
Ontology Versioning Framework for Representing Ontological
Concept as Knowledge Unit

Archana Patela and Sarika Jainb

a Institute of Computer Science, Freie University Berlin, Berlin, Germany
b Department of Computer Applications, National Institute of Technology Kurukshetra, Haryana, India

1. Introduction

Ontology is widely used for sharing the

information. A classical ontology comprises

classes, instances, axioms and properties. These

properties can be data property (relate a class

with data value) and object property (relate two

classes with each other) [1]. In opposite to

classical ontology, a realistic ontology comes

into the scenario where every concept is stored

as a knowledge unit by comprising classes, set

of defining properties (that define the concept

uniquely or distinguish it with others), set of

cancellable properties (that may or may not true

for the concept), set of exceptions, UNK (used

to complete the concept), instance and axioms

[2]. Ontology changed over the time according

to the need of the application that generates

different version of the same ontology.

Ontologies undergo changes due to one or all of

the following reasons:

• Changes in the domain

• Adaptations to different applications.

• Changes in the conceptualization or

understanding of the domain.

• To correct errors

• Catering the ontology to a new

phenomenon

Ontology versioning implies that an

ontology has various variants. In fact, these

variants frequently drive from modifications to

an existing variant of the ontology and thus

build a derivation tree [3]. Klein et al. [4]

describe ontology versioning as a process that

manage the ontology changes and their effects

by maintaining and creating diverse variant of

the ontology. Ontology versioning maintains

the synergy between different versions of the

ontology that creates at the same time.

Ontologies have a general tendency to have

more changes the earlier they are in their

lifecycle. Modularized ontologies generally

change asynchronously, i.e., without changes in

a module may begin waiting for the changes in

some another module to commit. There are two

categories of changes. One affecting the TBOX

i.e., the ontology and the other affecting the

ABOX i.e., the content. Table 1 lists some

Abstract
Nowadays ontologies are used in everywhere and provide a reusable piece of knowledge about a

specific domain. However, those pieces of knowledge are not static and change over the time in

order to fulfil the requirements of the different task. So, it is essential that changes in ontologies

should be managed very well. Ontology versioning mechanism is used to keep the track of the

ontology changes via making the relationship with previous version of the ontologies. Many

ontologies encode reality by representing ontological concept as a knowledge unit. Till the date,

no work has been started towards to solve the ontology versioning problem when ontological

concept store based on the idea of knowledge unit. To overcome this problem, we present an

ontology versioning framework which is capable to maintain the relationship among different

version of ontology explicit. We show operational analysis of the proposed work for the better

understanding about ontology versioning framework.

Keywords

 Versioning, knowledge Unit, Annotation, Ontology

ISIC’21: International Semantic Intelligence Conference, February
25-27, 2021, New Delhi, India

archanamca92@gmail.com (A. Patel); jasarika@nitkkr.ac.in

(S.Jain)

©️ 2021 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

CEUR WorkshopProceedings (CEUR-WS.org)

0000-0002-7505-7226 (A.Patel); 0000-0002-7432-8506 (S.Jain)

mailto:archanamca92@gmail.com
mailto:jasarika@nitkkr.ac.in

example of Ontology changes and some

example of content changes.

Table 1

Changes in Ontology
T-Box

1. Changes in Hierarchy: Adding/removing a

class or property, Merging two classes or

properties, Splitting a class into two classes.

2. Changes involving Classes: Renaming a

class, Changing label, comment or

cardinality of a class, Changing or removing

parent, Adding/removing a child,

Adding/removing a property to/from a class.

3. Changes involving Properties: Renaming a

property, Changing the domain/range/sub-

property, reference/label/comment of a

property.

4. Other change types: Property

characteristics, Equality or inequality,

Restricted cardinality, Union or intersection.

A-Box

1. Changes involving instances: Renaming

an instance, Changing annotation of the

instances, Adding or removing instances,

Adding/removing properties and their

values.

2. Changes involving properties: Renaming a

property, Changing the domain/range/sub-

property, reference/label/comment of a

property

When knowledge managers locate the changes

between different versions of an ontology, we

call it comparing the two ontologies as opposed

to versioning the two ontologies. Why

Versioning Systems are required?

• Implementing FAIR vocabularies: It is

one of the best practices for

implementing FAIR vocabularies and

ontologies on the web.

• Backward Compatibility: The tools

that work with older versions of the

ontologies are functioning in new

versions too.

