CEUR-WS.org/Vol-2788/caei20_paperll.pdf

OntoConnect: Results for OAEI 2020

Jaydeep Chakraborty!, Beyza Yaman?, Luca Virgili®, Krishanu Konar?, and
Srividya K. Bansal®

! CIDSE, Arizona State University, Tempe, Arizona
2 ADAPT Centre, Dublin City University, Dublin, Ireland
3 Polytechnic University of Marche, Ancona, Italy
4 Media.net, Mumbai, India

Abstract. The results of OntoConnect, an Ontology alignment system,
in the Ontology Alignment Evaluation Initiative (OAEI) 2020 campaign
is reported in this paper. OntoConnect is a domain-independent schema
alignment system that combines syntactic similarity and structural sim-
ilarity between classes/concepts to align the classes/concepts from the
source and target ontologies. This paper describes the participation of
OntoConnect at OAEI 2020 and discusses its methodology and results
on the Anatomy dataset.

Keywords: Ontology alignment - Ontology Matching - Unsupervised
Learning - Recursive Neural Network.

1 Presentation of the system

OntoConnect [3] is an ontology alignment system that uses an unsupervised
machine learning technique that can predict similar source and target ontology
classes based on their ontological structure (hierarchy, meta-information, etc.)
and syntactic structure without any background domain knowledge or domain
expert intervention in contrast to existing learning-based approaches. In the
following sections, we present the methodology behind the system and the results
of the system participation in the OAEI initiative.

1.1 State, purpose, general statement

Ontology alignment is a process to integrate multiple knowledge bases to elimi-
nate data heterogeneity. There are many ways to address the ontology alignment
problem such as string-based approach, language-based approach, semantic ap-
proach, extensional approach, etc. Most of the current state-of-the-art ontol-
ogy alignment systems depend on domain knowledge that makes the alignment
process domain-specific, time-consuming, and error-prone to human error. To
overcome this challenge, we developed an ontology alignment approach that is

Copyright (©) 2020 for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

2 J. Chakraborty et al.

independent of domain knowledge and does not need the domain expert inter-
vention. In this paper, the OntoConnect ontology alignment system is presented
which employs an unsupervised learning method using a recursive neural network
to align classes between different ontologies.

1.2 Specific techniques used

OntoConnect consists of two main tasks: the first task is unsupervised learning
of the OntoConnect model with source ontology classes/concepts. The second
task is the prediction of similar source classes/concepts for the corresponding
target ontology class/concept using the trained OntoConnect model. Figure
represents a workflow of the proposed OntoConnect ontology alignment system.

=
Lemmatization,

Stop words removal, fastText

etc.
X

OWL API

)

(
% :D{DataPreparalionH o e . HVectorGenmtionHModzllﬂamingH Trained model ‘
L

Sourceomology e Training

Calculate Word
Similarity]}

Predicting

% I:“>{DataPrcpmlionH Lz . Heclor()encmion]—
Preprocessing

Target Ontology

Combine Check Similarity 5
sinilaity Threshold H e

Calculate Meta
Similarity

Fig. 1. Overview of OntoConnect Ontology Alignment system

(i) Data Preparation: In this step, a Java API named OWL API [§] and
HermiT Reasoner [9] are used to extract meta information of a class/concept,
such as IRI, label, restriction, parent, child, equivalent, and disjoint classes of
each class/concept of the source ontology (S) and the target ontology (T').

(ii) Data Preprocessing: Several data preprocessing techniques are used
on both source and target class/concept labels. Special characters and common
stop-words in English are removed from the class/concept labels. Apart from
stopword, we have used tokenization, lemmatization, conversion of roman let-
ters to numeric, etc.

(iil) Vector Generation: In this step, a pre-trained embedding model called
fastText [2] developed by Facebook’s AI Resecarch (FAIR) lab is used on the

OntoConnect: Results for OAEI 2020 3

source and the target ontology class/concept to generate vectors. It treats each
word as composed of character n-grams. So the vector for a word is made of the
sum of this character n-grams. It helps to get a meaningful vector even when
the dictionary word is not present in the model. The default dimension of the
generated vector is 300.

(iv) Model Learning: Next, the vector generated for each source ontology
class/concept is fed to an unsupervised recursive neural network [4]. The recur-
sive neural network is an extension of a recurrent neural network [5]. The input
to the recursive neural network is the meta-information of a source ontology
class and the output is the source ontology class itself. The intuition behind this
learning process is that during prediction if any target class has meta informa-
tion similar to a source ontology class meta information then the model will be
able to predict the same/similar vector to the source ontology class. Figure
shows the general architecture of the recursive neural network in OntoConnect.
In the figure, pc;...pe,, denote the parent classes of a class/concept. Similarly,
€C1...CCp, €c1, dey, rey..rch..rd .rcf are child classes, equivalent class, disjoint
class, and restriction classes of a class/concept. X (pcy) is the vector represen-
tation of pc; obtained from pre-trained fastText model. ¢(pcq) is the cell state
and h(pcy) is the hidden state of the long short term memory (LSTM) cell [7]
for parent meta information. At the output level, the model generates a vector
with the same dimension as that of the input vector.

