CEUR-WS.org/Vol-2786/Paper28.pdf

CKD-TREE: AN IMPROVED KD-TREE CONSTRUCTION

ALGORITHM

Y Narasimhulu?, Ashok Suthar?, Raghunadh Pasunuri? and V China Venkaiah?®

4SCIS, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad, 500046, India
bCSE, Malla Reddy Engineering College(Autonomous), Maisammaguda(H), Gundlapochampally Village, Medchal Mandal,

Medchal-Malkajgiri District, Telangana State, 500100, India

Abstract

Data structures such as VP-Tree, R-Tree and KD-Tree builds an index of all the data available in the offline phase and uses
that indexed tree to search for and answer nearest neighbor queries or to classify the input query. We use a Lightweight
Coreset algorithm to reduce the actual data size used to build the tree index, resulting in a faster index building time. We
improve on already available Nearest Neighbor based Classification techniques and pit our classification method against the
widely accepted, state of the art data structures such as VP-Tree, R-Tree and KD-Tree. In terms of speed the proposed method
out performs the compared data structures, as the size of the data increases.

Keywords
KD Tree, Coresets, Nearest Neighbor, Classification.

1. Introduction

k-Nearest Neighbor (kNN) problem refers to the prob-
lem of finding k points or samples in the data which
are closest to the query point. Nearest Neighbor al-
gorithm finds its use in several machine learning ar-
eas, such as classification and regression and is also
the most time-consuming part of these applications.
In different use cases such as in recommendation sys-
tems, computer vision and robotics etc, fast response
times are critical and using brute force approaches such
as linear search is not feasible. Hence there are sev-
eral approaches to solve these Nearest Neighbor prob-
lems which are based on Hashing, Graphs or Space-
Partitioning Trees. Space-partitioning methods are gen-
erally more efficient due to less tunable parameters.
One such algorithm is KD-Tree. It is a space parti-
tioning algorithm which divides space recursively us-
ing a hyper-plane based on a splitting rul. It reduces
the search space by almost half at every iteration. An-
other space partitioning algorithm is Vantage Point Tree
(VP-Tree)[1], which divides the data in a metric space

ISIC 2021: International Semantic Intelligence Conference, February
25-27, 2021, New Delhi, India
& narasimedu@gmail.com (Y. Narasimhulu);
ashok.suthar.sce@gmail.com (A. Suthar);
raghupasunuri@gmail.com (R. Pasunuri); venkaiah@hotmail.com
(V.C. Venkaiah)
& https://github.com/Narasim (Y. Narasimhulu);
https://www.linkedin.com/in/ashok-suthar (A. Suthar);
http://cse.mrec.ac.in/StaffDetails?Facultyld=3072 (R. Pasunuri);
https://scis.uohyd.ac.in/People/profile/vch_profile.php (V.C.
Venkaiah)
@ 0000-0001-5440-0200 (V.C. Venkaiah)
Commons Hoerse Atsbaion 80 nermationdl CCBY 8D,

=] CEUR Conference Proceedings (CEUR-WS.org)

by selecting a position in the space called vantage point
and partitions the data into two parts. The first part
contains data that are closer to vantage point and the
other part which are not closer to the point. The di-
vision process continues until there are smaller sets.
Finally a tree is constructed such that the neigbors in
the tree are also neigbors in the real space. R-Tree[2]
is another data structure that is most commonly used
to store spatial objects such as location of gas stations,
restaurants, outlines of agricultural lands and etc.

In this paper we consider kNN for classification, where
nearest neighbors of a query point in the dataset are
used to classify the query point. Nearest neighbor in
essence is a lazy learning algorithm, i.e. it memorizes
the whole training dataset to provide the nearest neigh-
bors of an incoming query point. Consequently, though
the algorithms provide very efficient solutions to the
nearest neighbor problem, they might run into prob-
lems. This is because data size becomes too large due
to the high magnitudes of data available today to pro-
cess. In critical systems where time is of essence, loos-
ing even a few seconds while processing all that data
might cause issues. The author in [3] uses SVM to
tackle a similar problem by reducing the size of data
on which Nearest Neighbor algorithm runs. We use
coresets for a similar effect, but on very large datasets.

