
360

Analysis of Semantic and Non-Semantic crawlers

Shridevi s, Shashwat Sanket, Jayraj Thakor, Dhivya M

Vellore Institute of Technology, Chennai, India

Abstract
A focused crawler goes through the world wide web and selects out those pages that

are apropos to a predefined topic and neglects those pages that are not matter of

interest. It collects the domain specific documents and is considered as one of the most

important ways to gather information. However, centralized crawlers are not adequate

to spider meaningful and relevant portions of the Web. A crawler which is scalable

and which is good at load balancing can improve the overall performance. Therefore,

with the size of web pages increasing over internet day by day, in order to download

the pages efficiently in terms of time and increase the coverage of crawlers distributed

web crawling is of prime importance. This paper describes about different semantic

and non-semantic web crawler architectures: broadly classifying them into Non-

semantic (Serial, Parallel and Distributed) and Semantic (Distributed and focused). An

implementation of all the aforementioned types is done using the various libraries

provided by Python 3, and a comparative analysis is done among them. The purpose

of this paper is to outline how different processes can be run parallelly and on a

distributed system and how all these interact with each other using shared variables

and message passing algorithms.

Keywords
Semantic Crawler, Serial, Parallel, Distributed, message passing, shared variables

1. Introduction

A web crawler, also known as a spiderbot is

a system made up of a program or an

automated script that downloads web pages

on a large scale. Web crawlers are used in

various applications and in diverse

domains. In fact, web crawling is one of the

impact factors for the growth of internet in

domains like marketing and E-commerce.

In E- commerce, crawlers can be used for

price comparison and to monitor the recent

market trends. Similarly, it can be used to

predict stock market movements by

analysing social media content blogs and

other data from different websites. Web

crawlers are primary component of web

search engines whose purpose is to collect

web pages in bulk, index them and execute

the user-defined query to find the web

pages.

ISIC’21: International Semantic Intelligence

Conference, February 25-27, 2021, Delhi, India
EMAIL: shridevi.s@vit.ac.in (S. Shridevi);

dhivya.m2019@vitstudent.ac.in (M. Dhivya).
ORCID: 0000-0002-6927-1998 (M. Dhivya

©️ 2021 Copyright for this paper by its authors. Use permitted

under Creative Commons License Attribution 4.0
International (CC BY 4.0).

CEUR Workshop Proceedings
(CEUR-WS.org)

A similar use is web archiving where the

web pages are collected and preserved or

stored for future use. Along with the above

mentioned uses web crawlers are also used

to create a replica of visited pages which are

processed by search engine for faster search

optimization and web data mining to analyse

statistically. Also, web crawlers are used to

collect specific information like harvesting

or collecting spam email addresses or

application testing. Due to rapid increase of

web pages and most of the data on web are

unstructured, the semantic crawlers are used

for retrieval of context relevant web pages.

Semantic crawlers have different

architectures like distributed, parallel,

focused and increment crawler.

Today, web crawlers form an important

part of various software services to evolve

into large scale integrated distributed

software proving that they are not just a

program preserving a list of pages to be

crawled. The web crawler is the principal

and time demanding element of web search

engine. It consumes huge amount of CPU

time, memory and storage space to crawl

through ever increasing and dynamic web.

The time it consumes to crawl through web

should be as small as possible to maintain its

mailto:shridevi.s@vit.ac.in
mailto:dhivya.m2019@vitstudent.ac.in

361

recent updates of the search outputs.

Parallel and distributed processing is one

way to increase the speed of crawling

process due to technological advancement

and improvement in hardware

architectures.The work consists of

implementation and comparison between

different web crawler architecture namely

Serial, Parallel and Distributed. The

purpose of this work is to outline how we

can increase the processing capabilities of

web crawlers and get the query output in

lesser amount of time. This paper covers

detailed information about how different

processes can be executed on parallel and

on a distributed system and how all these

interact with each other using shared

variables and message passing algorithms.

