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Abstract 
Text Classification is the process of defining a collection of pre-defined classes to free-text.  It has been 

one of the most researched areas in machine learning with various applications such as sentiment 

analysis, topic labeling, language detection and spam filter etc. The efficiency of text classification 

improves, when some relation or pattern in the data is given or known, which can be provided by 

ontology. It further helps in reducing the size of dataset.  Ontology is a collection of data items that 

helps in storing and representing data in a way that preserves the patterns in it and its semantic 

relationship with each other. We have attempted to verify the improvement provided by the use of 

ontology in classification algorithms. The code prepared in this research and the method developed is 

pretty generic, and could be extended to any ontology based text classification system. In this paper, we 

present an enhanced architecture that can uses ontology to provide an effective text classification 

mechanism. We have introduced an ontology based text classification algorithm by utilizing the rich 

semantic information in Disease ontology (DOID).   We summarize the existing work and finally 

advocate that the ontology based text classification strategy is better as compared to conventional text 

classification in terms of different metrics like Accuracy, Precision, Recall, and F-measure etc.   
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1. Introduction 

The classification of entities based on the available data 

is the foundation for classification techniques. The 

available data could be of two types- the information 

that we have on hand, and the information that we have 

previously used for classification. Either way, an 

accurate and precise classification relies on the amount 

of information that is available to us. The ways of 

processing and analysing information has been 

transformed through digitization.  
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There is a plethora of textual data everywhere we look 

around, from magazines to journals to papers. There is 

a need to systematically categorize and interpret this 

information without compromising time. Automated 

text classification [1] is one of the most helpful tools for 

this. 

It’s 󠇮one 󠇮of 󠇮the 󠇮most important and rudimentary features 

in Natural Language Processing (NLP) [2], with broad 

applications such as sentiment analysis [3], topic 

labelling, spam detection [4], and intent detection [5]. 

Text classifier [6] are made and meant to be 

implemented on a diverse range of textual datasets. Text 

classification can work on both, structured and 

unstructured datasets. To understand the process of 

classification and how ontology fits in this process, 

there is a hierarchical progression as shown in Figure 

1.  

Artificial Intelligence (AI) is anticipated to produce 

hundreds of billions of dollars in economic value. 

However, considering that technology forms part of our 
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everyday lives, many people remain suspicious. Their 

key issue is that AI approaches perform like black-

boxes and seems to generate ideas without any 

explanation. In addition, many industries recognised 

knowledge graphs (KGs) as an effective method for 

data processing, management and enrichment [53]. 

Although KGs are also increasingly recognisable as a 

foundations of an AI system that makes explainable AI 

via 󠇮 the 󠇮 design 󠇮 concept 󠇮 called 󠇮 “Human-in- the-Loop” 󠇮

(HITL). The AI’s promise is to automatically derive 

patterns and rules from massive datasets based on 

machine learning algorithms such as deep learning. This 

fits very well with particular issues and helps to simplify 

classification activities in many situations. The machine 

learning algorithms gain the knowledge from historical 

information, but they cannot derive new results from it. 

Without explanation, there is no confidence. Explain 

ability ensures that trustworthy agents in the system are 

able to understand and justify 󠇮the 󠇮AI 󠇮agent’s 󠇮decisions 󠇮

[50].  

Semantic AI integrates symbolic AI and statistical AI. 

It incorporates the approaches like machine learning, 

information analysis, semantic web and text mining.  It 

combines the benefits of AI techniques, primarily 

neural networks and semantic reasoning. It is an 

improvement of the existing framework used primarily 

to create AI-based systems. This brings fast learning 

from less trained data, for example chatbots can be 

developed without cold-start problem. Semantic AI 

incorporates a radically different approach and 

therefore complementary skills for additional 

stakeholders.  Although conventional Machine 

Learning is primarily performed by data or information 

scientists involved in Explainable AI or semantic AI. At 

the heart of Semantic Enriched Artificial Intelligence 

architecture, a semantic knowledge graph is used by 

providing the means for a more automated data quality 

management [7]. For the better quality data and more 

options in feature extraction, semantically enhanced 

data works as a base. It gives the better accuracy of 

classification and prediction intended by machine 

learning algorithms. Semantic AI aims to have an 

infrastructure to address the knowledge asymmetries 

between designers of AI applications and other 

stakeholders including customers and decision makers, 

in 󠇮 direct 󠇮 reference 󠇮 to 󠇮 AI 󠇮 systems 󠇮 which 󠇮 ‘work 󠇮 like 󠇮

magic’ 󠇮 where only some of the analysts actually 

recognise the fundamental techniques [8]. 