The concept of coresets follows a data summariza-
tion approach. Coresets are small subsets of the orig-
inal data. They are used to scale clustering problems
in massive data sets. Models trained on Coresets pro-
vide competitive results against a model trained on full
original dataset. Hence these can be very useful in
speeding up said models while still keeping up theorit-

mailto:narasimedu@gmail.com
mailto:ashok.suthar.sce@gmail.com
mailto:raghupasunuri@gmail.com
mailto:venkaiah@hotmail.com
https://github.com/Narasim
https://www.linkedin.com/in/ashok-suthar
http://cse.mrec.ac.in/StaffDetails?FacultyId=3072
https://scis.uohyd.ac.in/People/profile/vch_profile.php
https://orcid.org/0000-0001-5440-0200
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

212

ical guarantees upto a level. Coresets are often used in
clustering algorithms to improve their speed even fur-
ther. To achieve this, first construct a coreset — usu-
ally in linear time — and then use an algorithm that
works on coreset to solve the clustering problem. As
the coreset size is very small compared to the actual
data size, this can provide significant speed in the said
algorithms.

We use a state of the art lightweight coreset con-
struction algorithm to improve time in the case of solv-
ing Nearest Neighbor problem using KD-Tree space
partitioning algorithm. We use the end result of Near-
est Neighbor query to classify our input query point
based on its nearest neighbor points found.

2. Related Work

As foretold there are a number of approaches to solve
a nearest neighbor problem based on hashing, graphs,
space-partitioning etc. We focus mainly on KD-Tree, a
widely accepted, widely used and fast space partition-
ing technique for Nearest Neighbors or Classification
problems than VP-Tree and R-Tree.

2.1. KD-Tree (K Dimensional-tree)

KD Tree is a space-partitioning algorithm. Its main
work flow can be divided in two parts, called offline
phase and online phase. It builds the index(tree) in the
first phase called, offline phase, so that it can answer
the queries later on in the other phase called online
phase. During the offline phase it subdivides space
into rectangular cells through the recursive use of some
splitting rule. In the standard split the splitting dimen-
sion is chosen based on the maximum spread along a
dimension in the data. Whereas in midpoint split the
splitting hyper-plane bisects the longest side of the
cell and passes through the center of the cell. Most
widely accepted KD-Tree implementation in work to-
day is based on the paper written by Songrit Manee-
wongvatana and David M. Mount[4].

They consider a variant of the midpoint splitting
rule called sliding-midpoint to overcome the problem
of having a data set in which points might be clustered
together. The example of sliding-midpoint rule is pre-
sented in Figure 1 and Figure 2 depicts the working of
other splitting rules.

In this approach data is first split at midpoint, by
considering a hyper-plane which passes through the
center of the cell, dividing the cell’s longest side in
two parts. Then they check if data points exist on
both sides of the splitting plane. If so, the splitting

s

Gzl

="

Sliding-midpoint split

Standard split Midpoint split

Figure 2: Examples of splitting rules on a common data set.

plane is not moved. However, if one side of the split-
ting plane is empty, i.e. without any point, then they
slide the splitting plane towards the data points until
it encounters at least one of the points. That point is
then a child or leaf cell containing single point, while
the algorithm continues to work recursively on the re-
maining points.

Once the tree is built completely, and a query comes
in, we trace the query point down along the tree, by
comparing it’s dimension value with the cut dimen-
sion value at each level of the tree. Continuing this
process leads to a leaf node. This leaf node to which
the query point reaches in the end is called its near-
est neighbor. A query point can have more than one
nearest neighbors.