2. Existing Work and Literature Survey

In this section, the recent works related to

crawler processing is described. In “Speeding
up the web crawling process on a multi-core
processor using virtualization” [1] by Hussein
Al- Bahadili, Hamzah Qtishat, and Reyadh S.
Naoum, they have presented and analysed
their new approach to increase the crawler
efficiency in terms of time through
virtualization using multi- core processor. In
their work they have divided the multi-core
processor into many VMs (Virtual Machines),
so that the task can be executed concurrently
on different data. In addition to this they have
also described their implementation and
analysis of VM-based distributed web crawler
after rigorous testing.

J. Cho, Hector G., L. Page [2] in their work
have described in what sequence or in what
order the URLs must be visited by the crawler
to obtain the important pages first. This
method of obtaining pages of prime
importance rapidly, helps to save time when a
crawler is unable to go through the increasing
and dynamically changing web. In this work
they created a dataset by downloading an
image of Stanford Webpages and performed
experiment by modifying and using different
large-scale and small-scale crawlers like
PageRank Crawler, Breadth-first and Depth-
first search crawler and Backlink-based
crawlers.

“Google‟s Deep-Web Crawl” by J.

Madhavan,

D. Ko et al [3] is another notable work
describing how to crawl the contents of deep-
web which is used in Google search engine.

They have described a system to extract deep-
web content which includes pre-computing
submissions for each HTML form and adding
the resulting HTML pages into a search engine
index. The entire system is based on achieving
three main goals. The first goal is to develop an
approach that is time saving, automatic and
scalable to index the hidden web content from
HTML forms that are varied in domains and are
in languages from all over the world. The
second aim is to develop two types of
algorithm, one that can identify the inputs that
accepts only specific value types and other to
accept a keyword to select input values for text
search inputs. The third aim is to develop an
algorithm that goes through the possible input
combinations to identify and generate URLs
suitable for web search index.

Anirban Kundu, Ruma Dutta, Rana
Dattagupta, and Debajyoti Mukhopadhyay in
their paper “Mining the web with hierarchical
crawlers – a resource sharing based crawling
approach” [4] have proposed an extended
web crawling method to crawl over the
internet on behalf of search engine. The
approach is combination of parallelism and
focused crawling using multiple crawlers.
The algorithm divides the entire structure of
the website into many levels based on
hyperlink structure to download web pages
from the website and the number of crawlers
is dynamic at each level. The number of
crawlers required is determined based on the
demand at run time by and by developing a
thread-based program using the number of
hyperlinks from the specificpage.

M. Sunil Kumar and P. Neelima in their
work “Design and Implementation of
Scalable, Fully Distributed Web Crawler for
a Web Search Engine” [5] have presented
Dcrawler which is highly scalable and
distributed. The core features of the presented
crawler are decentralization of tasks, an
assignment function that partitions the
domain for the crawler to crawl effectively,
cooperative ability in order to work with other
web servers and platform independence. For
assignment function Identifier-Seeded
Consistent Hashing have been used. On
performing tests using distributed crawlers
they concluded that the Dcrawler performs
better than other traditional centralized
crawlers and also performance can be
improved with addition of more crawlers.

T. Patidar and A. Ambasth in their paper
“Improvised Architecture for Distributed
Web Crawling” [6] have proposed reliable
and efficient methods for a web crawler that
is scalable. In addition to this they have

362

discussed challenges and issues regarding
web structure, job scheduling, spider traps
and URL canonicalization. The components
of their proposed work include Child
Manager, Cluster Manager, Bot Manager
and incremental batch analyser for re-
crawling. Their results show that they have
successfully implemented distributed
crawler along with politeness techniques and
selection policies but still they face
challenges like resource utilization.

The work “A Hierarchical Approach to
Model Web Query Interfaces for Web Source
Integration” [7] by E. Dragut et al. describes
an algorithm which extracts and maps query
interfaces into a hierarchical representation.
The algorithm is divided into 4 steps namely
Token Extraction, Tree of Fields, Tree of Text
Tokens and Integration and therefore they
convert extraction algorithm into integration
algorithm. They carried out experiments on
three different datasets (ICQ, Tel8 and WISE)
and evaluated the algorithm based on
performance metrics like leaf labelling,
Schema Tree Structure and Gold Standard.

