
172

An Algorithmic Representation of the Syntax Diagram of a
Computer Programming Language

Anichebe Gregory Emeka

University of Nigeria, Nsukka, Enugu State, Nigeria

Abstract

Every programming language has its own syntax rules. Such rules can be represented with either the Backus-Naur
form (BNF) notation or with a Syntax diagram (also called a Railroad diagram). BNF uses text-based mathematical
notations for defining those rules, while a Syntax diagram employs a graphical approach. Converting any of the
two techniques to an algorithm or computer program is somewhat difficult for students due to the recursive
expressions used by each of the techniques in defining the syntactic rules of a grammar. The aim of this work is
therefore to showcase how an algorithm for one of such techniques (namely, a syntax diagram) can be written for
easy understanding and implementation with a computer. A Finite State automata (FSA) approach was adopted by
the researcher for modelling any given grammatical rule of a programming language for easy implementation with
a computer. The grammatical rules for generating an integer number was arbitrarily selected by the researcher,
amongst other rules, for formulating the required algorithm. The algorithm (which is a pseudocode) was written
to be in tandem with the FSA model for easier understanding and programming. Results showed that when the
pseudocode is implemented with a computer with some trial data, every data that conformed with the
grammatical rules for generating integer numbers was accepted as ”valid integer”, while other incoherent ones
were declared “invalid integer”. This helps in smoothening the understanding of students of any rigorous or
recursive problem for easy implementation with a computer.

Keywords
Backus-Naur form (BNF), Syntax diagram, Algorithm, Computer program, Finite State automata (FSA), Recursion

1. Introduction
A Backus-Naur form is a notation used in the
field of Computer Science to express the syntax
of a programming language [1]. The expression
contains a list of all the rules that defines a
particular grammar of a programming language.
The three basic symbols used by the BNF are:

::= (which means, “is defined as”)
| (which means, “Or”)
< > (angular brackets that contain
a category name)

For instance, to use the BNF to define the
grammatical rules for generating an unsigned
integer number, we have the following
structure:

ISIC’21: International Semantic Intelligence Conference,
February 25-27, 2021, Delhi, India

EMAIL: gregory.anichebe@unn.edu.ng (A.G)

ORCID: 0000-0003-4057-6277 (A.G)

© 2020 Copyright for this paper by its authors. Use permitted
under Creative Commons License Attribution 4.0 International
(CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

<pinteger> ::= <no>
<no> ::= <digit><no> | <digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 1: The BNF definition for unsigned integer
number

In plain English, the first line of figure 1 states
that an unsigned integer, <pinteger>, is defined
as a number, <no>. The second line contains
two rules which state that: (i) <no> is defined as
<digit> followed by <no> , or (ii) <no> is
defined as <digit>. The third line contains 10
rules which state that <digit> is defined as ‘0’ or
‘1’ or ‘2’ or ‘3’ or ‘4’ or ‘5’ or ‘6’ or ‘7’ or ‘8’ ‘9’.
The above grammar contains a total of 13 rules.
Each rule has a left part and a right part. The
‘left part’ defines the ‘right part’. Any symbol
appearing on the left part (or both parts) of a
rule is called a non-terminal symbol, while any
symbol that appears only on the right part (but
not on both parts) of a rule is called a terminal
symbol. In other words, the terminal symbols
are the sentences (or string) that can be derived
from a grammar. The first non-terminal symbol
is called the start symbol. All generation of
sentences of a grammar commences from the

CEUR

http://ceur-ws.org

Workshop
ISSN1613-0073

Proceedings

mailto:gregory.anichebe@unn.edu.ng
http://ceur-ws.org/
http://ceur-ws.org/
http://ceur-ws.org/
http://ceur-ws.org/

173

start symbol. In figure1, the start symbol is
<pinteger>. According to [2],

The Backus-Naur Form is a way of
defining syntax. It consists of
• a set of terminal symbols
• a set of non-terminal symbols
• a set of production rules of the form,
Left-Hand-Side ::= Right-Hand-Side
where the LHS is a non-terminal symbol
and the RHS is a sequence of symbols
(terminals or non-terminals).

In figure1, the set of non-terminal symbols are,
{<pinteger>, <no>, <digit>}, while the set of
terminal symbols are, {0,1,2,3,4,5,6,7,8,9}. The
grammar contains a recursive definition of how
to generate an unsigned integer number, as
shown in the second line of the grammar. Such
recursive expression appears somewhat difficult
for an ordinary person to easily understand, not
to talk of converting it to an algorithm or
computer program. According to William [3],
recursion is often regarded as a deep mystery by
novices in mathematics or computing, and so
aught to be reserved for more advanced courses.
The same recursive scenario occurs when the
grammar of figure 1 is represented with a
syntax diagram, as shown in figure 2.