2.2. KNN Classification Based on
KD-Tree

The authors of [5] talks about how KD-tree is a spe-
cial storage structure for data and how it represents
the training data efficiently. They propose a kNN-KD-
tree classification algorithm utilizing the advantages
offered by the kNN and KD-tree algorithms. They use
the proposed method on eleven datasets and show that
their kNN-KD-tree algorithm reduces time complex-
ity while significantly improving search performance.
Another nearest neighbor search algorithm that uses
random projection and voting is discussed in [6].

213

2.3. SVM Based reduced NN
Classification

The authors in [3] propose a novel SVM based instance
selection method. Here Support Vector Machine (SVM)
is used to form an instance space for instances of a
particular pattern classification problem. A wrapper-
based classification performance validation technique
is used to find the best hyperparameters which iden-
tify the support vector. Then they identify and select
informative support vectors (instances) lying on the
margin hyper-plane in the instance space. Thus deriv-
ing a reduced training set for reduced nearest neighbor
classification. This reduced training set is then used to
classify new instances.

They demonstrate the performance of the proposed
instance selection method on some datasets. Although
their method maintained or even increased classifica-
tion accuracy with a small number of training instances,
all the datasets chosen are very small in nature. The
highest number of instances in a dataset being 699 in
Breastw dataset. We focus more on datasets with very
large number of instances.

2.4. Lightweight Coresets

Coresets are compact representations of original data
sets. They provide provably competitive results with
models trained on the full data set. As such, coresets
are successfully used to scale up different clustering
models to very large data sets.

There are several existing Coreset building
methodologies[7]. O. Bachem, and M. Lucic[8] pro-
posed a notion of lightweight coresets that allowed for
both multiplicative and additive errors. They provided
an algorithm to construct lightweight coresets for k-
means clustering and soft and hard Bregman cluster-
ing. Their algorithm is substantially faster than the
other existing coreset construction algorithms. It’s par-
allel in the sense that the data can be divided between
several threads for parallel computation. Also as the
name suggests, it results in smaller coresets.

Lightweight coreset algorithm uses variance as a
means to create a probability distribution for the points
in data set. Points farther from the mean have higher
probability when compared to points which are closer
to the mean. A small subset of points can then be
sampled based on the derived probability distribution.
As points are sampled based on the variance in data,
it helps keep classification or clustering properties of
datasets. They have showed that their approach natu-
rally generalizes to statistical k-means clustering. They
also performed extensive experiments, demonstrating

that the proposed algorithm outperformed other exist-
ing practices.

3. Construction of Coreset
KD-Tree (CKD-Tree)

Though KD-Tree for classification is a pretty fast algo-
rithm in itself, it may not be so for very large datasets.
To improve on the already fast KD-Tree classification
algorithm, and to create an even faster version of KD-
Tree we use similar approach as in the case of cluster-
ing algorithms, i.e. make use of Coresets. We first use
a Coreset algorithm to create a representative set of
points from the original data set. This representative
set is then fed to the KD-Tree algorithm to build a tree
index (offline phase) based on the representative set.
When a query point arrives, we feed it into the tree,
where it traces down to one of the leaf nodes in the tree
index. At this point any suitable search method can be
used to find nearest neighbors to the query point in
the leaf node.

Algorithm 1 Lightweight Coreset Construction

Require: Set of data points X, coreset size m
1: p «—mean of X
2. forx € X do

d . 2
3: q(x)<—%ﬁ+l (a1

2y ey dbop)?
4: end for

5. C «—sample m weighted points from X where
each point x has weight m and is sampled with

probability g(x)

6: return lightweight coreset C

We use Algorithm 1, Lightweight Coreset Construc-
tion [8] (LWCS) to create the set of representative points
from the actual dataset. This algorithm takes as in-
put a dataset X and the coreset size m, i.e. the num-
ber of representative points in the coreset. It creates
a probabilty distribution based on a point’s distance
from the mean, w.r.t. the total of all such distances.
Distance metric used here is euclidian distance. Once
every point has a probability assigned to it, we sample
m points with weight m and probabiltiy q(x).

