libraries (Fort Worth, Texas,

USA, Jun. 2018)

25. W. D. Cook, B. Golany, M. Kress, M. Penn, and T.

Raviv, 󠇮“Optimal 󠇮allocation 󠇮of 󠇮proposals to reviewers

to 󠇮 facilitate 󠇮 effective 󠇮 ranking,” 󠇮Manage. 󠇮 Sci., 󠇮 51(4),

655–661, 2005.

26. Arya 󠇮 and 󠇮 B. 󠇮 Mittendorf, 󠇮 “Project 󠇮 assignment 󠇮 when 󠇮

budget 󠇮 padding 󠇮 taints 󠇮 resource 󠇮 allocation,” 󠇮Manage. 󠇮

Sci., vol. 52, no. 9, pp. 1345–1358, Sep. 2006.

27. Choi and Y. Park, 󠇮“R&D 󠇮proposal 󠇮screening 󠇮system 󠇮

based on text mining 󠇮approach,” 󠇮Int. 󠇮J. Technol. Intell.

Plan, 2(1), 61–72, 2006.

28. K. 󠇮Girotra, 󠇮C. 󠇮Terwiesch, 󠇮and 󠇮K. 󠇮T. 󠇮Ulrich, 󠇮“Valuing 󠇮
R&D projects in a portfolio: Evidence from the

pharmaceutical 󠇮industry,” 󠇮Manage. Sci., 53(9) 1452–

1466, 2007.

29. Y. 󠇮H. 󠇮Sun, 󠇮J. 󠇮Ma, 󠇮Z. 󠇮P. 󠇮Fan, 󠇮and 󠇮J. 󠇮Wang, 󠇮“A 󠇮group 󠇮

decision support approach to evaluate experts for

R&D project selection,” 󠇮 IEEE 󠇮 Transactions 󠇮 of 󠇮

Engineering management, 55(1), 158–170, 2008.

30. Y. H. Sun, J. Ma, Z. P. Fan, and J. Wang, 󠇮“A 󠇮hybrid 󠇮

knowledge and model approach for reviewer

assignment,” 󠇮Expert 󠇮System Applications, 34(2), 817–

824, Feb. 2008.

31. M. Allahyari, K. J. Kochut and M. Janik, Ontology-

based text classification into dynamically defined

topics, Semantic Computing (ICSC), 273-278, 2014.

32. R. Prabowo, M. Jackson, P. Burden and H. Knoell,

Ontology-Based Automatic Classification for the Web

Pages Design Implementation and Evaluation", Proc.

Of the 3rd International Conference on Web

Information Systems Engineering, 2002.

33. F.Y. Osisanwo, J.E.T. Akinsola, O. Awodele, J.O.

Hinmikaiye, O. Olakanmi and J. Akinjobi Supervised

Machine Learning Algorithms: Classification and

Comparison, International Journal of Computer

Trends and Technology (IJCTT), 48(3), 2017.

34. M. Khanum, T. Mahboob, W. Imtiaz, H.A. Ghafoor

and R. Sehar, A Survey on Unsupervised Machine

Learning Algorithms for Automation, Classification

and Maintenance, International Journal of Computer

Applications (0975 – 8887) 119(13), 2015.

35. Q. Guo, J. Wentian, S. Zhong and E. Zhou, "The

Analysis of the Ontology-based K-Means Clustering

Algorithm", Proceedings of the 2nd International

Conference on Computer Science and Electronics

Engineering (ICCSEE 2013), [online] Available:

https://www.atlantis-press.com/proceedings/iccsee-

13/4617.

36. P. Vateekul and M. Kubat, Fast Induction of Multiple

Decision Trees in Text Categorization From Large

Scale,Imbalanced, and Multi-label Data, IEEE

International Conference on Data

MiningWorkshops 2009.

37. S. Dargan, M. Kumar, M. Ayyagari and G.

Kumar, A Survey of Deep Learning and Its

Applications: A New Paradigm to Machine

Learning, Springer, June 2019.

38. https://jmlr.csail.mit.edu/papers/v12/pedregosa1

1a.html

39. S. Xu, Y. Li and Z. Wang, Bayesian multinomial

naïve bayes classifier to text classification. In:

Advanced multimedia and ubiquitous

engineering. Springer, 347–352, 2017.

40. G. Guo, H. Wang, D. Bell, Y. Bi and K. Greer,

KNN Model-Based Approach in Classification,

Proc. ODBASE pp- 986 – 996, 2003

41. G. 󠇮Biau, 󠇮“Analysis 󠇮of 󠇮a 󠇮Random 󠇮Forests 󠇮Model”, 󠇮

Journal of Machine Learning Research 13 (2012)

1063-1095

42. Y. Qin, X. Wang, Study on Multi-label Text

Classification Based on SVM, Sixth International

Conference on Fuzzy Systems and Knowledge

Discovery 2009

43. https://scikitlearn.org/stable/modules/generated/s

klearn.ensemble.BaggingClassifier.html

44. https://bioportal.bioontology.org/ontologies/DOI

D

45. http://people.dbmi.columbia.edu/~friedma/Proje

cts/DiseaseSymptomKB/index.html

46. Y. Freund and R.E. Schapire, A Short

Introduction 󠇮 to 󠇮 Boosting” 󠇮 Journal 󠇮 of 󠇮 Japanese 󠇮

Society for Artificial Intelligence, 14(5), 771-780,

97

https://www.atlantis-press.com/proceedings/iccsee-13/4617
https://www.atlantis-press.com/proceedings/iccsee-13/4617
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
https://bioportal.bioontology.org/ontologies/DOID
https://bioportal.bioontology.org/ontologies/DOID
http://people.dbmi.columbia.edu/~friedma/Projects/DiseaseSymptomKB/index.html
http://people.dbmi.columbia.edu/~friedma/Projects/DiseaseSymptomKB/index.html

1999.

47. V.N. Garla, C. Brandt, Ontology-Guided Feature

Engineering for Clinical Text Classification,

Journal of Biomedical Informatics, 45(5): 992–

998. doi: 10.1016/j.jbi.2012.04.010

48. https://github.com/nltk/nltk

49. D. Fensel. Ontologies: Silver Bullet for

Knowledge Management and Electronic

Commerce. Springer-Verlag, 2001.

50. https://www.forbes.com/sites/forbestechcouncil/

2019/12/30/explainable-ai-the-rising-role-of-

knowledge scientists/#62bc6193603f

51. S. Malik, S. Mishra, N. K. Jain, S. Jain. Devising

a super ontology, Procedia Computer Science PP.

785–792, 2015.

52. S. Malik, S. Jain. Ontology based context aware

model. In Proceedings of the international

conference on computational intelligence in data

science (ICCIDS), p. 1-6, 2017.

53. S. Jain, Understanding Semantics-based Decision

Support”, 󠇮 Nov 󠇮 2020, 󠇮 152 󠇮 pages, 󠇮 CRC 󠇮 Press, 󠇮

Taylor& Francis Group. ISBN: 9780367443139

(HB)

98

https://github.com/nltk/nltk
https://www.forbes.com/sites/forbestechcouncil/2019/12/30/explainable-ai-the-rising-role-of-knowledge
https://www.forbes.com/sites/forbestechcouncil/2019/12/30/explainable-ai-the-rising-role-of-knowledge
https://www.forbes.com/sites/forbestechcouncil/2019/12/30/explainable-ai-the-rising-role-of-knowledge

