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Abstract
As robots become more pervasive in the service sector, control in dynamic environment has become an important element in
optimising the deployment of mobile robots. A mobile robot should be knowledgeable not only of the barriers, but also of
the surface on which the robot navigates to estimate slippage and adaptive control. We note that various terrains/surfaces
have different characteristics, which can directly influence the handling, driving, efficiency, and stability of the robot vehicle.
Knowledge of the terrain can provide valuable information for establishing effective and secure navigation strategies. We
built a mobile robot prototype equipped by Inertial Measurement Unit (IMU) to obtain the terrain data and applied deep
learning models to classify the terrain using the data. Three deep learning configurations have been proposed in this paper, i.e.
long short-term memory (LSTM), 1D convolutional network (1D CNN), and convolutional neural network-long short-term
memory network (CNN-LSTM). The deep learning architectures were trained and evaluated based on the data collected from
five different surfaces. It is shown that the CNN-LSTM performs the best with an F1 score of 98.49%. The other two networks
also generalize relatively well with the unseen vibration sequences with F1 scores of 97.47% and 95.98% for the 1D CNN and
LSTM, respectively. Finally, we investigate the effect of varying input sequence to find the optimal length, so that we are able
to obtain the highest accuracy and generalization of the deep learning networks.
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1. Introduction
Intelligent robotics have seen rapid advancement in their
scope of operations such as in military reconnaissance
in hostile environments [1], unmanned surveillance for
disaster management [2], and telemedicine robot used
for examining remote patients [3], and in factories. It
is necessary for a robot to acquire a clear understand-
ing of its current environment in order to successfully
manoeuvre and accomplish its planned operation, while
preventing any damage to itself and creating hazards to
others. As service robots have achieved broad adoption
in the above-mentioned industries, precise navigation
and surrounding awareness have become crucial issues
to improve the capacity of the device to deploy. An sig-
nificant consideration for the robot’s efficient navigation
is the motion control algorithm, based on the type of
terrain being travelled. Thus, a detailed classification of
the type of terrain is required for the robot to adapt its
speed of navigation and the parameters of route planning,
which depend on the characteristics of the terrain.
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In this paper, we focus on the area of terrain mapping
using Inertial Measurement Unit (IMU) sensors. In or-
der to map the readings to the respective terrain labels,
we present and evaluate three types of deep learning
frameworks: long short-term memory (LSTM), one di-
mensional convolutional neural network (1D-CNN), and
the CNN-LSTM architectures. Both LSTM and CNN have
been extensively used in the literature; however, the ap-
plications of utilizing both frameworks in a unified struc-
ture have been lacking. This paper aims to leverage the
temporal and spatial advantages towards the vibration-
based terrain classification.

It is worth noting that deep learning can be used for
tasks where it is almost impossible to execute a raw data
engineering function manually. Despite being highly
’blackbox’, the end-to-end deep learning approach is suit-
able for automatically extracting useful features in com-
plex non-linear classification tasks. Therefore, deep learn-
ing method can be implemented to obtain more reliable
results to recognize the surrounding environment of the
robot, thereby enhancing the robot’s adaptive controls
and mobility.

2. Related Works
The problems of adaptive control in mobile robots have
been constantly researched. The challenges presents var-
ious opportunities for researchers to develop methods in
predicting the dynamic changes in the environment. In
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[4], the authors investigated the use of kinematics-based
analytic for wheel slippage calculation. The results were
validated using collected data on a mobile platform. Sim-
ilar work was found in [5] where the authors applied
rolling resistance torque without using any additional
sensors. Rolling resistance torque in multiple terrains
can be acquired by reaction torque observer. Proposed
concept was verified by using a differential drive mobile
robot. In [6], wheel slips were estimated based on the
odometric data. The collected data were analyzed using
two different approaches, which were instantaneous esti-
mator and temporal window approach. Results showed
that temporal window approach yielded a better result.

In [7], researchers presented a solution of using laser-
based point cloud generation to detect robot traversal
surface. The researchers explored several terrains includ-
ing carpet, coated asphalt, and asphalt. The solution was
highly precise with high computation cost as it gener-
ated point clouds which needed to be further processed
digitally. The authors stated that there were opportuni-
ties to further investigate how a mobile robotic platform
could provide reliable and accurate surface prediction
of the terrain for improving the navigation with prior
knowledge of the surface. These research works have
shown that there is strong motivation in investigating
methods to enable service robots to have perception on
the terrain and traversal surface.