Ontology- Ontology specifies a conceptualization of a 

domain in terms of concepts, attributes, and relations 

[49]. In simple terms, Ontology is analogous to a 

dictionary, which stores the information about entities. 

This information usually consists of the features and 

relations of the said entities [51, 52]. The immense 

importance of ontology is utilised in the research fields, 

such as data science, where, it eases information 

processing because of its organised structure, as 

compared to the more conventional ways of processing 

raw data. The formal ontology, thus, represents data in 

an organised way and used as a framework [9]. 

Ontology based text Classification- For Machine 

Learning (ML) style classification, algorithms such as 

Naive Bayes (NB) [10] or Support Vector Machine 

(SVM) [11] etc. are used, where we train a model to 

read text as feature vectors and output as one of n 

classes. One use of ontology would be to mark-up 

entities in the text. In our case, we have a medical 

ontology like DOID, whose nodes have information 

about various diseases, symptoms, medications, etc.  

We could look for these entities in our text and mark 

them as single entity - so for example, if we found the 

string 󠇮“Lung 󠇮Cancer” 󠇮in 󠇮our 󠇮text 󠇮which 󠇮is 󠇮also 󠇮a 󠇮node 󠇮

in our ontology, we could replace all occurrences of 

“Lung 󠇮Cancer” 󠇮with 󠇮a 󠇮single 󠇮token 󠇮“Lung_Cancer” 󠇮and 󠇮

treat this token as a feature for our classification. These 

ontology nodes usually contain multiple versions of the 

string 󠇮that 󠇮represents 󠇮it. 󠇮For 󠇮example, 󠇮“heart 󠇮attack” 󠇮is 󠇮

also 󠇮known 󠇮as 󠇮“myocardial 󠇮 infarction”, 󠇮 so 󠇮 if 󠇮our 󠇮 text 󠇮

contains either string, they could be normalized down 

to one single string and treated as a single feature for 

classification. For rule-based classifiers such as 

Bayesian Networks or decision tree algorithms [12], we 

could also leverage the knowledge in the ontology to 

create generalized rules.  

The remaining paper has been organised as follows: 

Section 2 describes the related work in the field of text 

classification. Section 3 defines the background 

knowledge. Section 4 presents the assessment of 

proposed system. Section 5 describes the comparison 

and results and finally paper ends with conclusion and 

future scope. 

2. Related Work 

Angelo A. Salatino, Thiviyan Thanapalasingam, 

Andrea Mannocci, Francesco Osborne and Enrico 

Motta [13] came up with the Computer Science 

Ontology (CSO). The CSO consists up to twenty-six 

thousand domains, and as many as two hundred and 

twenty-six thousand interpretable relations between 

these domains. To support its availability, they also 
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developed the CSO Portal, a web application which 

allows users to explore the ontologies and send 

feedback.  

Angelo A. Salatino, Francesco Osborne and Enrico 

Motta [14] introduced the CSO Classifier for automatic 

classification of research papers according to the 

Computer Science Ontology (CSO). It is an 

unsupervised approach. For every research Meta data, 

the CSO takes as input, it returns a list of suitable topics 

that could be used in classifying the said input research 

paper.   

Angelo A. Salatino, Francesco Osborne and Enrico 

Motta [15] presented a CSO classifier for automatic 

classification 󠇮of 󠇮academic 󠇮papers 󠇮according 󠇮to 󠇮CSO’s 󠇮

rich taxonomy of subjects. The aim is to promote the 

acceptance of CSOs through the various communities 

involved in scholarly data and enable the creation of 

new applications that rely on this knowledge base. This 

paper proposed four stages:  

 
Figure 1. Concept Hierarchy in Semantic AI [45, 46] 

(a) Constructing research ontology, (b) Classifying 

new research proposals into disciplines, (c) building 

research proposal clusters using text mining, (d) 

balancing research proposals and regrouping them by 

considering 󠇮applicants’ 󠇮characteristics.  

Preet Kaur and Richa Sapra [17] also researched in a 

similar domain, wherein, they proposed Ontology-

Based text mining methods for classification of 

research proposals as well as external research 

reviewers.  

Chaaminda Manjula Wijewickrema and Ruwan 

Gamage [18] addressed the fallacies in manual 

classification and proposed ontology based methods for 

fully automatic text classification.  

A Sudha Ramkumar, B Poorna and B. Saleena [19] 

used WordNet ontology to perform ontology based 

clustering of sports related terms, so as to preserve the 

semantic meaning behind terms while clustering them.  

Nayat Sanchez-Pi, Luis Marti and A.C.B. Garcia [20] 

presented a probing algorithm for the automatic 

detection of accidents in occupational health control. 