Algorithm 2, CKD-Tree Algorithm for classification,
uses Algorithm 1 Lightweight Coreset Construction
(LWCS), to process and get a compact version of the
original large dataset repData. This coreset repData
is then used to build the tree index at line 2 of the algo-
rithm. To build the tree index we use sliding-midpoint[4]
technique. The tree index can then be used to query

214

Lightweight
Coreset

Large Data Coresets

3 KD-Tree

Algorithm

Construction
Algorithm

Query

Distance,
Indices
— | Classification

KD-Tree

Searching

Algorithm

Figure 3: Flow diagram of CKD-Tree Algorithm for Classification

Table 1
Datasets Used

Dataset Number of Instances | Dimensions/Attributes
bio_train 145,751 74
MiniBooNE Particle 130065 50
default of credit card clients 30,000 24
HTRU2 17898 9
spambase 4601 57

the index with a query point. Query requires you to
specify k i.e. number of nearest neighbors required
along with the point to query with, i.e. queryPoint.
The flow diagram of the entire work is presented in
the Figure 3.

In our specific use case, we use nearest neighbors to
classify the query point into a class. This can be done
easily based on the majority class in nearest neighbors
returned.

Algorithm 2 CKD-Tree Algorithm For Classification
Require: Large dataset X, coreset size m
1: repData «—lightweightCoresetAlgorithm(Large
Dataset X, coresetsize m)
2: tree = KDTree(repData)
3: dist, NNIndices =
numOfNeighbors)
4: for index € NNIndices do

tree.query(queryPoint, k =

5. print point at index in repData ie. Nearest
Points
6: end for

7. queryPointClass <«— Majority class of Nearest
Neighbor Points.

4. Experiments and Results

We implement the CKD-Tree using the above method-

ology and compare it against KD-Tree[4] [9] to see the

performance difference it can provide and the cost.
All of the datasets [10] in table 1 have two target

classes. While datasets bio_train and MiniBooNe Parti-
cle are both very large datasets, HTRU2 and spambase
are relatively very small. This helps in showing the rel-
ative performance of CKD-Tree algorithm on different
types of datasets. Dataset default of credit card clients
is a more balanced dataset in terms of sample size and
dimensionality.

We kept 1000 samples from each dataset as test dataset
for testing the models. These samples are used to check
the accuracy of the prediction made by the algorithm.
While testing the VP-Tree and R-Tree, we considered
test sample sizes to 10, 50, 100, 200, and 500. Later we
calculated the average times for them. While building
the tree index for KD-Tree, leafSize was kept same
as the number of nearest neighbors queried (k). i.e.,
leafSize = k. Here leafSize is the number of points
in each leaf node of the tree index.

We measure the performance based on three fac-
tors, Accuracy of the results, average time(in seconds)
taken in building the tree index and average time(in
seconds) taken in answering the query. Each of these
factors are compared and tabulated separately for all
the data structures that were used and also for the pro-
posed work.

Table 2 shows the results of CKD-Tree for k = 10.
We use 3 different coreset sizes m = 1000, m = 2000
and m = 5000 and find the average of all of them(Avg.
1). For spambase dataset coreset size m = 5000 is not
generated as data size itself is only 4601. Consider the
bio_train dataset, here in table the average value of
‘Indexing time’ is calculated by adding the Indexing
time of m = 1000, m = 2000 and m = 5000 and finally
dividing it by 3. The same is applied for Querying time