Several sensing methodologies have been developed to
tackle the problem of terrain classification. The method-
ology is typically categorized into twomain groups: vision-
based and reaction-based techniques. Traditional vi-
sual feature engineering approaches include the scale-
invariant feature transform (SIFT) [8], speeded-up robust
features (SURF) [9], and the bag of visual words (BOVW)
[10], among many others. These algorithms pass the
useful features of the images obtained from light detec-
tion and ranging (lidar) or stereo camera to a classifier to
be trained and classified. In [11], raw grayscale terrain
images were trained using deep convolutional network
and the accuracy was 6% less than the support vector
machine (SVM) classifier used jointly with the histogram
of gradients (HOG) feature extractor.

While vision-based approaches are useful because of
their high accuracy, they are vulnerable to distortion
caused by lighting changes and other factors such as
the realization of the surface’s physical properties (e.g.
material type and degree of hardness) [12]. Reaction-
based techniques, on the other hand, utilize sensor mea-
surements to obtain either the acoustics, haptics, or the
vibration profiles for the classification. Acoustic-based
classification relies on the use of microphone to record
the sound of signal generated between the robot and
terrain during traversal. Noise removal and smoothing
techniques are necessary in traditional acoustic-based
classification to achieve satisfactory results. This is due

to some factors such as environmental noise and the
robot’s internal motor noise as described in [13]. A deep
learning approach was applied in [14] where a CNN was
developed and trained using the short time Fourier trans-
form (STFT) spectograms extracted from the raw terrain
audio signals. It was demonstrated that the network was
robust even when the terrain audio signal was corrupted
with the white Gaussian noise.

Haptic-based classification uses ground contact forces
between a legged robot and terrain to describe different
terrain properties. Typically, features such as the robot’s
stride frequency, peak and average motor torque in a
single stride are used to train an SVM classifier [15]. In
[16], a 1-dimensional CNN and an RNN architecture were
implemented and evaluated when raw force/torque sig-
nals from a hexapod robot were passed to them. There
was a significant improvement of about 15% in classifica-
tion accuracy when compared to the SVM method with
a Gaussian kernel.

The last reaction-based technique is based on the vibra-
tion characteristics of the terrain. It was first suggested
in [17] where the vibration signal was measured using
an accelerometer during the robot’s traversal. In terms
of performance, SVM has proven to be the best when
trained on hand crafted time domain features such as
skewness, impulse factor, and root mean square (RMS),
along with frequency-domain features from the discrete
Fourier transform (DFT). Experiments using a CNN for
vibrational wheel slip estimation in ground robotics was
carried out in [11]. The wheel torque, vertical accelera-
tion and degree of pitch were used to train the classifier.
The difference of 10% for classification was obtained be-
fore and after filtering the input data for the CNN which
reinforces the generality of deep learning frameworks
in extracting meaningful information directly from raw
input vibration data.

3. Methodology
The mobile robot used in this research is a two wheel dif-
ferential drive with an attached 6-axis accelerometer that
measures six vibrational terrain signatures. The setup
is shown in Fig. 2. The form is very similar to the con-
ventional indoor service robots such as robotic vaccuum
cleaner. The vibration characteristics are all dependent
on the terrain’s texture/material and robot movement.
This study primarily aims to address terrain classifica-
tion by utilising raw time-series vibration data as input
to three implemented deep learning frameworks: LSTM,
CNN, and a CNN-LSTM architectures. An overview of
the experiment workflow is given in Fig. 1.

The data set used in this study contains a total of 24000
samples distributed evenly from five different terrain
sources. The six features includes the lateral, longitu-
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Figure 1: Experiment workflow.

dinal, and vertical accelerations and angular velocities
(𝑎𝑥, 𝑎𝑦, 𝑎𝑧, 𝑔𝑥, 𝑔𝑦, 𝑔𝑧) of the traversing robot. The setup
is shown in Fig. 2. Fig. 3 illustrates the five different
vibration signals corresponding to the surface type. The
vibration samples were collected via I2C using IMU unit
MPU-6050 containing both an accelerometer and gyro-
scope integrated in a single chip. The controlled condi-
tions for the wheeled robot are: 50 Hz sampling rate, 1.6
minutes traversal time per surface, and circular motion
of the robot.

Figure 2: Experimental Setup.