The proposal has more accurate heuristics because it 

contrasts the relevance of techniques used with the 

terms. The basic accident detection problem is divided 

into three parts: (i) text analysis, (ii) recognition and 

(iii) 󠇮 classification 󠇮 of 󠇮 failed 󠇮 techniques which caused 

accidents.  

Decker [21] presented a different approach to 

categorize research papers by using the words present 

in the papers abstract. It is an unsupervised method 

which evaluates the relevance of suitable topics for the 

research paper on various time scales. 
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 Herrera et al. [22] devised a way to categorize research 

papers specific to the domain of physics. They did this 

with the help of PACS, which stands for Physics and 

Astronomy Classification Scheme. They created a 

network like structure where, a PACS code was 

assigned to every topic node, and a connection between 

two nodes was possible only if their codes co-occur 

together in at least one paper.  

Ohniwa et al. [23] gave a similar analysis in the field of 

biomedicine. They used the Medical Subject Heading 

(MeSH).  

Mai et al [24] showed that the performance of their 

model, which was only trained using titles, was as good 

as the models trained by mining the full texts of papers 

and articles. They developed their approach using deep 

learning techniques. As training set, they used 

scientific papers from EconBiz and PubMed, 

respectively annotated with the STW Thesaurus for 

Economics (approximately five thousand classes) and  

MeSH (approximately twenty-seven thousand classes).  

Cook et al. [25] developed a method of allocation of 

papers to reviewers optimally, to aid the selection 

process.  

Arya and Mittendorf [26] suggested a rotation based 

method for the assignment of projects.  

Choi and Park [27] offered a solution for Research and 

Development proposal classification, which was text 

mining based.  

Girotra [28] proposed a study for the evaluation of 

portfolio projects.  

Sun et al. [29, 30] developed a mechanism for 

assessment of reviewers, who would evaluate the 

research papers. Mehdi Allahyari, Krys J. Kochut and 

Maciej Janik [31] proposed a way of dynamic 

classification of textual records in dynamically 

generated classes.  

Rudy Prabowo, Mike Jackson, Peter Burden and 

Heinz-Dieter Knoell [32] developed a web page 

classifier. Its classification was with reference to the 

Dewey Decimal System and Library of Congress 

Classification schemes. 

3. Background Knowledge  

In this section we have discussed the pre-processing 

steps for textual data and Machine Learning classifiers 

that are being used in our research. 

3.1. Pre-Processing Textual data 

According to the official documentation, the Natural 

Language Toolkit (NLTK) [48] is a platform used for 

building Python programs that work with human 

language data for applying in statistical Natural 

Language Processing (NLP). It is a useful tool in 

python, which helps in processing a diverse range of 

languages by providing algorithms for it. This tool is 

powerful because it is free and open source. Also, one 

does not need to look for any special tutorials when 

using the NLTK, as its official documentation is very 

well described. The most common algorithms used in 

NLTK are tokenization, lemmatization, part of speech 

tagging etc. These algorithms are essentially used to 

preprocess textual data. The preprocessing takes place 

in five parts: 

Tokenization- A token is the fundamental building 

block of any linguistic structure, such as a sentence or 

a paragraph. The process of tokenization is to break 

these structures down into tokens. Tokenizer could be 

of two types – a 󠇮 sentence 󠇮 tokenizer’s 󠇮 tokens 󠇮 are 󠇮

sentences. It, therefore, breaks paragraphs down into 

sentences. A work tokenizer identifies words as tokens. 

It, hence, disintegrates sentences into words. 

Stemming- A stem is the root word or phrase from 

which different forms of that word could be derived. 

Stemming is the process of identifying all the words 

that were derived from the same stem and reduce them 

or normalize them back to their stem form. For 

example, connection, connected, connecting word 

reduce to a common word "connect".      

Lemmatization- Sometimes, we may encounter words 

that have different stems but the same final meaning. In 

such a case, there is a need for a dictionary lookup to 

further reduce the stems to their common meaning, or 

the base word. This base word is known as lemma, and 

hence the name lemmatization. For example, the word 

"better" has "good" as its lemma. Such cases are missed 

out during stemming because these two words not at all 

alike, and would need a dictionary lookup where, their 

meanings can confirm the lemma.    

POS Tagging- It stands for Part of Speech, and just as 

the name suggests, it identifies the various parts of a 

linguistic structure like a sentence. The different parts 

could be an adjective or a noun or a verb. It does so by 

studying the structure of the sentences and observing 

the arrangement of words and the relation between the 

various words.  