D. H. P. Chau, S. Pandit, S. Wang, and C.
Faloutsos have described parallel crawling by
illustrating it on an online auction website in
their work “Parallel Crawling for Online
Social Networks” [8]. They have presented
this work for online social networks. They
have dynamic assignment architecture which
ensures that failing of one crawler does not
affect another crawler and that there is no
redundant crawling. They visited about 11
million users out of which approximately
66,000 were completely crawled. J. Cho and
H. Garcia-Molina [9] proposed different
architectures for parallel web crawlers, metrics
to evaluate the performance of parallel web
crawlers and the issues related to parallel
crawling. They described issues like Overlap,
quality and communication bandwidth and
advantages of parallel crawlinglike scalability,
Network-load dispersion and Network- load
reduction.

C. C. Aggarwal, F. Al-Garawi, and P. S.
Yu in their work “Intelligent crawling on the
world wide web with arbitrary predicates”
[10] have described intelligent crawling as a
method that learns properties and features of
the linkage structure of WWW while crawling.
The technique proposed by them is more
generalized than focused crawling which is
based on pre-defined structure of web. The
intelligent crawling described by them is
applicable to web pages that support arbitrary
user-defined topical and keyword queries. The
technique described is capable of reusing the

information gained from previous crawl in
orderto crawl more efficiently the next time.

Figure 1 Flow of Serial Web

Crawler

3. Architectures and Implementation

3.1 Serial Web Crawler

The crawler maintains a list of unvisited

URLscalled the frontier which acts a queue.

The list is initialized with seed URLs. Each

crawling loop involves picking the next URL

from the frontier to crawl, checking if the

URL is previously visited or not, if not

visited then fetch the page corresponding to

the URL through HTTP, followed by parsing

the retrieved page to extract the URLs and

application specific information, and finally

adding the unvisited URLs to the frontier.

The crawling process may be terminated

when a certain number of pages have been

crawled. If the crawler is ready to crawl

another page and the frontier is empty, the

situation signals a dead-end for the crawler.

The crawler has no new page to fetch and

hence it stops. Figure 1 shows the flow of a

basic serial web crawler. The complete

implementation of the above model can be

found in Implementation 1.

Algorithm:

1. Initialise a constructor crawler with

variable pageTable and revPageTable
assigns to HashMap

2. define a method get_seed() to get the
the seed_url

363

Figure 2 Flow of parallel webcrawler

3. Parse the seed_url and save in

hostname
4. Initialize the frontier.
5. Define a method test seed url
6. if the url has same hostname as that of

seed url then return false otherwise
return true.

7. Define a method to get all urls
8. try fetching the url and throw

exception
9. parse the page using HTML parser
10. for each link in parsed page find all „a‟
11. if parsed link is not safeURL
12. throw invalid URL
13. otherwise append url and link
14. //end if
15. //end for each
16. Define a mothod crawl
17. for each current url in frontier
18. fetch all the url and update the frontier

length.
19. for each url in urls
20. if current url is in page table then push

url
21. if url is not in frontier and

test_seed_url(url) then push url to
frontier.

22. //end if
1. //end if
2. //end for each
3. //end for each

3.2 Parallel Web Crawler
Parallel crawlers can be understood as several

modified serial crawlers running as separate

processes. These multiple processes run in

parallel thus named parallel web crawler. Figure

2 shows the flow chart of the working of the

parallel web crawler. Here we created a process

pool that is managed by the process manager,

which is also responsible for spawning and

scheduling new processes. And a shared

memory that is used as Frontier. Note our

crawler is a simple parallel web crawler.

Although there are many different ways of URL

partitioning as mentioned in [11]. But the main

aim here is to create a Baselinemodel.

Algorithm: Crawler

1. Initialise a class crawler with a

constructor.

