
Designing with socio-technical aspects in mind starts with
University courses: an experience within an HCI course

Laura Tarantino

University of L’Aquila, Via Vetoio, L’Aquila, I-67100, Italy

Abstract
The socio-technical approach to system design puts under a magnifying lens human, social,
and organizational factors of a system underlining that it cannot be technology alone to guide
design processes. Though the approach has the potential of influencing IT design, nowadays
IT engineers’ and computer scientists’ views have greater impacts on the shape of IT products
than those of ST researchers, also due to the current pace of technology innovation, which
makes not mature IT products more and more diffuse. To mitigate the risk of technology-driven
products, it is proper to ensure that such views embed human, social, and organizational factors
as a second nature, starting from technology-oriented University curricula. This paper reports
on a teaching experience in an “Interactive Systems Design” course within an Engineering
program, by discussing the project-based learning path proposed to students and in particular
addressing ingredients that allow to overcome skepticism and mistrust that students of
technological programs usually have towards less technical issues..

Keywords 1
Socio-technical design, user-centered design, design thinking, impact of teaching methods

1. Introduction

The Socio-Technical System (STS) approach to design – evolved from work conducted at the
Tavistock Institute [15] – is based on open systems theory emphasizing the fit between social and
technical systems and the environment (e.g., [1,3,4,5,15]). It put under a magnifying lens human, social,
and organizational factors of a system underlining that it is not technology alone to guide design
processes. Originated in the social science realm, socio-technical tools and approaches spread beyond
it towards the IT field [9], with the potential of influencing IT design and a consequent wider impact
than before, provided that socio-technical thinking becomes accepted within the design orthodoxy of
IT professionals [6]. Given IT pervasiveness, Clegg observes that new technologies “offer opportunities
to work in more interconnected ways, providing scope and catalyst for new working arrangements”
[5]. The COVID-19 emergency has clearly imposed a new accelerated pace to this phenomenon,
changing our relationships in almost all of our spheres (personal, social, and working) and moving a
variety of ICT tools and applications from discretionary to non-discretionary use: the ‘social’ and the
‘technical’ have never been so interdependent as nowadays, making a correct socio-technical
perspective in system design maybe more important than ever.

It is indeed widely recognized that techno-centric approaches to system design that do not properly
consider the relationships between the organization, the people enacting business processes, and the
systems supporting these processes may cause failures and lead to systems that do not meet the
expectations [1,5,17], implying also a business risk for products may not be chosen by customers.
Anyhow, this notwithstanding, socio-technical approaches are still underutilized. Several researchers
maintain that the reason for this insufficient consideration of STS concepts and methods is to be
searched in its rather philosophical vision, with an overemphasis on the social system and a not
sufficient emphasis on the design of the technical system [22]: though different sets of socio-technical

Proccedings of 6th International Workshop on Socio-Technical Perspective in IS Development (STPIS’20), June 8–9, 2020
EMAIL: laura.tarantino@univaq.it

© 2020 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

91

design principles has been proposed [3,4,5], as [1] observes, “STS design methods mostly provide advice
for sympathetic systems designers rather than detailed notations and a process that should be
followed”, remaining not appealing enough for technical professionals.

Contaminations with other fields sharing the open-system view and the attention for human and
social aspects but working from a more technical oriented perspective (like Information Systems,
Computer Supported Cooperative Work, Human-Computer Interaction) may be beneficial for a
convergence towards principles, methods, and ultimately a practical vision more connected with
technical engineering issues and then appreciated also by IT professionals. The HCI community, in
particular, is clearly a good ally in this direction, for its explicit consideration of human and social
aspects, and its repertoire of User Centered Design (UCD) methods and techniques oriented to the
analysis of users, contexts of use, working practices, and organization structures, as well as to design
organization, systems specifications, and evaluation (e.g., [2,8,14,16,18]). Furthermore, HCI appears
as complementary to STS design as to the interaction between people and technology, somehow under
considered by STS approaches. Anyhow, notwithstanding the beneficial potential of such cross-
contamination, the path towards technological innovation balancing the three legs of human-centered
product development (user experience, marketing, and technology) is not to be taken for granted
without some action. Unbalanced IT products are made more and more frequent by – among others –
the current pace of technology innovation, the diffusion of agile development approaches, and the ease
of products’ delivery (e.g., through application stores), which make IT products more and more
dependent on the views of IT engineers, computer scientists, and even technology enthusiasts early
adopters: more and more often we interact with novel IT products still in the area of “unfilled need” of
the need-satisfaction curve (see Figure 1).

Figure 1: The need-satisfaction curve of a technology compared with the change in customers as a
technology mature: in the early phases, innovators, visionaries and technology enthusiasts drive the
market, though they are only a small percentage of the market and do not represent the view and the
needs of the majority of the users (modified from [18]).