3.2. Text classification and classifiers 
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The idea behind text classification is to group text into 

categories using machine learning. It finds use in many 

relevant areas such as sentiment analysis, emotion 

analysis, etc. There have been many classifiers 

developed for each classification category. As stated 

previously, text classifier is made and meant to be 

implemented on a diverse range of textual datasets. Text 

classification can work on both, structured and 

unstructured datasets. Both types of datasets find 

numerous applications in various fields. The 

Classification process in machine learning can be 

explained very simply. First, we assess and analyze the 

training dataset for boundary condition purposes. Next, 

we predict the class for new data using the information 

obtained and learned during the training phase. This is 

essentially the whole process of classification. 

Classification could be either supervised or 

unsupervised. Supervised classification [33] of works 

on the principle of training and testing, and uses labeled 

data, i.e. predefined classes, for prediction. In the 

training phase, the model is made to learn some 

predefined classes by feeding it labeled or tagged data. 

In 󠇮 the 󠇮 testing 󠇮 phase, 󠇮 the 󠇮 efficiency 󠇮 of 󠇮 the 󠇮 model’s 󠇮

prediction or classification is measured by feeding it 

unobserved data. In other words, it can only predict 

those classes in the testing phase which, it has learnt in 

the training phase. Some common examples of 

supervised classification are spam filters, intent 

detection, etc. Unsupervised classification [34, 35] 

involves classification by the model without being fed 

the external information. In this, the algorithm of the 

model tries to group or cluster data points based on 

similar traits, patterns and other common features that 

can be used to tie two data points together. A common 

example where unsupervised classification is really 

helpful is the search engines. They create data clusters 

based on insights generated from previous searches. 

This type of classification is extremely customizable 

and dynamic as there is no need for training and tagging 

for it to work on textual datasets. Thus, the 

unsupervised classification is language compatible. 

The classifiers used for text-classification could be ML 

based, such as Naïve-Bayes Classifier, Decision Tree 

Classifier [36] etc., or it can be based on Neural 

Network architecture such as Artificial Neural 

Network, Convolutional Neural Network etc. [37].  

The machine learning based classifiers that can be used 

for text classification are: 

(a) Naive Bayes classifier [38, 39] - It uses the Bayes 

theorem to predict values. This algorithm is good for 

multi-class classification. Consider a data point x, in a 

multi-class scenario with three classes- A, B and C. 

Using Naïve Bayes, we try to predict whether the data 

point x belongs to class A or B or C, by calculating its 

probability for the three classes as given in Eq. 1. 
 

𝑃(𝐴|𝐵) = (𝑃(𝐵|𝐴).𝑃(𝐴))/𝑃(𝐵) 

(1) 
This 󠇮algorithm 󠇮is 󠇮called 󠇮‘Naïve’ 󠇮because it assumes that 

all the features are independent of each other as defined 

in Eq. 2. 

 
𝑃(𝑓1 , 𝑓2, 𝑓3 … 𝑓𝑛) = 𝑃(𝑓1) = 𝑃(𝑓2) = ⋯ 𝑃(𝑓𝑛)  

                       (2) 
There are further two categories of the NB Classifier 

one is Gaussian NB Classifier and other one is   

multinomial NB Classifier. 

The Gaussian Naïve-Bayes classifier is used when a 

dataset has continuous values of data. It uses the 

Gaussian Probability Distribution function (values are 

centered on mean and as the graph grows, the values 

decrease). The Multinomial Naive Bayes algorithm 

assumes the independence of features, and the 

multinomial component of this classifier ensures that 

the distribution is multinomial in its features. 

 (b) Decision Tree [38] - It is a highly intuitive 

algorithm which uses greedy approach. To construct a 

decision tree, we have to perform the following steps – 

(1) select a feature to split the data, (2) select a method 

to split the data on the said feature. It has the internal 

working algorithm as: (i) Create/Select a node. (ii) If 

the node is pure, output the only class. (iii) If no feature 

is left to split upon, and the node is impure, output the 

majority class. (iv) Else find the best feature to split 

upon. Recursively call on this split. Go to b. 

(c) K-Nearest Neighbor [38, 40] - Consider a scenario 

where we have to predict to which class, the testing 

point belongs to, by considering all the features at once. 

Such is the working of KNN algorithm as shown in 

Figure 2. To predict the class of the testing data point, 

we check its vicinity. To classify the testing point, we 

 

Figure 2. KNN  

check a specific number of points (1, 3, 5, 7, etc.) and 

whichever class is in majority among those, that one is 
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predicted. To select the nearest point, we have to 

consider its distance from the other points. The distance 

metric can be (a) Manhattan distance, (b) Euclidian 

Distance, (c) Minkowski distance. 