2. Define method testseedurl with seed
url as parameter

3. if hostname is same as that of seed
url then return false

4. otherwise return true

5. Define method getallurl
with url as parameter

6. fetch and parse the html page

7. for each

parsedPage.findAll(„a‟,href=TRUE)

8. if (!safeURL(link)) then throw URL

invalid

9. otherwise append url

urls.append(url+link)

10. Initialise the daemon server.

Algorithm: Frontier

1. Initialise a class frontier_manager
witha constructor.

2. Initialise the process pool and seed_url.

3. Initialise the frontier with the
global list and assign token to
each process bylock acquire and
release method

4. for each url in urls

5. if url is not in frontier push url into
frontier and self-release the lock

6. //end if

7. Define a method to write to the url to
index table

8. The index acquires the lock and
check if seed url is not equal to
key in index table then add url to
table.

9. otherwise
indextable[local_seed_url].exte
nd(url)

10. Define a method Make_write and
writethe urls to frontier and index
table

11. define a static method crawl and
initialise a crawler

364

12. return the seed url

13. Define a method start and
create apool process

14. close the pool process

The above Baseline code uses
multiprocessing for creating and managing
multiple processes. Here lock-based system
is used to access the shared memory space.
The crawler code is very similar to that of
serial web crawler the modification is done
for the Frontier. The Frontier spawns two
crawler workers to fetch the pages.

3.3 Distributed Web Crawler

Distributed web crawlers [14,16,17] are a
technique in which many computers
participate by providing their computing
bandwidth in the crawling process. The
proposed architecture acts as a baseline for
this technique. In this, there is a central
server as nameserver and four other servers
as workers as crawlers. Here we used the
dynamic assignment as a policy where the
nameserver dynamically assigns the URLs
and balances the load. Note the nameserver
here is not responsible for crawling in order
to reduce theworkload.

Figure 3 flow of distributed web

crawler using client- server

architecture.

Apart from the dynamic assignment job of the
nameserver, it is also responsible for
monitoring the hearth beat and other meta
information of these worker crawlers. Since
the nameserver can be a single point of failure
(SPOF) during the task. To avoid this, the
nameserver saves all the meta- information in

the form of checkpoints in the global store. On
failure of a nameserver, one ofthe crawlers will
be elected as the nameserver, and the new
nameserver will fetch the latest checkpoint and
continue the task. Note here the crawlers are
also receiving the heartbeat signal of a
nameserver, in order to identify when the
nameserver is down.

Before going the flow, here we used two

frontiers as local frontier and global frontier.
local frontier is the frontier of the worker
instance where as a global frontier is part of the
global store .The client will trigger the
nameserver by providing the seed URLs to
crawl, the nameserver will initialize the global
frontier with the seed URLs, and will
dynamically assign the URLs to the respective
the crawlers local frontier. The crawlers
individually be acting as serial web-crawler
with its own DNS resolver, Frontier queue, and
pagetable. For filtering the URLs they will also
communicate with the global store to check if
visited or not. Upon completing the crawling
process, thecrawler will dump the pagetable in
the common storage and will ask the
nameserver to reallocate the new seed URLs.
This process continues till termination
triggered by the nameserver.

Algorithm: Crawler

1. Initialise a class crawler with a

constructor.

2. Define method testseedurl with seed
url as parameter

3. if hostname is same as that of seed
url then return false

4. otherwise return true

5. Define method getallurl
with url as parameter

6. fetch and parse the html page

7. for each

parsedPage.findAll(„a‟,href=TRUE)

8. if (!safeURL(link)) then throw URL

invalid

9. otherwise append url

urls.append(url+link)

10. Initialise the daemon server.

Algorithm:

1. Initialize class

Frontier_Manager() and variable

seed url.

2. create a index table using

HashMap function

3. Define method testseedurl with seed

url as parameter

4. if hostname is same as that of seed

url then return false

365

5. otherwise return true

6. Define method

write_to_frontier with

seed_url and host urls a

parameter.

7. for each url in urls

8. if(!(url in frontier and

test_seed_url(url))) then

self.frontier.append(url.strip())

9. Define method write_to_index_table.

10. if local seed url is not present

in index table then add the

local seed url

11. otherwise

index_Tble(local_seed_url).

extend(urls)

12. write to frontier and

index_table the

local_seed_url and urls.

13. fetch the method crawl by

using index and crawler

variable
14. end if

15. end each for.