215

Table 2
Proposed work comparison among various coreset sizes for k = 10
m=1000 m=2000
k=10 Indexing time | Querying time | Accuracy | Indexingtime | Querying time Accuracy
spambase 0.131846189 0.002161955 75.1 0.14062953 0.002655576 75
bio_train 9.025853157 0.003039943 97.6 9.060353756 0.004280325 97.8
HTRU2 0.393140554 0.002060544 98.9 0.328070402 0.001718247 98.7
credit card 0.738107204 0.002901038 73.8 0.593619585 0.002796253 74.2
MiniBooNE 4.820586681 0.001834114 94.8 4.866789103 0.001765214 94.8
m=5000 Avg. 1(of m = 1000,2000,5000)
Indexing time | Querying time | Accuracy | Indexingtime | Querying time Accuracy
spambase N/A N/A N/A 0.13623786 0.002408766 75.05
bio_train 9.396525383 0.006560953 98.4 9.160910765 0.004627074 97.93333333
HTRU2 0.312451839 0.002077646 98.7 0.344554265 0.001952145 98.76666667
credit card 0.7029984 0.003421038 75.1 0.67824173 0.003039443 74.36666667
MiniBooNE 4.655207396 0.002046397 94.8 4.78086106 0.001881908 94.8
Table 3
Proposed work comparison among various coreset sizes for k = 50
m=1000 m=2000
k =50 Indexing time | Querying time | Accuracy | Indexingtime | Querying time Accuracy
spambase 0.159596443 0.009064549 73.6 0.156191826 0.010310147 71.4
bio_train 9.68689847 0.018128316 97.6 9.013507843 0.013137584 97.6
HTRU2 0.346904278 0.006985356 98.7 0.312402248 0.007482661 98.6
credit card 0.879361391 0.006123379 75.4 0.609235764 0.007201368 75.2
MiniBooNE 4.948148489 0.011002789 94.8 4.764508009 0.008747934 94.8
m=5000 Avg. 2(of m = 1000,2000,5000)
Indexing time | Querying time | Accuracy | Indexingtime | Querying time Accuracy
spambase N/A N/A N/A 0.157894135 0.009687348 72.5
bio_train 9.372775555 0.015574522 97.6 9.357727289 0.015613474 97.6
HTRU2 0.328086615 0.007748176 98.8 0.329131047 0.007405398 98.7
credit card 0.656133652 0.008404238 75.2 0.714910269 0.007242995 75.26666667
MiniBooNE 4.717645407 0.00815424 94.8 4.810100635 0.009301654 94.8

and Accuracy of Avg. 1.

Table 3 show the results of CKD-Tree for k = 50.
We use 3 different coreset sizes m = 1000, m = 2000
and m = 5000 and find the average of all of them(Avg.
2). For spambase dataset coreset size m = 5000 is not
generated as data size itself is only 4601. Consider the
bio_train dataset, here in table the average value of
‘Indexing time’ is calculated by adding the Indexing
time of m = 1000, m = 2000 and m = 5000 and finally
dividing it by 3. The same is applied for Querying time
and Accuracy of Avg. 2.

Table 4 presents the average of Avg. 1 and Avg. 2.
This average is called ’Overall Avg’. Indexing time of
‘Overall Avg’ is obtained by averaging the ’Indexing
time’ of Avg. 1 and Avg. 2. The same is applied for
’Querying time’ and ’Accuracy’.

Table 5, given below, is the final comparison table.
The table presents the comparison among R-Tree, VP-

Tree, KD-Tree and the proposed work.

It is observed from Table 5 that the proposed work
out performs all the data structures in Querying time.
Considering the Indexing time, the proposed work also
performed better than that of VP-Tree and R-Tree. The
accuracy of the proposed work is approximatley close
to other data structures.

The Figures 4 and 5, given below, show the compar-
ison of Indexing time and Querying time respectively
among R-Tree, VP-Tree, KD-Tree and Proposed Work.

