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Abstract
 
Every programming language has its own syntax rules. Such rules can be represented with either the Backus-Naur 
form (BNF) notation or with a Syntax diagram (also called a Railroad diagram). BNF uses text-based mathematical 
notations for defining those rules, while a Syntax diagram employs a graphical approach. Converting any of the 
two techniques to an algorithm or computer program is somewhat difficult for students due to the recursive 
expressions used by each of the techniques in defining the syntactic rules of a grammar. The aim of this work is 
therefore to showcase how an algorithm for one of such techniques (namely, a syntax diagram) can be written for 
easy understanding and implementation with a computer. A Finite State automata (FSA) approach was adopted by 
the researcher for modelling any given grammatical rule of a programming language for easy implementation with 
a computer. The grammatical rules for generating an integer number was arbitrarily selected by the researcher, 
amongst other rules, for formulating the required algorithm. The algorithm (which is a pseudocode) was written 
to be in tandem with the FSA model for easier understanding and programming. Results showed that when the 
pseudocode is implemented with a computer with some trial data, every data that conformed with the 
grammatical rules for generating integer numbers was accepted as ”valid integer”, while other incoherent ones 
were declared “invalid integer”. This helps in smoothening the understanding of students of any rigorous or 
recursive problem for easy implementation with a computer.
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1. Introduction 
A Backus-Naur form is a notation used in the 
field of Computer Science to express the syntax 
of a programming language [1]. The expression 
contains a list of all the rules that defines a 
particular grammar of a programming language. 
The three basic symbols used by the BNF are: 

::=   (which means, “is defined as”) 
| (which means, “Or”) 
< > (angular brackets that contain 
a category name) 

For instance, to use the BNF to define the 
grammatical rules for generating an unsigned 
integer number, we have the following 
structure: 
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<pinteger> ::= <no> 
<no> ::= <digit><no> | <digit>  
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

 
Figure 1: The BNF definition for unsigned integer 
number  
 
In plain English, the first line of figure 1 states 
that an unsigned integer, <pinteger>, is defined 
as a number, <no>. The second line contains 
two rules which state that: (i) <no> is defined as 
<digit> followed by <no> , or (ii) <no> is 
defined as <digit>. The third line contains 10 
rules which state that <digit> is defined as ‘0’ or 
‘1’ or ‘2’ or ‘3’ or ‘4’ or ‘5’ or ‘6’ or ‘7’ or ‘8’ ‘9’. 
The above grammar contains a total of 13 rules. 
Each rule has a left part and a right part.  The 
‘left part’ defines the ‘right part’.  Any symbol 
appearing on the left part (or both parts) of a 
rule is called a non-terminal symbol, while any 
symbol that appears only on the right part (but 
not on both parts) of a rule is called a terminal 
symbol. In other words, the terminal symbols 
are the sentences (or string) that can be derived 
from a grammar. The first non-terminal symbol 
is called the start symbol. All generation of 
sentences of a grammar commences from the 
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start symbol. In figure1, the start symbol is 
<pinteger>. According to [2],  

The Backus-Naur Form is a way of 
defining syntax. It consists of  
• a set of terminal symbols  
• a set of non-terminal symbols  
• a set of production rules of the form,  
Left-Hand-Side ::= Right-Hand-Side  
where the LHS is a non-terminal symbol 
and the RHS is a sequence of symbols 
(terminals or non-terminals).  

In figure1, the set of non-terminal symbols are, 
{<pinteger>, <no>, <digit>}, while the set of 
terminal symbols are, {0,1,2,3,4,5,6,7,8,9}. The 
grammar contains a recursive definition of how 
to generate an unsigned integer number, as 
shown in the second line of the grammar. Such 
recursive expression appears somewhat difficult 
for an ordinary person to easily understand, not 
to talk of converting it to an algorithm or 
computer program. According to William [3], 
recursion is often regarded as a deep mystery by 
novices in mathematics or computing, and so 
aught to be reserved for more advanced courses. 
The same recursive scenario occurs when the 
grammar of figure 1 is represented with a 
syntax diagram, as shown in figure 2. 

 
Figure 2: The syntax diagram definition for an unsigned 
integer 
 
A ‘parse tree’ shows how valid (or invalid) 
sentences can be derived (or non derivable) 
from a grammar, as shown in figure 3 and figure 
4, respectively for the derivation of the string, 
614 and 2T from the grammar defined in figure 
1 (using BNF) or figure 2 (using syntax 

diagram). 