Figure 2: The syntax diagram definition for an unsigned
integer

A ‘parse tree’ shows how valid (or invalid)
sentences can be derived (or non derivable)
from a grammar, as shown in figure 3 and figure
4, respectively for the derivation of the string,
614 and 2T from the grammar defined in figure
1 (using BNF) or figure 2 (using syntax

diagram).

Figure 3: The string, 614 is derivable from the grammar,
and is therefore a valid integer

Figure 4: The string, 2T is not derivable from the
grammar because the symbol, T is not defined;
therefore the string is an invalid integer

Figures 3 and 4 show the various recursive
steps required for validating a sentence of a
grammar. The question now is, “How can such
steps be easily implemented programmatically
with a computer?” This forms the basic research
question for this work, and of which a solution
to it is expatiated in section 3 under
“Methodology”.

2. Literature Review

In Computer Science, recursion is typically used
for solving problems that involve recursive
relations (such as the generation of integer
numbers shown in figure 1 and figure 2 of
section1). According to [3], “The concept of
recursion comes from mathematics where we
often encounter recursive relations”. For
example, consider the problem of raising a real
number, X, to an integer power, N. The problem
can be solved recursively by stepwise

 <no>

<pinteger>

 <no>

 <digit>

<digit>

 2 T?

<pinteger>

<no>

 <digit> <no>

 <digit> <no>

 <digit>

 6 1 4

<no> <pinteger>

<no> <digit>

<digit>

<no>

0

1

2

3

4

5

6

7

8

9

<digit>

174

refinement (i.e. breaking a problem down into
simpler computational parts), as shown in table
1.

Table 1: Evaluation of XN by recursion

Problem Recursive process Step

XN X . (XN – 1) 1

 X . X . (XN – 2) 2

 X . X . X . (XN – 3) 3

 etc. etc.

Thus, each recursive step is a simpler version of
the initial problem. The process continues until
a termination point is reached (i.e. X0 = 1 in the
above example) where no further recursive
process occurs, and the final result then
determined by backward substitution. The
above problem can be solved programmatically
using a Java function as follows:

public static double power(double X, int N)
{

 if(N = = 0)
 {
 return 1.0;
 }
 else
 {
 return X * power(X, N-1);
 }
}

Figure 5: A Java function code for evaluating the
function, XN, recursively

Thus, we can see that, recursion is a process of
breaking a computation down in such a way that
a simpler computation of the same kind with the
previous problem is derived, and the
decomposition process continues until a trivial

stage is reached. Simply put, [4] explains that,
“Recursion is a process whereby a function calls
itself inside its body for the execution of a task
until a base case is reached”. The beauty of
recursion is that it presents a clearer, intuitive,
and simpler solution to a problem which would
have been very difficult or too clumsy to solve
through other means [5]. For instance, a popular
mathematical puzzle called ‘The towers of
Hanoi’ can be easily solved with recursion, as
elegantly illustrated by [5], [3], and [6], to
mention a few. The puzzle would have been too
clumsy or nasty to solve through other means
such as Iteration.

The BNF notation, according to [7], was
named after the two inventors: John Backus of
the United States of America, and Peter Naur of
Denmark. The notation makes extensive use of
recursion in defining the syntax of a
programming language very succinctly. The
mystery behind recursion can be demystified by
understanding it as a stepwise refinement of the
initial problem (by divide-and-conquer
technique) until a trivial case (or terminal point)
is reached that requires no further
simplification. There are [now] many variants
and extensions of BNF, generally either for the
sake of simplicity and succinctness, or to adapt
it to a specific application, [8]. Typical examples
of these variants are given by [9] as, “Extended
BNF (EBNF) notation”, “Augmented BNF (ABNF)
notation”, and “Regular extensions to BNF
notation”. The EBNF notation is almost a
superset of BNF, and is now the most commonly
used structure for describing the grammar of a
language. On the other hand, the ABNF notation
is commonly used for describing the Internet
Engineering Task Force (IETF) protocols; while
the Regular extensions to BNF notation are
popularly used by the Python programming
language for its lexical specifications. Table 2
shows some of the basic differences amongst
these notations.