(v) Model Prediction: The word similarity is calculated by the cosine sim-
ilarity between the source and target class/concept vectors. Next, the meta-
information of the target ontology class is fed to the trained ontology alignment
model which predicts a vector similar to one of the source classes. We use the
cosine similarity to measure the meta similarity as well. A combined similarity
i.e., the average of the word similarity and meta similarity, is used for the final
prediction of similar class/concept.

1.3 Adaptations made for the evaluation

OntoConnect consists of two components. The first one is the java component
and the second one is the python component. Figure [3]shows a high-level system
architecture of OntoConnect. It follows a microservices architecture, consisting
of different components that work together. The main motivation behind using
microservices was to isolate different tasks and use some of the existing modules
within our project. This allowed the use of different programming languages for
different purposes based on their applicability. Each microservice was dockerized,
making it modular, portable, as well as isolating the environments so as to run
on any operating system.

We have tried to test the OntoConnect system on Semantic Evaluation At
Large Scale (SEALS) [II] platform, however, were not able to run the system as
SEALS only provides a wrapper for java-specific tools only. Other frameworks

4 J. Chakraborty et al.

[T T 1Xen —> Average
Parent h(pcy) —>» LSTM(pc) —
Class c(pep) —» -
word vector
[T T IXpem) —>| |
h(pem) —»{ LSTM(pc) —
c(pem) Average
C T T 1X(eep) —>|]
Child h(ccy) —»{ LSTM(cc) ||
Class cleep) —p
word vector | |
——C R WL Average
h(cc,) —» LSTM(cc) verage
Equivalent cleen) —»
quivalen - Output
Class L[T [X(ec) —p > vector
word vector h(ec) —>» LSTM(ec)
c(ec)) —pf
Disjoint —
Class [T []Xcp —>
word vector h(dcy) —» LSTM(dc)
c(dey) ||
B ——— G R |
LSTM(rc) — Average
h(re'y) —»
c(rc') —
. X(rc's) —»
Restriction h(rc') —» LSTM(rc) ——
Class c(re's) —p Average
word vector
LT T Ixee)—»
hrc";) —»| LSTM(re") ——
c(re"y) Average
LT T IXaey —»
h(re") —» LSTM(rc") ——
ey Average

Fig. 2. Recursive Neural Network (dynamic array tree-LSTM model) of Ontology
Alignment System

OntoConnect: Results for OAEI 2020 5

such as MELT [6] was also tried for the evaluation of the OntoConnect Sys-
tem, however, MELT provides an evaluation wrapper for either java-only tools
or python-only tools. It does not support tools that have both java and python
components in one. OntoConnect system uses both the java and python compo-
nents. Hobbit platform [I0] permits dockerized tool which is independent of the
type of the programming language of the tool. For this reason, the dockerized
approach is used to build the OntoConnect System and we could successfully
test and evaluate it on the Hobbit platform.

(&

docker
(<) ™

R » oono .

HE=

gy

Input: Source and
Target Ontologies

Cutput: Alignment of
ontologies b

Input: Source and
Target Ontologies

___ JavaCompenent (Batch) /

«

E

Python Component

OFE

PP T
\‘\I;n'a Component (User Interface) /

Fig. 3. OntoConnect system architecture

Cutput: Alignment of
ontologies

/

1.4 Link to the system and parameters file

The OntoConnect code is available on GitHub: https://github.com/dbpedia/
linking

1.5 Link to the set of provided alignments

The OntoConnect result is published on http://oaei.ontologymatching.org/
2020/results/anatomy/index.html|. The result is also available on GitHub:
https://github.com/dbpedia/linking/wiki/Result

2 Results

We have tested OntoConnect on the Anatomy [I] data set published by OAEI
with different parameters such as input vector dimension and similarity thresh-
old. Three different files are provided in the OAEI System: source ontology,

https://github.com/dbpedia/linking
https://github.com/dbpedia/linking
http://oaei.ontologymatching.org/2020/results/anatomy/index.html
http://oaei.ontologymatching.org/2020/results/anatomy/index.html
https://github.com/dbpedia/linking/wiki/Result

6 J. Chakraborty et al.

target ontology, and result or alignment file. Standard evaluation metrics, i.e.,
precision, recall, and F-measure are used. The OntoConnect system yields sat-
isfactory results with a precision of 99.6%, recall of 66.5%, and F-measure of
79.7% for a similarity threshold of 0.99 with the 100-dimension input vector.
Table[l] gives a summary of the result of OntoConnect on the Anatomy data set.