 
Figure 3: The string, 614 is derivable from the grammar, 
and is therefore a valid integer 
 

 
Figure 4: The string, 2T is not derivable from the 
grammar because the symbol, T is not defined; 
therefore the string is an invalid integer  

 

Figures 3 and 4 show the various recursive 
steps required for validating a sentence of a 
grammar. The question now is, “How can such 
steps be easily implemented programmatically 
with a computer?” This forms the basic research 
question for this work, and of which a solution 
to it is expatiated in section 3 under 
“Methodology”.  

 

2. Literature Review 

In Computer Science, recursion is typically used 
for solving problems that involve recursive 
relations (such as the generation of integer 
numbers shown in figure 1 and figure 2 of 
section1). According to [3], “The concept of 
recursion comes from mathematics where we 
often encounter recursive relations”. For 
example, consider the problem of raising a real 
number, X, to an integer power, N. The problem 
can be solved recursively by stepwise 
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refinement (i.e. breaking a problem down into 
simpler computational parts), as shown in table 
1.   

 
Table 1: Evaluation of XN by recursion 

 
Problem  Recursive process Step  

XN X . (XN – 1) 1 

 X . X . (XN – 2) 2 

 X . X . X . (XN – 3) 3 

 etc.  etc. 

 

Thus, each recursive step is a simpler version of 
the initial problem. The process continues until 
a termination point is reached (i.e. X0 = 1 in the 
above example) where no further recursive 
process occurs, and the final result then 
determined by backward substitution. The 
above problem can be solved programmatically 
using a Java function as follows: 
 

public static double power(double X, int N) 
{ 

        if(N = = 0) 
        { 
            return 1.0; 
        } 
        else 
        { 
            return X * power(X, N-1); 
        } 
} 

 
Figure 5: A Java function code for evaluating the 
function, XN, recursively  

 
Thus, we can see that, recursion is a process of 
breaking a computation down in such a way that 
a simpler computation of the same kind with the 
previous problem is derived, and the 
decomposition process continues until a trivial 

stage is reached. Simply put, [4] explains that, 
“Recursion is a process whereby a function calls 
itself inside its body for the execution of a task 
until a base case is reached”. The beauty of 
recursion is that it presents a clearer, intuitive, 
and simpler solution to a problem which would 
have been very difficult or too clumsy to solve 
through other means [5]. For instance, a popular 
mathematical puzzle called ‘The towers of 
Hanoi’ can be easily solved with recursion, as 
elegantly illustrated by [5], [3], and [6], to 
mention a few. The puzzle would have been too 
clumsy or nasty to solve through other means 
such as Iteration.  

The BNF notation, according to [7], was 
named after the two inventors: John Backus of 
the United States of America, and Peter Naur of 
Denmark. The notation makes extensive use of 
recursion in defining the syntax of a 
programming language very succinctly. The 
mystery behind recursion can be demystified by 
understanding it as a stepwise refinement of the 
initial problem (by divide-and-conquer 
technique) until a trivial case (or terminal point) 
is reached that requires no further 
simplification. There are [now] many variants 
and extensions of BNF, generally either for the 
sake of simplicity and succinctness, or to adapt 
it to a specific application, [8]. Typical examples 
of these variants are given by [9] as, “Extended 
BNF (EBNF) notation”, “Augmented BNF (ABNF) 
notation”, and “Regular extensions to BNF 
notation”. The EBNF notation is almost a 
superset of BNF, and is now the most commonly 
used structure for describing the grammar of a 
language. On the other hand, the ABNF notation 
is commonly used for describing the Internet 
Engineering Task Force (IETF) protocols; while 
the Regular extensions to BNF notation are 
popularly used by the Python programming 
language for its lexical specifications. Table 2 
shows some of the basic differences amongst 
these notations.

 

 
 
Table 2: Some basic differences amongst the BNF, EBNF, ABNF, and Regular extensions notations  

 
     Examples 
Description 

of symbol 
BNF EBNF ABNF Regular 

extension 
BNF EBNF ABNF Regular 

extension 
non-terminal 
symbol 

uses 
angular 
bracket,    
< > 

appears 
plain 

appears 
plain 

appears 
plain 

<answer>::= 
<reply> 

answer = 
reply; 

answer= 
reply 

answer::= 
reply 

definition of 
rule 

::= = = ::= <age> ::= 
<integer> 

age = 
integer; 

age = integer age ::= 
integer 

alternative 
rule or choice 

| | / | <reply>::= 
“yes” | “no” 

reply= “yes” 
| “no”; 

reply= “yes” /  
“no” 

reply::= 
“yes” | 
“no” 
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End of a rule whitespace ; whitespa
ce 

whitespace <result> ::= 
<score> 

result = 
score; 

result= score result ::= 
score 

concatenation 
symbol 

the 
symbols 
appear 
next to 
each other 

, same as 
BNF 

same as 
BNF 

<CGPA>::= 
<digit>.<digit
> 

CGPA =    
digit, “.” 
,digit; 