• Resolving semantically (than

syntactically): If conceptual relations

between different versions are

constructed, it becomes possible to re-

interpret the data and knowledge under

different ontology versions.

• Require changes in application logic:

Applications need to update their logic

to reference the new ontology. If the

ontology change has a non-dynamic

response, it may affect the use of these

ontologies by higher level applications.

Klein et al. [4] describe the various

requirements on an ontology versioning

framework that are useful to create different

versions of internal ontologies: Identification (a

versioning framework should provide/identify

the concept or relation in an unambiguous

manner), Change specification (versioning

framework should be able to make the

relationship explicitly from one version of the

concept with other versions), Transparent

evolution (versioning methodology on the web

should make clear which part of the data can

still be valid interpreted), Task awareness (a

framework should exhibit the behavior or task

that helps in providing the transformations

between different versions), Tackle to untraced

changes (a versioning framework should able to

determine whether two versions of an ontology

are compatible or not). The key problems of

ontology versioning are (1) how to check (track

and detect) ontology changes, (2) how to

distribute (release) new versions of ontologies,

(3) how to merge different versions of an

ontology [5].

In order to reduce these problems, the

versioning information is encoded at meta level

and term level but still there is a requirement to

develop sophisticated versioning mechanisms

to incorporate ontology changes. In this paper,

we focus on “how to encode versioning

information in an ontology when ontological

concept is stored as a knowledge unit”. The

remaining paper is presented as given below:

section 2 shows the literature of the versioning

information, section 3 describes the ontology

versioning framework for the realistic

ontology, section 4 resembles the operational

analysis for the storage of versioning

information along with the comparison with

existing work and last section concludes the

proposed work.

2. Literature

Ontology versioning is required in order to

handle ontology changes. The challenges and

research opportunities of ontology versioning

are:

• Two ontologies with different text

serializations may be conceptually the

same. The difference in text representations

may be due to different storage syntax or

due to different order of definitions.

• Distributed authoring and management (to

identify versions of an ontology in

distributed environments).

• Application-level dependencies need to be

considered.

• To specify change logs between ontology

versions explicitly.

• Identify additional ontology changes

The first approach for ontology versioning is

proposed by Klein and Stojanovic [6] but the

problem was unavailability of the standard

ontology versioning system like CVS that use

in software development field. The versioning

information has been encoded at the meta level

and term level. The meta level versioning

information describes the meta detail of the

ontology and term level versioning information

describes the detail of every terms that are

stored in ontology. The versioning information

is stored by using different tags that available

under the different namespace like /terms/,

/elements/1.1/ etc [7]. The following tags are

used at the meta level and term level for the

storage of versioning information:

Meta Level Tags: Ontology uses IRI to

identify the ontology and owl:versionIRI is

used to identify the specify version of the

ontology. dc:contributor is used to define the

responsibility of the entity that make

contribution to the resources. terms:license

offers official permission to work with the

resource. dc:description describes the

resources. dc:title assigns the name to the

resources. dc:creator describes the entity which

is responsible for making the resources.

dc:publisher offers the available resources.

dcterms:modified updates the date according to

the status of the resource. dc:language describes

the language of the given resources.

oboInOwl:date tells the date which is

associated with the event. dcterms:issued

describes the issuance date of the resources.

dcterms:bibliographicCitation provides

bibliographic reference of the resource.

Term Level Tags: The annotation property

is used for the storage of the term level

versioning information. hasVersion, Issued,

Modified, Replaces, Status, date, created_by,

versionInfo, creator, contributor, terms, author,

priorVersion, backwardCompatibleWith and

incompatibleWith etc can be created under the

annotation property in order to store the

appropriate detail of each entity. Deprecation is

a feature which is used to deprecate the term

(deprecating a term means that term will not use

in new document). We can deprecate classes

and properties according to the needs.

For example, Biological Collections

Ontology (BCO) [8] has store owl:versionIRI,

dc:contributor, terms:license at the meta level

and annotation properties namely hasVersion,

Issued, Modified, Replaces, Status has been

created in order to stored term level versioning

information. The versioning information of

class Taxon has hasVersion:

http://rs.tdwg.org/dwc/terms/history/#Taxon-

2014-10-23, Replaces:

http://rs.tdwg.org/dwc/terms/Taxon-2009-09-

21, Status: recommended, Issued: 2008-11-19,

Modified: 2014-10-23. Deprecated property is

used to deprecate the class BCO-0000061.