Table 1. OntoConnect performance in the Anatomy track

Matcher Runtime|Precision|Recall|Recall++ |F-Measure
OntoConnect 248 0.996 0.665 [0.136 0.797

3 General comments

The main goal of the OntoConnect is to address questions such as, (i) can on-
tology alignment be done independently of domain information? (ii) Can ontol-
ogy alignment be achieved by using only the meta-information and structural
information of ontologies? (iii) Can ontology alignment be achieved using unsu-
pervised machine learning instead of the traditional rule-based approaches? The
OntoConnect tool is able to address all the above questions and moreover, it per-
forms well compared to some of the state-of-the-art systems in OAEI 2020. The
main strength of the tool is that a domain-independent approach is performed
by achieving the mentioned goals.

Besides the strengths of the tool, there is a number of potential improvements
to be realized for OntoConnect. The main weakness of the OntoConnect tool is
the complex architecture of the system, as it has two different components of
different languages i.e. java and python. It was difficult to incorporate any OAEI
evaluation wrapper because of the complex architecture of the tool. We have used
Docker to execute the system on the HOBBIT platform but there is still room
for improving the system architecture so that the tool can be easily executed.
The second problem is the size of the project. We have used the pre-trained
model fastText in the system and the default dimension of the fastText output
vector is 300. The high dimension of the vector causes an increase in the size of
the tool. In future work, we would like to explore different procedures such as
autoencoder approach to reduce the dimension to minimize the size of the tool.

4 Conclusion

In this study, OntoConnect tool is presented with a generic and domain-independent
approach to align multiple ontologies that eliminate cumbersome and error-prone
manual work. A non-linear neural network is used for feature extraction from the
source ontology and is independent of the domain knowledge. Participating in

OntoConnect: Results for OAEI 2020 7

this campaign for the first time allowed us to see how the OntoConnect system
was performing compared to the other tools. It was seen that our tool had a high
precision among the tools without any domain knowledge and without depend-
ing on any vocabularies. But both recall and F1 have room to improve. Even
though OntoConnect has a reasonable runtime, we would like to decrease the
execution time for better performance. We have seen that our tool is comparable
to the current state-of-the-art domain-specific approaches and we would like to
participate in other tracks next year to see the results in different domains.

Acknowledgement The authors gratefully acknowledge the Google Sum-
mer Code program and DBpedia organization for guidance and support. We also
thank the Google Cloud Platform (GCP) research credits program for providing
an environment to run the experiments using their Cloud Computing services.

Beyza Yaman has been supported by the European Union’s Horizon 2020
research and innovation programme under Marie Sklodowska-Curie grant agree-
ment No. 801522, by Science Foundation Ireland and co-funded by the European
Regional Development Fund through the ADAPT Centre for Digital Content
Technology [grant number 13/RC/2106] and Ordnance Survey Ireland.

References

1. http://oaei.ontologymatching.org/2020/anatomy/index.html

2. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Transactions of the Association for Computational Linguis-
tics 5, 135-146 (2017)

3. Chakraborty, J., Bansal, S., Yaman, B., Virgili, L., Konar, K.: Ontoconnect: Unsu-
pervised ontology alignment with recursive neural network. In: Proceedings of the
36th ACM/SIGAPP Symposium on Applied Computing, SAC 2021, Gwangjiu,
South Korea,March 22-26, 2021 (In Press)

4. Chinea, A.: Understanding the principles of recursive neural networks: a generative
approach to tackle model complexity. In: International Conference on Artificial
Neural Networks. pp. 952-963. Springer (2009)

5. Goller, C., Kuchler, A.: Learning task-dependent distributed representations by
backpropagation through structure. In: Proceedings of International Conference
on Neural Networks (ICNN’96). vol. 1, pp. 347-352. IEEE (1996)

6. Hertling, S., Portisch, J., Paulheim, H.: Melt-matching evaluation toolkit. In: In-
ternational Conference on Semantic Systems. pp. 231-245. Springer, Cham (2019)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735-1780 (1997)

8. Horridge, M., Bechhofer, S.: The owl api: A java api for owl ontologies. Semantic
web 2(1), 11-21 (2011)

9. Motik, B., Shearer, R., Horrocks, I.: Optimized reasoning in description logics using
hypertableaux. In: International Conference on Automated Deduction. pp. 67-83.
Springer (2007)

10. Roéder, M., Kuchelev, D., Ngonga Ngomo, A.C.: Hobbit: A platform for bench-
marking big linked data. Data Science (Preprint), 1-21 (2019)

11. Wrigley, S.N., Garcia-Castro, R., Nixon, L.: Semantic evaluation at large scale
(seals). In: Proceedings of the 21st International Conference on World Wide Web.
pp. 299-302 (2012)

http://oaei.ontologymatching.org/2020/anatomy/index.html

	OntoConnect: Results for OAEI 2020