Table 2: Some basic differences amongst the BNF, EBNF, ABNF, and Regular extensions notations

 Examples
Description

of symbol
BNF EBNF ABNF Regular

extension
BNF EBNF ABNF Regular

extension
non-terminal
symbol

uses
angular
bracket,
< >

appears
plain

appears
plain

appears
plain

<answer>::=
<reply>

answer =
reply;

answer=
reply

answer::=
reply

definition of
rule

::= = = ::= <age> ::=
<integer>

age =
integer;

age = integer age ::=
integer

alternative
rule or choice

| | / | <reply>::=
“yes” | “no”

reply= “yes”
| “no”;

reply= “yes” /
“no”

reply::=
“yes” |
“no”

175

End of a rule whitespace ; whitespa
ce

whitespace <result> ::=
<score>

result =
score;

result= score result ::=
score

concatenation
symbol

the
symbols
appear
next to
each other

, same as
BNF

same as
BNF

<CGPA>::=
<digit>.<digit
>

CGPA =
digit, “.”
,digit;

CGPA = digit
“.” digit

CGPA:: =
digit “.”
digit

optional rule defined as
a separate
rule

[...] [...] [...] <name> ::=
<title>
<next> |
<next>

name
=[title,]
next;

name =[title]
next

name::=[ti
tle] next

repeating an
expression 0
or 1 times

defined as
a separate
rule

{...} * (used as
prefix)

? (used as
postfix)

<title> ::=
<“”>|<“mr”> |
<“mrs”> |
<others>

title = {“mr”
| “mrs” |
others};

title =
*(“mr”/
“mrs”/
others}

title :: =
(“mr” |
“mrs” |
others)?

repeating an
expression 1
or more
times

defined as
a separate
rule

{...} n* (used
as prefix)

+ <age>::=
<digit><no>|
<digit>

age =
digit{digit};

age =1*digit; age::=
digit+

repeating an
expression n
to m times
(where n ≥ 1,
and m > n)

defined as
a separate
rule

{...} n*m
(used as
prefix)

n*m (used
as postfix)

<age>::=
<digit> |
<digit><digit
>|
<digit><digit
><digit>

age =
digit{2*digit
};

age =
1*3digit;

age :: =
digit1*3

The syntax diagram is used to represent the BNF
notation pictorially for easier understanding,
whereby each of the non-terminal symbols in a
grammar is represented as a block or module
that performs a given task, as earlier illustrated
in figure 2. By the words of [10], “A syntax
diagram is a pictorial method of representing
the format of components in a programming
language, and the direction of the arrowed lines
indicates the order in which the diagram is to be
read or followed”. This is where the use of Finite
State Automata (FSA) becomes very necessary
in showing pictorially, as well as in a more
compact form, how the sentences (or terminal
symbols) of a grammar can be generated for
easy implementation with a computer. The use
of FSA defines the syntax of a grammar as well
as its recursive processes very clearly so that
valid or invalid sentences can easily be
identified. According to [11],

A finite state automata (FSA) is a simple
idealized machine that recognizes
patterns from the input [which consists
of finite string of symbols] taken from
some character set (or alphabet). The
job of an FSA is to accept or reject an
input depending on whether the
pattern defined by the FSA occurs in the
input

According to [12], an FSA (simply denoted as,
M) consists of 5 components: M = (Q, ∑, q0, δ, F),
where,

▪ Q is a finite set of states
▪ ∑ is the input alphabet
▪ q0 ϵ Q is the start state
▪ F ϵ Q is the set of final or accepting

states

▪ δ is a transition function that takes up a
pair of state and input symbol (say,
<q,a>) in order to determine the next
state (say q՛) for the machine; i.e., δ(q,a)
= q՛

The above representation conforms perfectly
with the generation of sentences using the
syntax diagram or BNF notation, as shown in
table 3.

Table 3: The similarity between syntax diagram/BNF
notation and Finite state automata

This work therefore showcases how the FSA can
be used to model a syntax diagram/BNF
notation for easy conversion to a computer
program.

3. Methodology

The syntax for generating signed or unsigned
integer numbers using the syntax diagram or
the BNF notation was used by the researcher to
illustrate how such rules can be implemented
programmatically. Figure 6 shows the syntax for
generating signed or unsigned integer numbers
using the BNF notation.

Syntax diagram /
BNF notation

Finite state automata
equivalence

terminal symbols Q (finite set of states)
supplied input string ∑ (input alphabet)
start symbol q0 (start state)
valid sentences F (set of final or accepting

states)
Production rule δ (transition function)

176

<int> ::= + <no> | – <no> | <no>
<no> ::= <digit><no> | <digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 6: The BNF definition of signed and unsigned
integers

The syntax diagram representation of figure 6 is
shown in the following figure 7.