(d) Random forest [38, 41] - It is an extension of the 

decision tree classifier. This algorithm uses multiple 

combinations of decision trees to accurately predict 

testing data. The random forest classifier overcomes 

the over-fitting problem of decision trees by building 

multiple decision trees and going with the majority 

result. 󠇮The 󠇮trees’ 󠇮outputs 󠇮vary 󠇮because 󠇮each 󠇮tree 󠇮is 󠇮built 󠇮

with random data and random features. To generate 

randomness in trees, we use two techniques- 

(i) 󠇮Bagging: 󠇮 If 󠇮we 󠇮 have 󠇮 ‘m’ 󠇮 data 󠇮 points, 󠇮we 󠇮 select 󠇮 a 󠇮

subset 󠇮of 󠇮‘k’ 󠇮out 󠇮of them. 󠇮For 󠇮‘n’ 󠇮trees, 󠇮n*k 󠇮subsets 󠇮are 󠇮

selected. Data points can be considered with 

replacement as the selection is random; therefore, these 

trees are called bag trees. 

(ii) Feature Selection: In the training phase, some 

features are selected at random in this technique, with 

the condition that the selection is performed without 

replacement. 

(e) SVM Classifier [38, 42] - It is a very powerful 

algorithm and overcomes the limitation of logistic 

regression. As logistic regression uses sigmoid 

function, the value predicted for a testing data point is 

close to 0.5. This causes the problem of incorrect 

prediction. So, SVM uses the rules of logistic 

regression only, but exponentially increases the value, 

so that the values predicted do not fall in the range (-1, 

1). 

 This cost function changes to the following equation 

in SVM as given in Eq.2.  

 
(𝜃) = 𝐶 ∑[ 𝑦(𝑖) 𝑐𝑜𝑠𝑡1 (𝜃𝑇𝑥(𝑖)) + (1 − 𝑦(𝑖)𝑐𝑜𝑠𝑡0(𝜃𝑇 𝑥(𝑖))] +

0.5 ∑(𝜃𝑖)2  

(3) 
(f) Logistic Regression [38]: It is a primitive 

classification algorithm which uses the sigmoid 

function as in Eq. 4 at its core to perform classification.  

𝐹(𝑥) =
1

1 + 𝑒−𝑥
 

(4) 
As the sigmoid has an exponential function, the graph 

moves exponentially either towards 0 or 1 with a slight 

change in x.  

The cost function of the binary logistic regression is 

given in Eq. 5. 
𝐸(ℎ(𝑥))= ∑(−𝑦𝑖 log (ℎ(𝑥)) − (1 − 𝑦𝑖) log  (1 − ℎ(𝑥))) 

(5) 

(g) Bagging Classifier [43]: A Bagging Classifier is an 

ensemble Meta estimating system that fits base 

classifiers in each of the random subsets of the original 

data sets and then combines their individual predictions 

to form a final prediction. Usually, such a meta-

estimator can be used to minimize the variance of a 

black-box estimator by randomization. 

4. Proposed Study 

The classification by Machine Learning algorithms is 

supposed to improve with the use of ontology. We aim 

to verify this fact by studying and comparing values of 

metrics such as accuracy, precision, recall and F1 score 

for ontology based text classification and conventional 

text classification.  

4.1. Conventional Text Classification 

In the conventional classification the framework had 

three main phases, (i) Dataset generation (ii) Model 

training and testing (iii) Analyzing/Classifying results 

as shown in Figure 3.  

1. 1. Dataset Generation: A premature knowledge 

database of disease-symptom associations was 

available on [45] which consist of three columns named 

as disease name, count of disease occurrence and the 

symptoms; however, it needed modification to be used 

for our research. Also some new information was 

added to the dataset so that matching could be done 

precisely. Thus the final dataset created, is the one that 

was used for this proposed research. The modified 

dataset and the ontology are compatible as they consist 

of 󠇮classification/output 󠇮feature 󠇮“disease 󠇮name” 󠇮and 󠇮the 󠇮

matching 󠇮 feature 󠇮 “disease 󠇮 description”. 󠇮 After 󠇮 the 󠇮

ontology and a working dataset were obtained, cleaning 

and preprocessing of the dataset was done, NLTK is 

used for processing the dataset. A synthetic dataset is 

also generated which involves creating new data using 

programming techniques. In this research we created 

multiple entries using the random feature value 

selection of same class. For example, consider a disease 

having 10 symptoms. We randomly select a subset of 

these 10 symptoms and generate a new entry for the 

dataset involving fewer symptoms and the disease 

name. This process helps to bind the symptom values 

to the disease and generate strong positive relation 

between feature values (symptoms) and class (disease).  

2. Model Training/Testing: This phase involves using 

dataset and applying machine learning classifiers to it. 
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As the dataset initially contains text keywords, it needs 

to be converted into numbers using count vectorizer 

module. After this the training data is ready for feeding 

to the classifier for training. The classifiers used are 

KNN, SVM, Logistic Regression, Decision Tree and 

Random Forest etc. After training we can use the model 

for predictions on testing data. The ratio of training and 

testing data is 80 and 20 respectively.     