92

Given this situation, we agree with [1] maintaining that it is not enough to simply analyze a situation
from a socio-technical or a human-centered perspective and then explain the analysis to engineers. It is
necessary a gradual introduction of socio-technical and human-centered considerations into existing
SW procurements and development process with a mindset shift on the engineering and design side.
Our view is that, while sensitization and awareness activities advocated by [1] keep going on with
existing stakeholders, a new generation of engineers is to be educated, by presenting them socio-
technical thinking in technical university courses as an essential design component, to ensure that
developers’ views embed human, social, and organizational factors as a second nature, to be learned
and digested from the beginning, intertwined with technical design principles.

This paper gives a contribute in this direction, by discussing our teaching experience in the
Interactive Systems Design course within the Computer and Systems Engineering Master at the
University of L’Aquila. In particular the paper discusses the project-based learning path proposed to
students, addressing in particular the ingredients allowing to overcome the skepticism and the diffidence
that students of technology courses typically have towards anything “not nerd enough”. The final
objective is to make them acquire a design attitude and a designer view integrating human, social, and
organizational factors as essential and inescapable features.

The remainder of the paper is structured as follows: after briefly surveying in Section 2 obstacles
typically encountered by teachers of less technical courses, Section 3 discusses how they are faced by
the course under analysis to make a methodological course appealing to engineering students, and
finally, in Section 4, conclusions are drawn

2. Obstacles and enemies

Shortly after his book “The Human Interface” [20] was published, Jef Raskin published on his
official website a note received from a colleague who experienced difficulties in explaining Raskin’s
interface concepts to people. The note said that the situation was somehow similar to the scene from
“The Matrix” movie where Morpheus explains Neo who the agents are and so he made a parody of the
scene dialogue to describe the situation 2: “The current interfaces are a system, Neo. That system is our
enemy. But when you’re using these interfaces, you look around, what do out see? Icons, file names,
modes, hidden interface elements, and people attempting to use them, the very minds of people we’re
trying to save. But until we do, these people are still a part of that system, and that make them our
enemy. Most of them are not ready to change interface, and many of them as so hopelessly dependent
on the system, that they will fight to protect them.” [23]. Nowadays the way we look at (and design)
interactive systems has considerably broadened, including issues going well beyond user interface
aspects, but the problem has remained more or less the same: a strong resistance to change and a strong
opposition to concepts and methodological tools that lay outside the technological stream, coming not
only from systems designers but also from students enrolled in technological programs, skeptical and
mistrustful of “not technical enough” stuff.

This seems to be a common problem reported by many colleagues, as testified for example by an
online discussion of few months ago, involving some teachers of HCI courses in different Italian
universities within degree programs in Computer Science and Information Engineering. The discussion
stemmed from a post where one of us quoted with some bewilderment opposite outcomes from student
evaluation questionnaires: while some students were very positive about the course program, content
and teaching method, others labeled the course as boring and with no important content. One colleague
underlined that students’ lack of appreciation is to be found in the course objectives: “In my experience,
Computer Science students who belong to the nerd type dislike anything not nerdy enough, like HCI or
requirements. It’s not related to course quality nor teaching skills”, while another observed that
opposite evaluations are not rare: “I always have bimodal evaluation like – dislike”. Another observed
that the teacher has no choice but to follow committee decisions on course objectives and content: “The
student says that course contents are bad. This is not a teacher’s choice; it is mostly an issue agreed
upon the entire degree committee. This should be made clear to students”.

2 The whole note from Danny Lewis was originally at human.sourceforge.net/the/matrix.html. The page is no longer accessible but the citation
of the Matrix parody can be still found at https://instant-thinking.de/2004/03/08/interface-design/

93

In our opinion, the latter position is questionable, since, while overall course objectives and content
are actually agreed with committees, the teaching methods and the proposed learning path are under the
teacher’s control and can be used to conceive a course appealing to students and, with the right
ingredients, acting as a “trojan horse” for HCI/STS points of view in engineering studies. Going back
to the Matrix parody, if students fight to protect their own system centered view (and they will do it),
we have to fight back. In the following section we discuss how the “fight” against obstacles and enemies
is conducted within the course under analysis.

3. Obstacles and enemies

The Interactive Systems Design course of the University of L’Aquila is offered within a Computer
and Systems Engineering Master to students with background in Information Engineering. Most
students come from a Bachelor program of the University of L’Aquila where, beside Computer Science
courses (on programming, computer architectures, operating systems, databases, web applications,
computer networks) they attend introductory courses on Electronics, Automation, Telecommunication,
and Electrical Engineering. After three years spent addressing the system from a purely technical point
of view and looking for solutions to clearly defined given problems, the Interactive Systems Design
course demands a complete shift in the student thinking approach, requiring them to define problems
(before solving them), to look at the system from an holistic point of view, and, ultimately, to make the
transition from “problem solvers” to “designers”.