Figure 7: The syntax diagram definition of signed and
unsigned integers

We can use a finite state automata to model any of the two techniques, as shown in figure 8.

Variable description

P = plus (+) sign P՛ = not a plus sign
m = minus (-) sign m՛ = not a minus sign
d = digit (0,1,2,3,4,5,6,7,8,9) d՛ = not a digit

E = ‘Enter key’ character E՛ = not ‘Enter key’ character

Figure 8: The finite state automata for generating signed
and unsigned integers

Figure 8 is a directed tree that contains all the
‘terminal symbols’ of the grammar (which are
represented as nodes in the diagram), and
‘production rules’ of the grammar (which are
represented as arrows). The reason for using
only ‘terminal symbols’ and ‘production rules’
for such representation is because every
grammar of a programming language boils

down to the generation of sentences (i.e.
concatenation of terminal symbols) from the
grammar, as well as how the sentences are
derived (i.e. the use of production rules to derive
the sentences). Thus, Figure 8 consists of 6
states (i.e., states 0,1,2,3,4, and 5). State(0) is the
‘start state’ at which the automata machine
receives an input string for parsing. State(1) is

0 3 4 5

1

2

P

d

d

d

d՛

E

m

P՛ + m՛ + d՛
d՛

Input
string

start
state

Error
or
Reject
state

d
final or accept state

d՛ + E՛

+ <no>
 <no>

 – <no>

0

1

3

4

5

6

7

8

9

<digit> <no>

<digit>

<no>

<digit>

<integer
>

2

177

the state for receiving ‘+’ sign. State(2) is the
state for receiving ‘–’ sign. State(3) is the state
for receiving digits(0,1,2,...,9). State(4) is the
‘accept state’ for an input string that successfully
moves from state(0) to state(4). Finally, state(5)
is the ‘reject state’ for an input string that moves
from state(0) to state(5). The arrows in the
figure indicate how the terminal symbols are
concatenated to generate a valid integer
number. Thus, the automata machine changes
state (or transition) according to the characters
in the input string in order to determine valid or
invalid integer. For instance, the input string,
+621 undergoes the following states: 0 => 1 =>
3 => 3 => 3 => 4. It is therefore accepted as a
valid integer number.

4. Data Analysis

Table 4 shows in detail how the automata
machine of figure 8 can be used to parse a
sample of some input string such as 725, –
6A31, and +9.

Table 4: An illustration of input string parsing with the
automata machine of figure 8

Input
string

Start
state

character by
character
parsing

Next
state

Result

725<enter
key>

0 7 3

 2 3
 5 3
 <enter key> 4 Valid

integer

–6A31
<enter
key>

0 - 2

 6 3
 A 5 Error

(invalid
integer).
The
symbol, ‘A’
is illegal

+9<enter
key>

0 + 1

 9 3
 <enter key> 4 Valid

integer

▪ The input string, 725<enter key>, is

parsed as follows: at state(0), the finite
state automata (FSA) receives the input
string supplied by the user; the 1st
character of the string is digit(7) which

belongs to state(3); the FSA therefore
moves from state(0) to state(3). the 2nd
character of the string is digit(2) which
also belongs to state(3); the FSA
therefore moves from state(3) to
state(3) – a recursive movement or
transition. The 3rd character of the
string is digit(5) which again belongs to
state(3); the FSA therefore makes
another recursive transition from
state(3) to state(3). The last character
of the string is the <enter key> which
belongs to state(4); the FSA therefore
moves from state(3) to state(4) – the
‘Accept state’. The string, 725, is
subsequently accepted as VALID
integer.

▪ Similarly, the second input string, –
6A31<enter key>, is parsed as follows:
at state(0), the finite state automata
(FSA) receives the input string supplied
by the user; the 1st character of the
string is a minus(–) sign which belongs
to state(2); the FSA therefore moves
from state(0) to state(2). the 2nd
character of the string is digit(6) which
belongs to state(3); the FSA therefore
moves from state(2) to state(3). The 3rd
character of the string is letter(A) which
belongs to state(5) – ‘Error or Reject
state’ because the received character is
d՛ (i.e. not a digit); the FSA therefore
moves from state(3) to state(5).
Subsequently, the string, –6A31, is
rejected as INVALID integer (without
parsing the remaining characters, ‘31’,
in the string).