3.4. Semantic Distributed web crawler

Distributed Semantic web crawlers are

used for crawling both semantic web pages in

RDF/OWL format and HTML pages. The

distributed semantic crawler uses a component

called page analyser for understanding the

page context. The ontology analyser creates

models for fetched OWL/RDF pages and these

models are stored. Later these models are

matched with the stored Ontology to make

crawling decision

Figure 4: Architecture of Distributed
Semantic web crawler

Algorithm: Crawler controller

1. Initialise string with seed URL

2. check the whether the string is

present in Database

3. check if (seed

URL exist)

print already

exist

4. otherwise insert the URL details

5. assign variable for statement and

add the seed details to the

database

6. if (statement! = empty)

{execute statement}

7. otherwise print statement not

executed.

Algorithm: Model Extraction

1. Initialise variable id, url, html,

langType
2. create an object and read the url.

3. Repeat till the statement is present

4. define variables

and get the

subject, predicate, object

and URI.

5. if object is URIResource then

get URI and asiign to ob.
6. //end if

7. if langtype is HTML then

8. if subject does not contain #

and is not null then save subject

to database,

9. if predicate does not contain #

and is not null then save object to

database.

3.5 Focused web crawlers

Focused web crawlers [18] are to use to

collect web pages on a specific topic.

These crawlers search the entire web on a

predefined topic which in turn avoids

irrelevant information to the user. Focused

crawler saves the computational resource.

Semantic focused crawler has multi thread

and each thread takes a web page with

highest dynamic semantic relevance from

priority queue. The main work of the thread

is to parse the various hyperlink and add

them to the priority queue. Thus, the priority

queue has the details of the web page that

has to parsed by the thread Semantic

focused crawler has another temporary

queue which maintains the visited web

366

pages. The thread also checks this

temporary queue for visited web pages.

Algorithm: semantic focused crawler

Q: Priority Queue

DSR: Dynamic Semantic relevance

Link: Queue of traversed URL

1. Initialize priority queue Q with

seed URLs

2. Repeat till (!Q.empty() ||fetch cnt

6 Limit) {
3. web page.url = Q.top.getUrl ();

//Get most relevant

single URL from

priority queue
4. Fetch and parse web page.url;

5. web page.urls = extract URLs

(hyperlinks) from web page.url;

//List of URLs

6. For each web page.urls {

7. already exist = Check web

page.urls[i] in Links;
//Check for duplicates

8. If (!already exist) {

9. Enqueue web page.urls[i] in

Links;
10. Fetch and parse web page.urls[i];

11. Compute DSR of web

page.urls[i];
12. Enqueue (web page.urls[i], DSR

) in Q;

13. Store (web page.urls[i], DSR)

in local database;
14. } //end of If

15. } //end of For each

16. }

//

Here using Pyro4 python library to

stimulate the described architecture.

Beautiful Soup to parse the HTML pages.

4. Results

Fig 6 shows the testing of all the semantic

and non- semantic crawlers for a given

website. From the table in figure 6 the total

number of test cases are 30 out of which the

non-semantic crawlers (distributed crawler

outperforms in 20 cases; parallel crawler

outperforms in 8 and serial crawler

outperforms in only 2 cases) and semantic

crawlers (semantic distributed crawler

outperforms in 24 cases and focused crawler

in 26 cases). Therefore, distributed crawler

achieves an accuracy of about 66.67%,

parallel crawler achieves an accuracy of

26.67 %, serial crawler gives an accuracy of

about 0.67%, semantic distributed crawler

gives an accuracy of 80% and focused

crawler gives an accuracy of about 86.66%.

Table 1 Number of times a specified

crawler outperforms other crawlers

Figure 6 Graphical representation of

number of times a specified crawler

outperforms

Fig 6 shows the graphical

presentation of the number of times a

specified crawler outperforms.

5. Conclusion

It can be concluded that for majority

of time, a focused crawler and semantic

distributed crawler gives the best result for

crawling a specific website. From the result it

is also clear that focused crawler works well

as the number of crawling increases.

References

[1] Al-Bahadili, H. & Qtishat, Hamzah &

Naoum, Reyadh. (2013). Speeding Up the

Web Crawling Process on a Multi-Core

Processor Using Virtualization.

International Journal on Web Service

Computing. 4. 19-37.