CGPA =    digit 
“.” digit 

CGPA:: =   
digit “.” 
digit 

optional rule defined as 
a separate 
rule 

[...] [...] [...] <name> ::= 
<title> 
<next> | 
<next> 

name 
=[title,] 
next; 

name =[title] 
next 

name::=[ti
tle] next 

repeating an 
expression 0 
or 1 times 

defined as 
a separate 
rule 

{...} * (used as 
prefix) 

? (used as 
postfix) 

<title> ::= 
<“”>|<“mr”> | 
<“mrs”> | 
<others>  

title = {“mr”  
| “mrs” | 
others}; 

title = 
*(“mr”/ 
“mrs”/ 
others} 

title :: = 
(“mr” |  
“mrs” | 
others)?  

repeating an 
expression 1 
or more 
times   

defined as 
a separate 
rule 

{...} n* (used 
as prefix) 

+ <age>::= 
<digit><no>| 
<digit> 

age = 
digit{digit}; 

age =1*digit; age::= 
digit+ 

repeating an 
expression n 
to m times 
(where n ≥ 1, 
and m > n ) 

defined as 
a separate 
rule 

{...} n*m 
(used as 
prefix) 

n*m (used 
as postfix) 

<age>::= 
<digit> | 
<digit><digit
>| 
<digit><digit
><digit> 

age = 
digit{2*digit
}; 

age = 
1*3digit; 

age :: = 
digit1*3 

 
The syntax diagram is used to represent the BNF 
notation pictorially for easier understanding, 
whereby each of the non-terminal symbols in a 
grammar is represented as a block or module 
that performs a given task, as earlier illustrated 
in figure 2. By the words of [10], “A syntax 
diagram is a pictorial method of representing 
the format of components in a programming 
language, and the direction of the arrowed lines 
indicates the order in which the diagram is to be 
read or followed”. This is where the use of Finite 
State Automata (FSA) becomes very necessary 
in showing pictorially, as well as in a more 
compact form, how the sentences (or terminal 
symbols) of a grammar can be generated for 
easy implementation with a computer. The use 
of FSA defines the syntax of a grammar as well 
as its recursive processes very clearly so that 
valid or invalid sentences can easily be 
identified. According to [11], 

A finite state automata (FSA) is a simple 
idealized machine that recognizes 
patterns from the input [which consists 
of finite string of symbols] taken from 
some character set (or alphabet). The 
job of an FSA is to accept or reject an 
input depending on whether the 
pattern defined by the FSA occurs in the 
input 

According to [12], an FSA (simply denoted as, 
M) consists of 5 components: M = (Q, ∑, q0, δ, F), 
where, 

▪ Q is a finite set of states 
▪ ∑  is the input alphabet 
▪ q0 ϵ Q is the start state 
▪ F ϵ Q is the set of final or accepting 

states  

▪ δ is a transition function that takes up a 
pair of state and input symbol (say, 
<q,a>) in order to determine the next 
state (say q՛) for the machine; i.e., δ(q,a) 
= q՛ 

The above representation conforms perfectly 
with the generation of sentences using the 
syntax diagram or BNF notation, as shown in 
table 3. 
 

Table 3: The similarity between syntax diagram/BNF 
notation and Finite state automata 
 

 
This work therefore showcases how the FSA can 
be used to model a syntax diagram/BNF 
notation for easy conversion to a computer 
program. 
 

3. Methodology 
 
The syntax for generating signed or unsigned 
integer numbers using the syntax diagram or 
the BNF notation was used by the researcher to 
illustrate how such rules can be implemented 
programmatically. Figure 6 shows the syntax for 
generating signed or unsigned integer numbers 
using the BNF notation.  
 

Syntax diagram / 
BNF notation 

Finite state automata 
equivalence 

terminal symbols Q (finite set of states) 
supplied input string ∑  (input alphabet) 
start symbol q0 (start state) 
valid sentences F (set of final or accepting 

states) 
Production rule δ (transition function) 
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<int> ::=  + <no> |  – <no> | <no> 
<no> ::= <digit><no> | <digit> 
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

 
Figure 6: The BNF definition of signed and unsigned 
integers   

 

The syntax diagram representation of figure 6 is 
shown in the following figure 7. 