Among the data structures that were used for com-
parison, KD-Tree is considered to be the best. So we
concentrated mostly on KD-Tree. Here in Table 6 we
present the indexing time comparison of the KD-Tree
and proposed work. As the size of the data increases
the performance of the proposed work increases and
at a point of time it even starts performing better than
the KD-Tree. So, for large datasets the proposed work

216

Table 4
Overall Average of proposed work
Cumulative Overall Avg.((Avg. 1+Avg. 2)/2)
Indexing time | Querying time Accuracy
spambase 0.147065997 0.006048057 73.775
bio_train 9.259319027 0.010120274 97.76666667
HTRU2 0.336842656 0.004678772 98.73333333
credit card 0.696575999 0.005141219 74.81666667
MiniBooNE 4.795480847 0.005591781 94.8
Table 5
Comparison among R-Tree, VP-Tree, KD-Tree and Proposed Work
R-Tree VP-Tree
Indexing time | Querying time | Accuracy | Indexingtime | Querying time Accuracy
spambase 46.01833411 0.025816591 66.632 0.9678272 0.00872661 88.216
bio_train 300.3921245 0.674326682 98.6 46.720815 0.027852184 98.6
HTRU2 98.00138087 0.002142198 96.6 4.2660978 0.011163483 93
credit card 151.047457 0.08385841 79.8 6.7166709 0.048709915 79.4
MiniBooNE 250.0596289 0.099793004 99.8 41.5471755 0.021343294 99.8
KD-Tree Proposed Work
spambase 0.097132921 0.009621621 71.2 0.147065997 0.006048057 73.775
bio_train 13.37806582 0.079558667 99.3 9.259319027 0.010120274 97.76666667
HTRU2 0.088246346 0.006940414 98.6 0.336842656 0.004678772 98.73333333
credit card 0.799064255 0.012309615 75 0.696575999 0.005141219 74.81666667
MiniBooNE 7.842401028 0.022687735 94.8 4.795480847 0.005591781 94.8

takes less time for creating index.
The breakover point, 30000(credit card dataset), of
the proposed work is shown in the figure Figure 6.

5. Conclusion

The above tables show that for at least one value of
m each dataset showed competitive or in some cases
better accuracy (default credit card and HTRUZ) when
used with coresets. In case of larger Datasets such as
bio_train and MiniBooNE, the coreset size is very less
compared to the original dataset size. But they still
manage to provide almost same results in terms of ac-
curacy as the original dataset. Also KD-Tree built on
the coresets of these datasets see a significant speed
boost in offline (indexing) and Online (Query) phases.
We can also notice that as the dataset size starts to
decrease, the gap in indexing and query speeds starts
to become smaller and smaller. For smaller datasets
(spambase and HTRU?), this might even lead to higher
query or indexing times.

This shows that CKD-Tree is a very efficient algo-
rithm for nearest neighbor based classification in large
datasets.

6. Future Work

CKD-Tree gives good results on the experimented

datasets. The probability distribution used here is based
on the variance of data. Consequently this approach
might not perform well on noisy or locality sensitive
data. In such cases a better probability distribution
approach for data summarization could be based on
the locality of data. Locality Sensitive Hashing (LSH)
functions could provide more accurate form of data
summarization. For image data vector quantization based
approach might help in data summarization.

In the online phase, implementation of a more ro-
bust and faster search technique could also be fruitful.
Randomizing the algorithm or having multiple tree in-
dexes to increase the accuracy is another option.

217

350

300

250

200

Time in seconds

100

50

spambase

biotrain

htru_2

creditcard

Dataset Name

Figure 4: Indexing Time Comparison

0.6 -

05 4

04

Time in seconds

0.1

miniboone

-

spambase

biotrain

htru_2 creditcard

Dataset Name

Figure 5: Querying Time Comparison

Table 6

Indexing time comparison between KD-Tree and Proposed Work

miniboone

B R-Tree

H Vp-Tree

W KD-Tree

B Proposed Work

B R-Tree

N Vp-Tree

W KD-Tree

H Proposed Work

Dataset Name

Dataset Size

KD-Tree Indexing time

Proposed Work Indexing time

spambase 4601 0.097132921 0.147065997
HTRU2 17898 0.088246346 0.336842656
credit card 30000 0.799064255 0.696575999
MiniBooNE 130065 7.842401028 4.795480847
bio_train 145751 13.37806582 9.259319027

218

Time in seconds

16

14

12

/

10

/

= KD-Tree
— Proposed Work

s
Yy

vl

Z /-

i

4601 17898 30000

Dataset Size

Figure 6: KD-Tree and Proposed Work Comparison

References

(1]

Yianilos, Data structures and algorithms for
nearest neighbor search in general metric spaces,
Fourth annual ACM-SIAM symposium on Dis-
crete algorithms (1993). doi:10.1145/313559.
313789.