3.1. Overall course objectives and approach

The course aims to provide the knowledge necessary to design usable interactive applications, with
a strong methodological approach. Based on project-based learning, the course incrementally leads
students through the phases of field study and requirements analysis, conceptual design, scenario-based
design, paper prototyping, mockup prototyping, usability analysis and evaluation. The overall approach
is based on a contamination among HCI, Information Systems, and Socio-Technical Systems views.

As to socio-technical issues, an exhaustive formal presentation of the field is beyond the scope of
the course: it would be not only unrealistic in an introductory course to interactive systems design, but
also counterproductive, given the background of the enrolled students and their recognized resistance
to less technical topics. Rather, socio-technical issues implicitly pervade all projects assigned to
students, so that they can perceive and experience the necessity of addressing human, social, and
organizational issues as an unavoidable component of the design, which hence hopefully becomes a
second nature in their work as designers (in particular, the course approach is coherent with Clegg’s
meta-principles, content principles, and process principles of STSs [5]). Students’ teams are assigned a
variety of projects with different goals, different contexts of use, and different target users, regularly
discussed in plenary in-class presentations, to allow students to be confronted with the diverse
problems/issues that a designer has to face. The final exam is a presentation aimed at critically analyzing
the work done, from a methodological point of view, in a metacognitive way, addressing the various
aspects of the design.

In the following we analyze the course from two perspectives: the methodological tools proposed to
work on their thinking approach and the practical project-based path.

3.2. Work on their very minds

Students are not yet designers, which is a double edged starting point: if this implies that we cannot
expect from them an immediate adherence to design principles and that we have to debunk the
previously acquired system-centered view, on the other hand this allows we teachers to present design
principles and approaches from scratch, and, in particular, to present user-centered and socio-technical
thinking not as something to be added to a previous view, but as essential components of the designer
work.

94

Step zero: make students appreciate the change (alias the “but we’ve always done this way”
battle)

In her socio-technical design history [15], Mumford starts the discussion by underlying the crucial
liaison between technology and change and, talking about action research, maintains that “it will be
difficult to use successfully if the parties involved are hostile to each other, disinterested in developing
strategy or unwilling or unable to cooperate”. This kind of hostility is more or less the same that
teachers often have to experience with students of engineering courses who look at themselves as
“computer masters” with no other perspective of systems than their own. The very basic step is therefore
to make them appreciate the crucial role of change in technology innovation. The course hence begins
with a survey of the evolution of interactive systems and underlying technology, showing evolutionary
and revolutionary steps from teletypes to Virtual Reality, and showing how without changes in system
views and with computer professional of the sixties stuck to the technology in use then, we would be
still using teletype instead of, e.g., fancy augmented reality apps on our smartphones. Insights are given
to selected specific innovators’ contributions, illustrating also what often remains behind the scene:
motivations and inspirations of their creators/designers, along with their successful personal stories
(e.g., Vannebar Bush, Douglas Engelbart, Jef Raskin, Steve Jobs are presented as inspiring examples
to students). The “but we’ve always done this way” battle is usually won this way.

Help students keep on track: give them methodological helms and ensure a rigorous approach

to design (alias the “common sense” battle)
Students are not designers: not only they have no idea on how to swim in “design waters” but the

dangerous myths of “common sense design” and “intuitive design” are always behind the corner when
talking about user interface design, user experience, and interactive application design, with a high risk
of a not rigorous approach to design. Design frameworks are adequate weapons to win this battle, since
they allow students to clearly visualizes where they are in their design path, when doing what, and what
to focus their attention on. In this direction, the Hevner’s framework [13] on the one side and Design
Thinking (DT) [2] and UCD [2,14,19] on the other side may have complementary roles in showing the
what, the where, and the when (see Figures 2 and 3).

We observe that the Hevner’s framework in this case has to be simplified by focusing just on artifacts
and by replacing the Rigor Cycle with a “rigor recommendation” (Figure 2), to become a very effective
guide forcing students to find sound justifications for each single design choice; though it would not be
the best methodological choice for interactive applications falling within the third paradigm of HCI
(looking at the interaction as phenomenologically situated [12]), we find it appropriate to propose it as
a first framework in an introductory course to HCI that starts by addressing interactive applications
falling within the second paradigm of HCI with a focus on information communication, task modeling
and users modeling. Anyhow, it cannot work by its own, since, while it helps in clearly identifying what
to focus attention on, it does not provide guidelines about when doing what. On the other side, Design
Thinking (Figure 3-(a)) is really effective in helping students in the transition from a modus operandi
in which they are given predefined problem to solve and a modus operandi in which they have to define
what is the right thing to do (problem definition) before finding how to do the thing right (problem
solution).