Different portals stored the versioning

information of the terminologies or ontologies

by using different tag and annotation properties.

The meta level versioning information is

encoded under the <owl:ontology> tag that can

be easily seen if an ontology file is opened into

notepad. The term level versioning information

can be easily seen if you open the ontology in

the protege tool or any other tool. In the

protege, after clicking the concept, all

information of that concept is shown under the

annotation properties. The most widely used

ontology portals are Bio Portal, Agro Portal,

OBO lib, AberOWL repository and ontology

lookup services.

• Ontology Versioning in Bio Portal [9]:

Bioportal uses the indexing mechanism in

order to support ontology versioning. A

stable ontology identifier is used to index

the ontology and each versions of an

ontology is indexed with version identifier.

The version identifier changes from one

version to another when new version of an

ontology is derived. The web services use

the ontology and its versions by ontology

identifier and version identifier

respectively.

• Ontology Versioning in OBO lib: The URI

is used in the OWL language to identify all

the entities of an ontology like classes,

instances and ontology itself. The

permanent URL (called PURL) of an

ontology with standard base prefix [10] are

used in OBO repository of ontologies in

order to check if new versions of an

ontology are updated and the tools are still

https://terminologies.gfbio.org/terminology/?ontology=BCO
https://terminologies.gfbio.org/terminology/?ontology=BCO
http://rs.tdwg.org/dwc/terms/history/#Taxon-2014-10-23
http://rs.tdwg.org/dwc/terms/history/#Taxon-2014-10-23
http://rs.tdwg.org/dwc/terms/Taxon-2009-09-21
http://rs.tdwg.org/dwc/terms/Taxon-2009-09-21

functioning that support older versions of

an ontology. OBO uses versioning system

where each version of an ontology has a

unique identifier either in form of metadata

tags and date or numbering system [11].

• Ontology Versioning in Agro Portal [12]:

AgroPortal supports ontology versioning

by utilizing the concept of ‘submission’. A

‘submission’ object is attached with an

ontology when the same ontology has been

uploaded in the portal. Whenever an

ontology is uploaded or pulled from its

original location then every time a new

submission object is created.
• AberOWL Repository: It is a framework

that provides ontology-oriented access of

the biological data [13]. The framework

contains repository of the ontologies that

are related to the biological data, set of web

services, various frontends and provide

reasoning over the stored ontologies. The

versioning information is encoded at the

meta and term level by using various

ontology tags.

• Ontology Lookup Services (OLS): It

provides single point access to the latest

version of the biomedical ontologies from

the repository [14]. OLS shows ontology

history in order to describes the changes

that occurs in different version of an

ontology by calculating various parameters

like add classes, add level, add synonyms,

add definition, delete definition etc.

Available portals stored the classical

ontologies and encode the versioning

information inside itself. The main problem for

the storage of the versioning information inside

the classical ontology is how to deprecate the

term/resources, how to use same syntax for

creation of the versioning properties under the

annotation. The process of storing the

versioning information inside the realistic

ontology is not cover yet. Here our focus is to

present the versioning framework for the

realistic ontology where every concept is

represented as a whole. It is a first attempt to

show the encoding of the versioning

information inside realistic ontology.

3. Ontology Versioning Framework

The realistic ontology in accordance with the

present subject matter represents rule,

exception, and hierarchy of concepts to offer a

realistic description of the real-world entities. A

node or a unit of knowledge (UoK) to represent

a knowledge packet takes the form of the

following tuple [15]:

𝐃 [𝐓𝐄, 𝐀𝐄, 𝐕𝐄, 𝐏𝐄](𝝎) =< 𝑫𝑭(𝜸), 𝐂𝐅, 𝐂(𝜹), 𝐆, 𝐒, 𝐈 >

 (1)

TE, AE, VE, PE are the textual encryption,

audio encryption, video encryption and

pictorial encryption of the

class/concept/decision D respectively. DF, CF

and C are the distinctive features, cancellable

features and exceptions of the

class/concept/decision D respectively. G and S

are the general and specific

class/concept/decision. The parameters

γ, δ, and ω represents 0-degree, 1-degree and 2-

degree of the strength of the

class/concept/decision. I represents instances of

the class/concept/decision D that takes

following form [16]:

𝐈 [𝐓𝐄, 𝐀𝐄, 𝐕𝐄, 𝐏𝐄] = < 𝑫𝑭, 𝐂𝐅, 𝐒𝐃, 𝐓𝐃 > (2)

SD and TD are the spatial and temporal

details of the instance I respectively. The below

mentioned RDF/XML codes show the storage

of distinctive feature (distinctive feature

‘nature’ of the class ‘Emergency’ with value

‘sudden’), cancellable feature (cancellable

feature ‘hasWarning’ of concept ‘Emergency’

with a default value ‘no’) and instance (spatial

and temporal information of an instance

‘Agartala_2008’ of the concept ‘Emergency’) in

the realistic ontology. All the distinctive and

cancellable features are encoded by creating

‘DistinctiveFeatures’ and

‘CancellableFeatures’ properties; the SD and

TD information about the instances are stored

by creating ‘SpatialInfo’ and ‘TemporalInfo’

properties under the annotation properties.

The versioning framework for the realistic

ontology is presented in figure 1. In the realistic

ontology, we need to store the versioning

information about the classes and properties

(distinctive and cancellable features) but do not

need to store this information for the instances

because all the instances are already stored with

TD and SD in realistic ontology. TD and SD

show the temporal details (time and date) and

spatial detail (space of the instance) of the

Corresponding instances. In case, when we

want to store more information about the

instances like creator, contributor, saved-by and

many more then we follow the same process as

describes in section 4 for the classes. All the

knowledge about the instances refer to the

assertional knowledge and subject to the A-

Box. The knowledge about the classes and

relations refer to the terminological knowledge

and subject to the T-Box. They both together

form the knowledge base.

Figure 1: Versioning Framework for the Realistic Ontology

4. Operational Analysis

The entities of an ontology are subject to the

change and these changes occur at the meta

level and term level (within the ontology). The

meta level change updates the meta information

of an ontology like versionIRI, contributor,

license and etc. The term level change includes

classes, properties or features and instances.

These changes provide different version of the

same ontology. This section shows, how to add

term level (classes, properties and instances)

versioning information in the realistic ontology.

The storage of meta level versioning

information inside the realistic ontology is

similar to the classical ontology.

A. Storage of Versioning Information for

the Classes: We use annotation properties

for the storage of versioning information

about the classes as similar to the classical

ontology. The below mentioned RDF/XML

code shows the versioning information

namely ‘Contributors’, ‘Creator’,

‘DateTime’ and ‘Status’ about the class

‘Emergency’. The screenshot attached as

figure 2 (a) shows the protégé tool for the

storage of versioning information about the

class ‘Emergency’.

B. Storage of Versioning Information for

the Properties: The distinctive and

cancellable features (properties) of the

classes are stored by creating properties

‘DistinctiveFeatures’ and

‘CancellableFeatures’ under annotation

property. We annotate all the

‘DistinctiveFeatures’ and

‘CancellableFeatures’ properties for the

storage of versioning information. The

below mentioned RDF/XML code shows

the versioning information namely

‘Contributors’, ‘Creator’, ‘DateTime’ and

‘Status’ about the distinctive feature

‘nature’ that value is ‘sudden’ for the class

‘Emergency’. Figure 2(b) shows the

screenshot of the protégé tool for the

storage of versioning information about the

distinctive feature ‘nature’ that value is

‘sudden’ for the class ‘Emergency’.

C. Storage of Versioning Information for

the Instances: All the instances are already

stored with spatial and temporal details in

the realistic ontology. There no need to

store this information again. But for the

storage of the rest of the versioning

information like creator, contributors,

status etc, we use annotation property. The

below mentioned RDF/XML code shows

the versioning information namely

‘Contributors’, ‘Creator’, and ‘Status’

about an instance ‘Agartala_2008’ of the

class ‘Emergency’. Figure 2 (c) shows the

screenshot of the protégé tool for the

storage of versioning information about the

instance ‘Agartala_2008’ of the class

‘Emergency’.

By the above-described way, we incorporate all

the changes inside an ontology that create

different version of an ontology. Now, every

concept in the realistic ontology contains all the

information about the entity that helps to

understand the different version of an ontology.

There is no need to store the spatial and

temporal information about the instances as

they already contained in the information while

entering the systems.