A. Guttman, R-trees: A dynamic index structure
for spatial searching, Proceedings of the 1984
ACM SIGMOD international conference on Man-
agement of data — SIGMOD ’84 (1984). doi:10.
1145/602264.602266.

C.-C. Huang, H.-Y. Chang, A novel svm-based
reduced nn classification method., 11th Interna-
tional Conference on Computational Intelligence
and Security (2015). doi:10.1109/CIS.2015.
23.

S. Maneewongvatana, D. M. Mount, It’s okay
to be skinny, if your friends are fat., 4th An-
nual CGC Workshop on Comptutational Geome-
try (1999). doi:10.1.1.39.8380.

C. X. H. Z. Wenfeng Hou, Daiwei Li, T. Li,
An advanced k nearest neighbor classification
algorithm based on kd-tree, IEEE Interna-
tional Conference of Safety Produce Informa-
tization (IICSPI) (2018). doi:10.1109/IICSPI.
2018.8690508.

S.T.E.J.R.T.L. W.]. C. V. Hyvonen, T. Pitkénen,
T. Roos, Fast nearest neighbor search through
sparse random projections and voting., IEEE

(10]

130065 145751

International Conference on Big Data (2016).
doi:10.1109/Bighata.2016.7840682.

O. B. Mario Lucic, A. Krause, Strong coresets for
hard and soft bregman clustering with applica-
tions to exponential family mixtures., arxiv.org
(2015).

A.K.O.Bachem, M. Lucic, Scalable k-means clus-
tering via lightweight coresets., ACM SIGKDD
International Conference on Knowledge Discov-
ery and Data Mining (KDD) (2018). doi:10.
1145/3219819.3219973.

scipy.org, Spatial kdtree class, 2020. URL:
https://docs.scipy.org/doc/scipy-0.14.0/
reference/generated/scipy.spatial. KDTree.html.
c. ics.uci.edu, Datasets used, 2007. URL:
https://archive.ics.uci.edu/ml/datasets.php,
osmot.cs.cornell.edu./kddcup/datasets.html.

http://dx.doi.org/10.1145/313559.313789
http://dx.doi.org/10.1145/313559.313789
http://dx.doi.org/10.1145/602264.602266
http://dx.doi.org/10.1145/602264.602266
http://dx.doi.org/10.1109/CIS.2015.23
http://dx.doi.org/10.1109/CIS.2015.23
http://dx.doi.org/10.1.1.39.8380
http://dx.doi.org/10.1109/IICSPI.2018.8690508
http://dx.doi.org/10.1109/IICSPI.2018.8690508
http://dx.doi.org/10.1109/BigData.2016.7840682
http://dx.doi.org/10.1145/3219819.3219973
http://dx.doi.org/10.1145/3219819.3219973
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.KDTree.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.KDTree.html
https://archive.ics.uci.edu/ml/datasets.php, osmot.cs.cornell.edu./kddcup/datasets.html
https://archive.ics.uci.edu/ml/datasets.php, osmot.cs.cornell.edu./kddcup/datasets.html

	1 Introduction
	2 Related Work
	2.1 KD-Tree (K Dimensional-tree)
	2.2 KNN Classification Based on KD-Tree
	2.3 SVM Based reduced NN Classification
	2.4 Lightweight Coresets

	3 Construction of Coreset KD-Tree (CKD-Tree)
	4 Experiments and Results
	5 Conclusion
	6 Future Work