Vibration samples must be converted into an appro-
priate format before entering the neural networks. Also,
as the measurements contain multiple units, the range of
vibration samples must be normalised to a mean of zero
and a variance of one. The equation for normalization is
given by

𝑠𝑖, =
𝑥𝑖 − 𝜇
𝜎

, (1)

where i is the index of the element from the vibration
sequence, 𝜇 is the average, and 𝜎 is the standard devia-

tion. The vibration samples were then segmented into
fixed windows of 1.5 seconds (75 samples). An overlap
rate of 20% was applied between two consecutive 1.5
second segments to conserve the temporal dependencies
between the time steps in the vibration sequence. One-
hot encoding was then performed to map the different
labelled surfaces numerically. Lastly, the vibration data
set was split into training, validation, and testing sets to
allow the neural networks to generalize with the unseen
vibration characteristics. These data set partition were
set to be 70%, 15% and 15% for training, validation, and
testing, respectively.

3.1. Implementation
LSTM is a type of recurrent neural network (RNN) that
is typically used for sequence prediction. In particu-
lar, LSTM solves the issues of the disappearing gradient
present in the RNNs while allowing the long-term tem-
poral dynamics of the series to be exploited. In contrast,
CNNs have been commonly used for 2D problems (e.g.
image classification task); however, it can be modified
to classify the 1D vibrational problem. The dimension-
ality of the convolutional layers is reduced to match the
model’s 1D input.

The CNN-LSTM model leverages the robustness of
CNN in extracting spatial features and LSTM in exploit-
ing the temporal dependencies of the vibration sequence.
In this paper, the time-series vibration is downsampled
by the 1D CNN to extract the higher level features. This
can be considered as the pre-processing step which al-
lows the LSTM to interpret the features extracted at each
block of the sequence. The concept is illustrated in Fig.
4.

The three models were built and trained using a Ten-
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Figure 3: The five different terrain vibration signals.

Figure 4: Time slice processing for CNN-LSTM

sorflow backend with the Keras API. A detailed overview
of the three models was summarized in Table 1. The
hyperband algorithm was used to select the hyperparam-
eters allowing for the best balance between training time
and accuracy. The learning rate, batch size, and number
of epochs were set at 0.001, 64, and 30, respectively. Addi-
tionally, early stopping regularization was implemented
to avoid overfitting during model training. Further, the
Adam optimization algorithm based on the Stochastic
gradient descent was used as the optimizer.

The implemented CNN-LSTM architecture is shown
in Fig. 5. For both the LSTM and 1D CNN networks,
the data length of a vibration training sample was a flat
vector of 75 time steps. In a stacked LSTM network, the
input sequence to the first LSTM layer returns a shape
of (timestep, unit) to be passed on to the next layer. The
output from the last LSTM layer returns only the unit.
For the 1D CNN, the input shape to the network is repre-
sented as (timestep, features). In the case for the CNN-
LSTM network, a time distributed wrapper is first used
before the LSTM layers to allow the input vibration signal

Table 1
Overview of the architecture used in this study

Layer Output shape
LSTM (20 units) (75, 20)
Dropout (25%) (75, 20)

LSTM LSTM (70 units) 70
Dropout (40%) 70
Dense 112
Dense 5
Conv1D (80@6×1) (70, 80)
Dropout (50%) (70, 80)
Conv1D
(128@6×1)

(65, 128)

1D CNN Dropout(50%) (65, 128)
Max pooling (32, 128)
Flatten 4096
Dense 96
Dense 5
Conv1D (96@6×1) (3, 20, 96)
Conv1D (48@6×1) (3, 15, 48)
Dropout (30%) (3, 15, 48)
Max pooling (3, 7, 48)

CNN-LSTM Flatten (3, 336)
LSTM (20 units) 60
Dropout (20%) 60
Dense 96
Dense 5

to retain its temporal representation during the convo-
lution process. The time distributed layer expects a 3D
input and so the input sequence was reshaped from 75u
time steps into 3 subsequences of 25 time steps. The con-
volutional layer used the ReLU activation and consisted
of a 6 × 1 kernel that moves across in one dimension
during the convolution operation.
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Figure 5: Implemented CNN-LSTM model for vibration-based terrain classification

The dropout layers were then added to tackle overfit-
ting issues by arbitrarily setting a fraction rate of input
units to zero. The pooling layer was added to reduce the
spatial size of the output representation into half. Note
that both the dropout and pooling layer allows for faster
training time due to the reduced parameter size. The
flatten layer was used to transform the input from the
previous layers as input to the LSTM layer where the
temporal characteristics of the vibration sequence were
extracted. Lastly, the fully connected layers with the soft-
max activation function was used to structure the outputs
of the previous layer for the final classification task. In
this experiment, the categorical cross-entropy loss func-
tion was used to address the 5-class terrain classification
problem.