 

 
Figure 7: The syntax diagram definition of signed and 
unsigned integers

 
 
We can use a finite state automata to model any of the two techniques, as shown in figure 8. 

 
Variable description 

P = plus (+) sign P՛ = not a plus sign 
m = minus (-) sign m՛ = not a minus sign 
d = digit (0,1,2,3,4,5,6,7,8,9) d՛ = not a digit 

E = ‘Enter key’ character E՛ = not ‘Enter key’ character 

 
Figure 8: The finite state automata for generating signed 
and unsigned integers 
 

Figure 8 is a directed tree that contains all the 
‘terminal symbols’ of the grammar (which are 
represented as nodes in the diagram), and 
‘production rules’ of the grammar (which are 
represented as arrows). The reason for using 
only ‘terminal symbols’ and ‘production rules’ 
for such representation is because every 
grammar of a programming language boils 

down to the generation of sentences (i.e. 
concatenation of terminal symbols) from the 
grammar, as well as how the sentences are 
derived (i.e. the use of production rules to derive 
the sentences). Thus, Figure 8 consists of 6 
states (i.e., states 0,1,2,3,4, and 5). State(0) is the 
‘start state’ at which the automata machine 
receives an input string for parsing. State(1) is 
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the state for receiving ‘+’ sign. State(2) is the 
state for receiving ‘–’ sign. State(3) is the state 
for receiving digits(0,1,2,...,9). State(4) is the 
‘accept state’ for an input string that successfully 
moves from state(0) to state(4). Finally, state(5) 
is the ‘reject state’ for an input string that moves 
from state(0) to state(5). The arrows in the 
figure indicate how the terminal symbols are 
concatenated to generate a valid integer 
number. Thus, the automata machine changes 
state (or transition) according to the characters 
in the input string in order to determine valid or 
invalid integer. For instance, the input string, 
+621 undergoes the following states: 0 => 1 => 
3 => 3 => 3 => 4. It is therefore accepted as a 
valid integer number. 

 

4. Data Analysis 
 
Table 4 shows in detail how the automata 
machine of figure 8 can be used to parse a 
sample of some input string such as 725,   – 
6A31, and +9.  
 

Table 4: An illustration of input string parsing with the 
automata machine of figure 8 

 
Input 
string 

Start 
state 

character by 
character 
parsing 

Next 
state 

Result  

725<enter 
key> 

0 7 3  

  2 3  
  5 3  
  <enter key> 4 Valid 

integer 
     
–6A31 
<enter 
key> 

0 - 2  

  6 3  
  A 5 Error 

(invalid 
integer).  
The 
symbol, ‘A’ 
is illegal 

     
+9<enter 
key> 

0 + 1  

  9 3  
  <enter key> 4 Valid 

integer 

 
▪ The input string, 725<enter key>, is 

parsed as follows:  at state(0), the finite 
state automata (FSA) receives the input 
string supplied by the user; the 1st 
character of the string is digit(7) which 

belongs to state(3); the FSA therefore 
moves from state(0) to state(3). the 2nd 
character of the string is digit(2) which 
also belongs to state(3); the FSA 
therefore moves from state(3) to 
state(3) – a recursive movement or 
transition. The 3rd character of the 
string is digit(5) which again belongs to 
state(3); the FSA therefore makes 
another recursive transition from  
state(3) to state(3). The last character 
of the string is the <enter key> which 
belongs to state(4); the FSA therefore 
moves from state(3) to state(4) – the 
‘Accept state’. The string, 725, is 
subsequently accepted as VALID 
integer. 

▪ Similarly, the second input string, –
6A31<enter key>, is parsed as follows:  
at state(0), the finite state automata 
(FSA) receives the input string supplied 
by the user; the 1st character of the 
string is a minus(–) sign which belongs 
to state(2); the FSA therefore moves 
from state(0) to state(2). the 2nd 
character of the string is digit(6) which 
belongs to state(3); the FSA therefore 
moves from state(2) to state(3). The 3rd 
character of the string is letter(A) which 
belongs to state(5) – ‘Error or Reject 
state’ because the received character is 
d՛ (i.e. not a digit); the FSA therefore 
moves from state(3) to state(5). 
Subsequently, the string, –6A31, is 
rejected as INVALID integer (without 
parsing the remaining characters, ‘31’, 
in the string). 