▪ Lastly, the input string, +9<enter key>,
is parsed as follows: at state(0), the
finite state automata (FSA) receives the
input string supplied by the user; the 1st
character of the string is a plus(+) sign
which belongs to state(1); the FSA
therefore moves from state(0) to
state(1). The 2nd character of the string
is digit(9) which belongs to state(3); the
FSA therefore moves from state(1) to
state(3). The 3rd character of the string
is the <enter key> which belongs to
state(4); the FSA therefore moves from
state(3) to state(4) – the ‘Accept state’.
The string, +9, is subsequently accepted
as VALID integer.

▪ The pseudocode for implementing the
finite state automata of figure 8 is
shown in figure 9 that follows.

178

1. input any integer number as string
 1.1 input strgintno
2. determine the number of characters, N, of the string, strgintno
 2.1 N = length(strgintno)
3. determine the first character, fchar, of the string, strgintno
 3.1 if fchar = ‘+’ then
 process state1()
 else if fchar = ‘–‘ then
 process state2()
 else if fchar = digit(‘0’ or ‘1’ or ‘2’ or ‘3’ or ‘4’ or ‘5’ or ‘6’ or ‘7’ or ‘8’ or ‘9’) then
 process state3()
 else
 process state5() //error routine
 end if
4. //definition of functions
 4.1 state1()
 Determine the second character, schar, of the string, strgintno
 if schar = digit(‘0’ or ‘1’ or ‘2’ or ‘3’ or ‘4’ or ‘5’ or ‘6’ or ‘7’ or ‘8’ or ‘9’) then
 process state3()
 else
 process state5() //error routine
 end if
 4.2 state2()
 Determine the second character, schar, of the string, strgintno
 If schar = digit(‘0’ or ‘1’ or ‘2’ or ‘3’ or ‘4’ or ‘5’ or ‘6’ or ‘7’ or ‘8’ or ‘9’) then
 Process state3()
 Else
 Process state5() //error routine
 End if
 4.3 state3()
 //determine the subsequent characters of the string, strgintno, as follows:
 for charcount = 1 to N
 if strgintno(charcount) = digit(‘0’ or ‘1’ or ‘2’ or ‘3’ or ‘4’ or ‘5’ or ‘6’ or ‘7’ or ‘8’ or ‘9’) then
 Continue
 else
 process state5() //error routine
 end if
 next charcount
 //display the status of the data supplied
 Print “valid integer”
 Stop
 4.4 state5()
 //display the status of the data supplied
 Print “invalid integer
 Stop

Figure 9: The pseudocode for the implementation of the automata machine of figure 8

5. Results and Discussion

Table 5 shows the output of the program of
figure 9 when some input data are supplied to
the computer during its execution.

Table 5: A sample output of the program of figure 9

Input string Output

5A WRONG integer

C32 WRONG integer

-946890 VALID integer

+73.6 WRONG integer

+152 VALID integer

-600 VALID integer

496+ WRONG integer

8112 VALID integer

16 – 4 WRONG integer

2 VALID integer

179

008 VALID integer

1,500 WRONG integer

The use of automata machine to model the
generation of integer numbers (which are
defined recursively by a syntax diagram or BNF
notation) makes the programming aspect of its
implementation very easy to write and
understand. The 6 states in the machine were
well represented in the program (as functions
that perform specific tasks) so that any
character that goes contrary to the rules of the
grammar is reported by state(5) as an error, and
the parsing process is terminated immediately
without processing the remaining part of the
input string (if any). For instance, the input
string, ‘+73.6’ in the sample output of table 4 is
‘WRONG integer’ because the decimal point(.) is
not defined in the grammar being represented
by the automata machine. Again, the input
string, ‘496+’ is ‘WRONG integer’ because the
order of arrangement of the characters does not
agree with the syntax of the grammar. On the
other hand, any input string that transits
successfully from state(0) to state (4) is
accepted as VALID integer because it agrees
with the syntax of the grammar in (i) order of
arrangement, and (ii) in symbols.

6. Conclusion

Recursion is a powerful mathematical technique
used ubiquitously in Computer science. The BNF
notation or syntax diagram employs it
extensively in defining the grammatical rules of
a programming language. The use of Finite State
Automata (FSA) in transforming the ‘terminals’
and ‘production rules’ of a grammar into a
directed graph helps immensely in modelling the
grammar into a very compact form for easier
understanding and programming.