Figure 2: Screenshot of the Protégé Tool for

the Storage of Versioning Information (a) Class

‘Emergency’ (b) Distinctive Feature ‘nature’

(c) Instance ‘Agartala_2008’

(a) (b)

(c)

5. Conclusion

Ontology versioning is a mechanism to store

and identify different versions of the same

ontology. It can be achieved when user has

complete information about the entities used in

ontology. Ontology versioning information is

encoded at the meta and term level by using

different tags. The process to store versioning

information inside the classical ontology is

shown by various ontology portals/repositories.

But how to store versioning information in the

realistic ontology is not being covered yet. In

this paper, we present the versioning

framework for the realistic ontology that assists

users to easily analyze the different version of a

realistic ontology. We have shown RDF/XML

code and screenshot of the protégé tool for the

demonstration of the proposed versioning

framework. In future, we will work to deprecate

the entities and to reduce the problem of storing

Versioning information related with the entity

inside a realistic and classical ontology.

References

[1] D. Kumar, A. Kumar, M. Singh, A. Patel,

S. Jain, An online dictionary and

thesaurus. Journal of Artificial Intelligence

Research & Advances, (2019), 6(1), 32-38.

[2] S. Jain, A. Patel, Smart Ontology-Based

Event Identification. In 2019 IEEE 13th

International Symposium on Embedded

Multicore/Many-core Systems-on-Chip

(MCSoC) (2019), pp. 135-142), IEEE.

[3] M. C. Klein, D. Fensel, Ontology

versioning on the Semantic Web.

In SWWS (2001), pp. 75-91.

[4] M. Klein, A. Kiryakov, D. Ognyanoff, D.

Fensel, Finding and specifying relations

between ontology versions. In Proceedings

of the ECAI-02 (2002), Workshop on

Ontologies and Semantic Interoperability.

Lyon , pp. 442-456.

[5] M. Klein, D. Fensel, A. Kiryakov, D.

Ognyanov, Ontology versioning and

change detection on the web.

In International Conference on Knowledge

Engineering and Knowledge Management

(2002), pp. 197-212. Springer, Berlin,

Heidelberg.

[6] M. C. A. Klein, Change management for

distributed ontologies, (2004).

[7] DCMI Metadata Terms, URL:

https://www.dublincore.org/specifications/

dublin-core/dcmi-

terms/#http://purl.org/dc/terms/bibliograph

icCitation

[8] R. L. Walls, J. Deck, R. Guralnick, S.

Baskauf, R. Beaman, S. Blum, M. A.

Gandolfo, Semantics in support of

biodiversity knowledge discovery: an

introduction to the biological collections

ontology and related ontologies

(2014), PloS one, 9(3), e89606.

[9] N. F. Noy, N. H. Shah, P. L. Whetze, B.

Dai, M. Dorf, N. Griffith, M. A. Musen,

BioPortal: ontologies and integrated data

resources at the click of a mouse. Nucleic

acids research, (2009), W170-W173.

[10] Version Control,

URL: https://en.wikipedia.org/wiki/Versi

on_control

[11] OBO Foundry, URL:

http://www.obofoundry.org/principles/che

cks/fp_004

[12] C. Jonquet, A. Toulet, E. Arnaud, S.

Aubin, E. D. Yeumo, V. Emonet, P.

Larmande, AgroPortal: A vocabulary and

ontology repository for agronomy.

Computers and Electronics in Agriculture

(2018), 144, 126-143

[13] Aber OWL, URL: http://aber-

owl.net/about/

[14] OLS Ontology Search URL:

https://www.ebi.ac.uk/ols/ontologies

[15] A. Patel, S. Jain, A Novel Approach to

Discover Ontology Alignment, Recent

Advances in Computer Science and

Communications (2020,) 13: 1, Doi:

https://doi.org/10.2174/266625581366619

1204143256

[16] A. Patel, S. Jain, S. K. Shandilya, Data

of Semntic Web as Unit of

Knowledge. Journal of Web Engineering

(2018), 17(8), 647-674.

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/bibliographicCitation
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/bibliographicCitation
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/bibliographicCitation
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/bibliographicCitation
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Version_control
http://www.obofoundry.org/principles/checks/fp_004
http://www.obofoundry.org/principles/checks/fp_004
http://aber-owl.net/about/
http://aber-owl.net/about/
https://www.ebi.ac.uk/ols/ontologies
https://doi.org/10.2174/2666255813666191204143256
https://doi.org/10.2174/2666255813666191204143256