2. 3. Analyzing/ Classifying Results: To analyze the 

results, we compare the disease predictions for the 

testing data with the actual disease class. After 

comparing we calculate the classification metrics like 

accuracy, precision, recall, F1-score. After this 

computation we can compare the performance of 

multiple classifiers based on metrics. Also we can 

verify which classes seem to perform well base on 

individual class-wise precision and recall values. 

 

Figure 3. Conventional Text Classification

4.2. Ontology Based Text 
Classification 

For the purpose of this research, we have used the 

Human Disease Ontology, which was hosted at the 

website for the Institute of Genome Sciences, 

Maryland School of Medicine [44]. This ontology is 

comprehensive hierarchical controlled vocabulary for 

human disease representation. It consists of unique 

label for each disease which acts as identifier. The 

owl file of the ontology was exported to csv file using  

Protégé.  We have presented a second phase between 

dataset generation and Model training/Testing, in 

which a hybrid approach for text classification is used  

 

to optimize it.  The presented methods/phases are: (i) 

Dataset generation, (ii) Ontology Matching (iii) 

Model Training and Testing iv) Analyzing and 

classifying results as shown in Figure 4 (b).  

The phases i, iii and iv are explained earlier in section 

4.1.  

Ontology Matching: In this phase the keywords 

formed from the description of the disease are 

matched with the keywords of ontology nodes. All 

the matched nodes are possible classes which can be 

used to create the subset of the data for efficient 

model training. The use of priority based matching 

helps us to further limit classes. In our research for 

ontology matching each keyword is assigned two 

numbers to specify its priority. The first number 

describes frequency of the keyword and second 

number describes whether the keyword can be 
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lemmatized or not. If it cannot be lemmatized it is 

assigned as 1 otherwise 0. Thus each keyword has 

syntax (name, first priority number, second priority 

number). The steps for ontology matching are given 

in Figure 4(a). 

Figure 4. (a) Ontology Matching (b) Ontology Based Text Classification  

Algorithm 1: Ontology Based Text Classification 

 
The Ontology matching function used in this Algorithm refers 

to Algorithm 4.2 

DOID: Disease Ontology  

data_x, data_t= synthetic_data_generation (Knowledge_base)

   // Phase1 

x_train, x_test, y_train, y_test =train_test_split (data_x, data_y) 

Ontology_tree= Loading_Ontology ()   

                    //Phase 2 

for i in range (1, len (Knowledge_base)) 

Keywords_for_matching =Keywords_formation 

(Knowledge_base)  

all_classes= set (data_y) 

for z in range (0, len (x_test)) 

keywords=keywords_selection (Keywords_for_matching, 

y_test[z]) 

possible_classes=Ontology_matching (tree, keywords) 

for i in range (0, len (possible_classes)) 

for j in range (0, len (all_classes)) 

if set (word_tokenize (possible _classes[i])). subset (set 

(word_tokenize (all_classes[j]))) 

final_classes. append(all_classes[j]) 

else 

continue 

for i in range (0, len(y_train)) 

 if y_train[i] in final _classes 

indices_to_use. append[i] 

  else 

  continue 

 reduced_x_train, reduced_y_train = reducing_dataset 

(x_train, y_train, indices_to_use) 

 

training_data = count_vectorizer.fit_transform (reduced. 

x_train)    //Phase 3 

testing_data = count_vectorizer. transform (x_test[z]) 

classifer.fit (training_data, reduced_y_train) 

prediction = classifier. predict(testing_data) 

predictions. append (prediction) 

accuracy_score = accuracy (predictions, y_test)  

    //Phase 4 

precision_score = precision (predictions, y_test) 

recall_score = recall (predictions, y_test) 

F1-score = F1-score (predictions, y_test)  

 

 

Algorithm 2: Ontology Matching 

 

def ontology_mathing (tree, keywords): 

        nodes_to_search= [] 

    found_nodes = [] 

    priority_1 = [] 

    priority_2 = [] 

    priority_3 = [] 

    for i in range (0, len (keywords)): 
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        if keywords[i][1]! = 1: 

            priority_1. append (keywords[i][0]) 

        else: 

            if keywords[i][2] == 1: 

                priority_2. append (keywords[i][0]) 

            else: 

                priority_3. append (keywords[i][0]) 

    priority_1_count = 0 

    priority_2_count = 0 

    priority_3_count = 0 

    for i in range (0, len(tree)): 

        priority_1_count = 0 

        priority_2_count = 0 

        priority_3_count = 0 

        for j in range (0, len(priority_1)): 

                if priority_1[j]. lower () in [x. lower () for x in tree[i]. 