10.5121/ijwsc.2013.4102.

[2] Junghoo Cho, Hector Garcia-Molina, and

5

0

vit.ac.in chenna

i.vit.ac.in
en.wiki

367

Lawrence Page. 1998. Efficient crawling

through URL ordering. In Proceedings of

the seventh international conference on

World Wide Web 7 (WWW7). Elsevier

Science Publishers B. V., NLD, 161–172.

[3] Jayant Madhavan, David Ko, Łucja Kot,

Vignesh Ganapathy, Alex Rasmussen,

and Alon Halevy. 2008. Google‟s Deep

Web crawl. Proc. VLDB Endow. 1, 2

(August 2008), 1241–1252.

[4] Kundu, Anirban & Dutta, Ruma &

Dattagupta, Rana & Mukhopadhyay,

Debajyoti. (2009). Mining the web with

hierarchical crawlers - A resource sharing

based crawling approach. IJIIDS. 3. 90-

106. 10.1504/IJIIDS.2009.023040.

[5] Kumar, M. & P, Neelima. (2011). "Design

and Implementation of Scalable, Fully

Distributed Web Crawler for a Web

Search Engine". International Journal of

Computer Applications. 15.

10.5120/1963-2629.

[6] Patidar, T., & Ambasth, A. (2016).

Improvised Architecture for Distributed

Web Crawling. International Journal of

Computer Applications, 151, 14-20.

[7] Kabisch, Thomas & Dragut, Eduard &

Yu, Clement & Leser, Ulf. (2009). A

Hierarchical Approach to Model Web

Query Interfaces for Web Source

Integration.PVLDB.325-336.

10.14778/1687627.1687665.

[8] Duen Horng Chau, Shashank Pandit,

Samuel Wang, and Christos Faloutsos.

2007. Parallel crawling for online social

networks. In Proceedings of the 16th

international conference on World Wide

Web (WWW ‟07). Association for

Computing Machinery, New York, NY,

USA, 1283–1284.

[9] Cho, Junghoo, and Hector Garcia-

Molina. "Parallel crawlers."

Proceedings of the 11th international

conference on World Wide Web. 2002.

[10] Aggarwal, Charu & Al-Garawi, Fatima

& Yu, Philip. (2001). Intelligent

Crawling on the World Wide Web with

Arbitrary Predicates. 96-105.

10.1145/371920.371955.

[11] Parallel Crawlers Junghoo Cho, Hector

Garcia-Molina University of California,

Los Angel

[12] Naresh Kumar, Manjeet Singh (2015).

Framework for Distributed Semantic

Web Crawler. IEEE - International

Conference on Computational

Intelligence and Communication

Networks.

[13] K.Lokeshwaran, A.Rajesh (2018). A

Study of Various Semantic Web

Crawlers and Semantic Web Mining.

International Journal of Pure and Applied

Mathematics Volume 120 No. 5 2018,

1163-1173.

[14] F. Liu and W. Xin, 2020

"Implementation of Distributed Crawler

System Based on Spark for Massive Data

Mining," 2020 5th International

Conference on Computer and

Communication Systems (ICCCS),

Shanghai, China, 2020, pp. 482-485, doi:

10.1109/ICCCS49078.2020.9118442.

[15] Rajiv, S and Navaneethan, C, 2020,

"Keyword Weight Optimization using

Gradient Strategies in Event Focused

Web Crawling" Pattern Recognition

Letters 01678655 CrossRef.

[16] S. K. Bal and G. Geetha, "Smart

distributed web crawler," 2016

International Conference on Information

Communication and Embedded Systems

(ICICES), Chennai, 2016, pp. 1-5, doi:

10.1109/ICICES.2016.7518893.

[17] Wang, HongRu, et al.2018 "Anti-

Crawler strategy and distributed

crawler based on Hadoop." 2018 IEEE

3rd International Conference on Big

Data Analysis (ICBDA). IEEE.

[18] Boukadi, K., Rekik, M., Rekik, M., &

Ben-Abdallah, H. (2018). FC4CD: a

new SOA-based Focused Crawler for

Cloud service

Discovery. Computing, 100(10), 1081-

1107.