▪ Lastly, the input string, +9<enter key>, 
is parsed as follows:   at state(0), the 
finite state automata (FSA) receives the 
input string supplied by the user; the 1st 
character of the string is a plus(+) sign 
which belongs to state(1); the FSA 
therefore moves from state(0) to 
state(1). The 2nd character of the string 
is digit(9) which belongs to state(3); the 
FSA therefore moves from state(1) to 
state(3). The 3rd character of the string 
is the <enter key> which belongs to 
state(4); the FSA therefore moves from 
state(3) to state(4) – the ‘Accept state’. 
The string, +9, is subsequently accepted 
as VALID integer.  

▪ The pseudocode for implementing the 
finite state automata of figure 8 is 
shown in figure 9 that follows.
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1.  input any integer number as string 
 1.1  input strgintno 
2.  determine the number of characters, N, of the string, strgintno 
 2.1  N = length(strgintno) 
3.  determine the first character, fchar, of the string, strgintno 
 3.1  if  fchar = ‘+’ then 
  process state1() 
         else if  fchar = ‘–‘ then 
  process state2() 
          else if  fchar = digit(‘0’ or ‘1’ or ‘2’ or ‘3’ or ‘4’ or ‘5’ or ‘6’ or ‘7’ or ‘8’ or ‘9’) then 
  process state3() 
          else  
  process state5() //error routine 
          end if 
4.  //definition of functions 
 4.1  state1() 
  Determine the second character, schar, of the string, strgintno 
  if  schar = digit(‘0’ or ‘1’ or ‘2’ or ‘3’ or ‘4’ or ‘5’ or ‘6’ or ‘7’ or ‘8’ or ‘9’) then 
   process state3() 
  else 
   process state5() //error routine 
  end if 
 4.2  state2() 
  Determine the second character, schar, of the string, strgintno 
  If  schar = digit(‘0’ or ‘1’ or ‘2’ or ‘3’ or ‘4’ or ‘5’ or ‘6’ or ‘7’ or ‘8’ or ‘9’) then 
   Process state3() 
  Else 
   Process state5() //error routine 
  End if 
 4.3  state3() 
  //determine the subsequent characters of the string, strgintno, as follows: 
  for charcount = 1 to N 
         if strgintno(charcount) = digit(‘0’ or ‘1’ or ‘2’ or ‘3’ or ‘4’ or ‘5’ or ‘6’ or ‘7’ or ‘8’ or ‘9’) then 
   Continue 
         else 
   process state5() //error routine 
         end if 
  next charcount 
  //display the status of the data supplied  
  Print  “valid integer” 
  Stop  
 4.4  state5() 
  //display the status of the data supplied 
  Print “invalid integer 
  Stop  

 
Figure 9: The pseudocode for the implementation of the automata machine of figure 8 
 
 

5. Results and Discussion 
 
Table 5 shows the output of the program of 
figure 9 when some input data are supplied to 
the computer during its execution. 
 
Table 5: A sample output of the program of figure 9 

 
Input string Output  

5A WRONG integer 

C32 WRONG integer 

-946890 VALID integer 

+73.6 WRONG integer 

+152 VALID integer 

-600 VALID integer 

496+ WRONG integer 

8112 VALID integer 

16 – 4  WRONG integer 

2 VALID integer 
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008 VALID integer 

1,500 WRONG integer 

 
The use of automata machine to model the 
generation of integer numbers (which are 
defined recursively by a syntax diagram or BNF 
notation) makes the programming aspect of its 
implementation very easy to write and 
understand. The 6 states in the machine were 
well represented in the program (as functions 
that perform  specific tasks) so that any 
character that goes contrary to the rules of the 
grammar is reported by state(5) as an error, and 
the parsing process is terminated immediately 
without processing the remaining part of the 
input string (if any). For instance, the input 
string, ‘+73.6’ in the sample output of table 4 is 
‘WRONG integer’ because the decimal point(.) is 
not defined in the grammar being represented 
by the automata machine. Again, the input 
string, ‘496+’ is ‘WRONG integer’ because the 
order of arrangement of the characters does not 
agree with the syntax of the grammar. On the 
other hand, any input string that transits 
successfully from state(0) to state (4) is 
accepted as VALID integer because it agrees 
with the syntax of the grammar in (i) order of 
arrangement, and (ii) in symbols. 
 
 

6. Conclusion 
 
Recursion is a powerful mathematical technique 
used ubiquitously in Computer science. The BNF 
notation or syntax diagram employs it 
extensively in defining the grammatical rules of 
a programming language. The use of Finite State 
Automata (FSA) in transforming the ‘terminals’ 
and ‘production rules’ of a grammar into a 
directed graph helps immensely in modelling the 
grammar into a very compact form for easier 
understanding and programming.   
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