References

[1] “Theory of Computation: Backus-Naur

form”, 2020. URL:
https://en.M.wikibooks.org/wiki/A-
level_Computing/AQA/Paper_1/Theory
_of_computation/Backus-naur-form

[2] “What is BNF?”, 2020. URL:

http://www.cs.umsl.edu/~janikow/cs4

280/bnf.pdf

[3] William, I.S., “Structures and

Abstractions – an introduction to
Computer Science with Turbo Pascal”,
Richard Irwin inc., 1992, p.409, p.415,
p.428

[4] “What is Recursion? How is it helpful,

and where it is used?”, 2020. URL:
www.equationanswers.com/c/c-
recursion.php

[5] Liang, Y.D., “Introduction to Java

Programming”, 3rd ed., Prentice-Hall
Inc., Upper Saddle River, New Jersey,
2001, p.123

[6] Deitel, P. & Deitel, H., “Java-How to

Program”, 8th ed., Pearson Education
Inc., Upper Saddle River, New Jersey,
2010, p.790

[7] Daniel, D.M. and Edwin, D.R., “Backus-

Naur form (BNF)”, 2020. URL:
https://www.researchgate.net/publicat
ion/262254296_Backus-
Naur_form_NBF

[8] Wikipedia, “Backus-Naur form”, 2020.

URL:
https://en.wikipedia.org/wiki/Backus
%E2%80%93Naur_form

[9] “Grammar_The language of

languages(BNF, EBNF, ABNF, and
more)”, 2020. URL:
http://matt.might.net/articles/gramma
rs-bnf-ebnf/

[10] Holmes, B.J., “Pascal Programming”, 2nd

ed., The Guernsey Press Co Ltd.,
Channel Islands, 1990, p.30

[11] “Finite Automata”, 2020. URL:

https://www.cs.rochester.edu/u/nelso
n/courses/csc_173/fa/fa.html

[12] Carol, C. & David, J.E., “Finite-State

Automata”, 2020. URL:
https://eng.libretexts.org/Bookshelves
/Computer_Science/Book%3A_Foundat
ions_of_Computation_(Critchlow_and_E
ck)/03%3A_Regular_Expressions_and_F
SA's/3.04%3A_Finite-State_Automata

https://en.m.wikibooks.org/wiki/A-level_Computing/AQA/Paper_1/Theory_of_computation/Backus-naur-form
https://en.m.wikibooks.org/wiki/A-level_Computing/AQA/Paper_1/Theory_of_computation/Backus-naur-form
https://en.m.wikibooks.org/wiki/A-level_Computing/AQA/Paper_1/Theory_of_computation/Backus-naur-form
http://www.cs.umsl.edu/~janikow/cs4280/bnf.pdf
http://www.cs.umsl.edu/~janikow/cs4280/bnf.pdf
http://www.equationanswers.com/c/c-recursion.php
http://www.equationanswers.com/c/c-recursion.php
https://www.researchgate.net/publication/262254296_Backus-Naur_form_NBF
https://www.researchgate.net/publication/262254296_Backus-Naur_form_NBF
https://www.researchgate.net/publication/262254296_Backus-Naur_form_NBF
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
http://matt.might.net/articles/grammars-bnf-ebnf/
http://matt.might.net/articles/grammars-bnf-ebnf/
https://www.cs.rochester.edu/u/nelson/courses/csc_173/fa/fa.html
https://www.cs.rochester.edu/u/nelson/courses/csc_173/fa/fa.html
https://eng.libretexts.org/Bookshelves/Computer_Science/Book%3A_Foundations_of_Computation_(Critchlow_and_Eck)/03%3A_Regular_Expressions_and_FSA's/3.04%3A_Finite-State_Automata
https://eng.libretexts.org/Bookshelves/Computer_Science/Book%3A_Foundations_of_Computation_(Critchlow_and_Eck)/03%3A_Regular_Expressions_and_FSA's/3.04%3A_Finite-State_Automata
https://eng.libretexts.org/Bookshelves/Computer_Science/Book%3A_Foundations_of_Computation_(Critchlow_and_Eck)/03%3A_Regular_Expressions_and_FSA's/3.04%3A_Finite-State_Automata
https://eng.libretexts.org/Bookshelves/Computer_Science/Book%3A_Foundations_of_Computation_(Critchlow_and_Eck)/03%3A_Regular_Expressions_and_FSA's/3.04%3A_Finite-State_Automata
https://eng.libretexts.org/Bookshelves/Computer_Science/Book%3A_Foundations_of_Computation_(Critchlow_and_Eck)/03%3A_Regular_Expressions_and_FSA's/3.04%3A_Finite-State_Automata