4. Results
The confusion matrix of the three models are depicted in
Fig. 6. From the confusion matrix, we can calculate the
F1 score, the precision 𝑃𝑟, and the recall, 𝑅𝑐. The F1 score,
which is calculated using 𝑃𝑟 and 𝑅𝑐, has been commonly
used to analyze the performance of the models. We used
macro-averaging technique to expand these benchmarks
towards multi-class terrain classification. The equations
for the precision, recall, and F1 score, respectively are
given by

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (2)

𝑅𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (3)

𝐹1 =
2𝑃𝑅𝑅𝐶
𝑃𝑅 + 𝑅𝐶

, (4)

where 𝑇𝑃 shows the outcome where the model correctly
classifies the positive class, 𝐹𝑃 is the outcome where the
model incorrectly classifies the positive class, 𝑇𝑁 is the
outcomewhere themodel correctly classifies the negative
class, and 𝐹𝑁 is the outcome where the model incorrectly
classifies the negative class.

Fig. 7 illustrates the performance of the models on the
5-class vibration test data set. In the worst case, about
7% (average) of the wood class was mistakenly classified
as tiles across the three models. Overall, it can be seen
that the three models exhibited good performance and
generalized well with the unseen data. Further, the CNN-
LSTM architecture has the best performance with F1
score of 98.49% (average). The 1D CNN follows at the
second place with F1 score of 97.49% (average). We note
that the slight improvement of the CNN-LSTM model
compared to the 1D CNN may suggest that the temporal
characteristics of the LSTM is less important than the
feature generation capability of the CNN-LSTM. Table 4
summarizes the overall performance of the three models.

Table 2
Average Precision, Recall, and F1 scores (Based on testing
data)

Model Precision Recall F1 Score
LSTM 96.23% 96.00% 95.98%
1D CNN 97.53% 97.50% 97.47%
CNN-LSTM 98.60% 98.50% 98.49%

One factor influencing the performance of the models
is the sequence length of the input vibration. To fur-
ther validate the performance of the three models, we
analyzed the F1 score with varying segment lengths as
shown in Fig. 8. It can be seen that a longer sequence
length results in a better accuracy with the cost of per-
formance saturation at a certain length. It can be shown
that the average F1 score rises as the duration of the
vibration series increases from 30 to 60 samples but de-
creases afterwards. This may be caused by the lack of the
training data after the segmentation process of the given
length. Therefore, we can consider an optimal sequence
length of 75 (1.5 seconds) for obtaining high accuracy and
generalization of the models. Furthermore, the proposed
CNN-LSTM architecture slightly outperformed the CNN
and LSTM models across the varying segment lengths.
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Figure 6: Confusion matrices of (a) LSTM, (b) CNN, and (c)
CNN-LSTM on the vibration test dataset.

Figure 7: F1-scores for the three architectures

Figure 8: Average F1 Score at varying segment length

5. Conclusion and Future Work
In this paper, we have demonstrated the application of
IMU-based surface classification task. We have compared
three candidates for classifying the IMU data, i.e. LSTM,
1D CNN, and a combination of CNN and LSTM. By com-
paring the results, CNN-LSTM provided the best results
(F1 score of 98.49%). However, we can further observe
that the 1D CNN presented favorable results although
slightly lower than the CNN-LSTM. The results suggest
that 1D CNN is able to map the classification better when
compared to the LSTM on standalone basis. CNN and
LSTM works on different principle in which the latter is
based on the temporal dynamics of the data. On the other
hand, 1D CNN is based on static convolution, similar to
the 2D counterparts. This implies that there is a clear
static pattern when the IMU data enabling well defined
mapping to their respective classes.

The results, despite counter intuitive, may prompt fur-
ther research in the this direction. With the growing
of edge computing and capacity of embedded system,
enabling robots to recognize surface would enable fur-
ther applications for indoor or industrial applications.
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Reducing the complexity of the machine learning models
to further benefit in terms of computation reduction is
required. This is possible given that there is a clear static
pattern demonstrated from the results using 1D CNN.
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