keywords]: 

                    priority_1_count=priority_1_count+1 

                else: 

                    continue 

        for j in range (0, len(priority_2)): 

            if priority_2[j]. lower () in [x. lower () for x in tree[i]. 

keywords]: 

                priority_2_count = priority_2_count + 1 

            else: 

                continue 

        for j in range (0, len (priority_3)): 

            if priority_3[j]. lower () in [x. lower () for x in tree[i]. 

keywords]:                priority_3_count = priority_3_count + 1 

            else: 

                continue 

        if priority_1_count+priority_2_count+ 

priority_3_count>=1: 

                        found_nodes. append ((tree[i]. entity)) 

        else: 

            continue 

        classes= [] 

    for i in range (0, len(found_nodes)): 

        classes. append(found_nodes[i]) 

    classes=list(set(classes)) 

    # print(classes) 

    return classes 

5. Classification of Various Algorithms 
with and without Ontology 

 

Parameters used for evaluation and comparison of the 

model when used with ontology v/s when used 

without ontology is accuracy, precision, recall, and 

F1 score. 

Accuracy describes the intuitiveness achieved by a 

model after training. It takes into account all the 

correctly predicted observations from the list of all 

predictions. 

Accuracy = Number of correct predictions/ total 

number of Predictions 

Accuracy =  
TP+TN

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 

 

Precision- Sometimes, a classifier may label a class 

as true for classification of some raw data, when in 

fact, it should have been false. This is the case of a 

false positive. Precision takes into account the false 

positives as well.  

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Recall- When a classifier marks a class as negative 

for an unobserved data item, when in fact, it 

should’ve 󠇮been 󠇮true, 󠇮 it 󠇮 is 󠇮a 󠇮case 󠇮of 󠇮a 󠇮false 󠇮negative. 󠇮

Recall accounts for the sensitivity of a model by 

taking into account the false negatives. 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

F1 Score is the weighted average of Precision and  

Recall. Therefore, it factors in false positives as well 

as false negatives. In case of an uneven class 

distribution, F1 score becomes more important than 

accuracy. Other times, when false negatives and 

positives have the same cost, accuracy may be treated 

as the superior evaluation parameter. 

F1 Score = 
2∗(𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
 

Where TP- True Positive 

 TN- True Negative 

 FP- False Positive 

 FN- False Negative 

In reference to the Table 1, the values of the metrics 

Accuracy, Precision recall and F1-score have the 

same magnitude. This is due to the fact that the FP & 

FN values are same in magnitude as there is less 

number of records per disease. This results in an 

equal value of precision, recall, F1-score for each 

class as shown in Table 2. 

It can also be observed that decision tree classifier 

shows the highest boost in accuracy, precision, recall 

and F1 score being 0.75 for simple classification, and 

0.85 for ontology based classification. There is a 10% 

improvement in metrics for 500 test cases and 6% for 

100 test cases for decision tree classifier. It is 

followed by the KNN Classifier, which shows the 5% 

improvement for both 100 & 500 test cases. Rest 

other classifiers have shown improvement in metrics 

of around 1% - 3% as shown in Table 1.  
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Table 1 
 Comparison Table for different classifiers based on ontology and without ontology 100 & 500 Test Cases 

Classifier Parameter 100 Test Cases 500 Test Cases 

  Without 
Ontology 

With Ontology Without 
Ontology 

With Ontology 

Naïve-Bayes Accuracy 0.98 1.0 0.97 0.978 

Precision 0.98 1.0 0.97 0.978 

Recall 0.98 1.0 0.97 0.978 

F1 Score 0.98 1.0 0.97 0.978 

Decision Tree 
 

Accuracy 0.74 0.80 0.758 0.852 

Precision 0.74 0.80 0.758 0.852 

Recall 0.74 0.80 0.758 0.852 

F1 Score 0.74 0.80 0.758 0.852 

KNN 
 

Accuracy 0.81 0.86 0.818 0.854 

Precision 0.81 0.86 0.818 0.854 

Recall 0.81 0.86 0.818 0.854 

F1 Score 0.81 0.86 0.818 0.854 

Random Forest 
 

Accuracy 0.96 0.97 0.932 0.952 
Precision 0.96 0.97 0.932 0.952 

Recall 0.96 0.97 0.932 0.952 
F1 Score 0.96 0.97 0.932 0.952 

SVM 
 

Accuracy 0.98 1.0 0.986 0.992 

Precision 0.98 1.0 0.986 0.992 

Recall 0.98 1.0 0.986 0.992 

F1 Score 0.98 1.0 0.986 0.992 

Bagging Accuracy 0.87 0.89 0.894 0.912 

Precision 0.87 0.89 0.894 0.912 

Recall 0.87 0.89 0.894 0.912 

F1 Score 0.87 0.89 0.894 0.912 

Logistic 
Regression 

Accuracy 0.99 1.0 0.982 0.99 

Precision 0.99 1.0 0.982 0.99 

Recall 0.99 1.0 0.982 0.99 

F1 Score 0.99 1.0 0.982 0.99 

Table 2 
Values of Precision, recall & F1-score for SVM classifier for each class 

Diseases Precision Recall F1-Score 

Alcohol Dependence 1.0 1.0 1.0 
Influenza 1.0 1.0 1.0 
Neoplasm 1.0 1.0 1.0 

Hernia 1.0 1.0 1.0 
Fibrous Tumor 1.0 1.0 1.0 
Osteomyelitis 1.0 1.0 1.0 
Pancreatitis 1.0 1.0 1.0 
Cholecystitis 1.0 1.0 1.0 

Pneumocystis 1.0 1.0 1.0 
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Dysphagia 1.0 1.0 1.0 
Psychotic disorder 1.0 1.0 1.0 

Hepatitis C 1.0 1.0 1.0 
Cerebrovascular Disease 1.0 1.0 1.0 

Depression 1.0 1.0 1.0 
Hepatitis 1.0 1.0 1.0 

Hypothyroidism 1.0 1.0 1.0 
Hepatitis B 1.0 1.0 1.0 

Arthrogryposis 1.0 1.0 1.0 
Manic Disorder 1.0 1.0 1.0 

Tonic-clonic Seizures 1.0 1.0 1.0 
Migraine 1.0 1.0 1.0 
Anxiety 1.0 1.0 1.0 

Hepatocellular Carcinoma 1.0 1.0 1.0 
Asthma 1.0 1.0 1.0 

Congestive Heart Failure 1.0 1.0 1.0 
Hypertensive 1.0 1.0 1.0 

Chronic Kidney 1.0 1.0 1.0 
Cirrhosis 1.0 1.0 1.0 

Blood Coagulation 1.0 1.0 1.0 
Melanoma 1.0 1.0 1.0 

Lymphatic System Disease 1.0 1.0 1.0 
Dependence 1.0 1.0 1.0 

Bipolar Disorder 1.0 1.0 1.0 
Candidiasis 1.0 1.0 1.0 

Hypoglycemia 1.0 1.0 1.0 
Sinus Tachycardia 1.0 1.0 1.0 

Transient Cerebral Ischemia 1.0 1.0 1.0 

 
The order of classifier w.r.t its magnitude is as follows:  

 

The bagging classifier follows next with the values of the 

parameters being 0.87 each in simple text classification, 

and 0.89 in ontology based classification. Random Forest 

Classifier comes next, as it shows the values of the 

parameters as 0.96 and 0.97 in each classification case. 

Naïve-Bayes Classifier and the SVM classifier have the 

same values of all the parameters as 0.98 for simple 

classification and 1.0 for ontology based text 

classification. Now we will come to Logistic Regression, 

which can be labelled as best classifier with the values of 

metrics as 0.99 for simple Text classification while 1.0 for 

ontology based text classification. There is minute 

difference in the value of metrics of these classifiers. Also 

the order of the increasing accuracy of various classifiers 

(with or without using ontology) goes on as: 

 Decision Tree Classifier < KNN Classifier < 

Bagging Classifier < Random Forest Classifier < 

Naïve Bayes Classifier < SVM classifier < Logistic 

Regression. 

 

6. Conclusion and Future Scope 

In this paper, the observations show that the ontology 

based classification stands at a higher level than the 

classification without ontology. The general pattern 

indicates towards a more accurate and precise 

classification using an ontology. All the parameters that 

were used (accuracy, precision, recall, and F1 Score) 

showed an elevation of 1% to 3% when the classification  

was done with the help of ontology. It can be deduced that 

using the ontology increased the efficiency of 

classification. This advantage can be attributed to the fact 

the number of possible classes for classification reduced 

while, in turn, reduces the time taken for training purpose. 

The results also indicate towards a more comparable 

accuracy level amongst the classifiers when the ontology 
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was used. his study, while proving the importance and 

benefits of ontology, still has a lot of scope for future 

improvements. Future work is needed to improve the 

dataset of diseases used in this project, as there was no 

official dataset available for the human disease ontology. 

Most of the work has been done on a limited dataset 

obtained from converting the available ontology into a 

dataset. There is also a need to optimize the code used for 

ontology matching after the data preprocessing has been 

done. One could also move on from machine learning 

towards deep learning and build a neural network for this 

dataset to further improve the results of the classification 

in the future. 
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