Figure 2: A reference design framework derived from the Hevner’s proposal in [13],

95

(a) (b)

Figure 3: Reference design frameworks: (a) the Design Thinking framework, and (b) the User Centered
Design life cycle

Make students diverge as soon as possible (alias the “we have the one solution right away”

battle)
Engineering Master students come from learning experiences strongly characterized by the search

of the solution (sometimes a single number!), starting from the problem data and by means of sound
logical reasoning, whereas design is a territory of alternatives, choices, dismissions, trade-off, discard.
Clegg’s meta-principles 3 and 7 make it very clear [5]: “Design involves making choices” (e.g., on how
the overall system will operate and on what form of technology will be required), often non
deterministic and leaving a certain degree of freedom, and, since “Design is contingent”, there is no
“one best way” and solutions do not have universal applicability. Students have to learn to consider
alternatives, comparing them, and discarding some of them on the basis of selected criteria. In our
experience this is one the most difficult battle to win: Engineering students tend to point straight to “the
one solution”, sometimes ignoring altogether the “problem definition” DT macro phase. The DT
framework proves to be beneficial in this aspect too, underling in a clear way the alternation of divergent
(creating choices) and convergent (making choices) thinking (see Figure 4). Before the explicit
introduction of the Design Thinking approach in the course, it was not so rare to see students focusing
on one alternative only, falling in love with it, and getting so attached to it to the point of crying if
forced to discard it as a result of evaluation. The sooner students learn to diverge, the sooner they will
accept “alternative discard” as a regular design ingredient and not as a design failure.

Figure 4: Alternation of divergent and convergent thinking

Make students think as designers: start from the end (alias the “this is useless boring stuff”

battle)
As designers know, there are no crisp boundaries between the DT phases or the UCD phases, not

only because iterative design makes us take steps back to modify previous choices, but also because the
experienced designer may use also forward-thinking and starts considering from the beginning some
design aspects formally belonging to future phases. As a consequence, even if apparently paradoxical,
within a project-based course it is risky to present the different topics, methods and techniques by
strictly following the relative order in which they are usually utilized during the design process, since

96

this choice would prevent a controlled and sound forward thinking. Our approach is to start from a
general overview of the global picture and of the main aspects of the different phases, followed by
insights of specific methods and techniques starting from issues pertaining the prototype phase (like
visual design and interaction design). This choice has a number of advantages. First of all, it allows the
teacher to capture engineering students’ attention from the beginning with topics closer to their interest
and less boring for them than, e.g., methods for user requirement analysis would be. Furthermore, if
paralleled with some (possibly “quick-and-dirty”) design-and-action theory prescribing “how-to-do-
something”, this make them operative from early phases of the course and able to develop some simple
artifact, thus making it possible a teaching approach based on a sequence of projects with increasing
difficulty and increasing formal quality, during which students themselves will recognize the necessity
of (and will ask for) methods and techniques otherwise judged boring.

3.3. The practical design path

The basic point of STSs is that “Design is systemic”, which, in his recommendations, Clegg
comments as follows: “A sociotechnical perspective explicitly embraces the idea that all aspects of a
system are interconnected, that none should take logical precedence over the other, and that they should
be designed jointly. Technical and social systems are interdependent. Exclusive emphasis on any one
component during design, for example on technology, will be sub-optimal.” [5]. Anyhow, though such
“aspects compresence” is surely beneficial for the design, we believe that things are a little bit different
when talking about teaching approaches, where addressing separately the different issues (before
merging them into a unifying vision) allows students to better reflect on each facet of the system and
of the design process, and to appreciate its contribution to the overall picture. Furthermore, the demand
of a complete systemic view since the beginning might make the design learning difficult and
discourage students.

Following this line of reasoning, typical levels of an interactive system [24] (mechanical,
informational, personal, community, as in Figure 5) are mirrored by project ingredients/requests, so that
students (1) realize that such levels are ways to view the system and not ways to partition it, and (2) are
forced to think according to each view and to interdependencies among different views, within a path
of four projects with increasing difficulty, within which they are requested to: adapt the product to a
specific device, model structured/unstructured (heterogeneous) information and design access
structures to it, address universal/individual psychological aspects, model users, model tasks, address
context of uses, address organizational rules/constraints, address social interaction, model community
experiences.

Figure 5: Interactive system levels (from [24], unknown author)

All projects are driven by Design Thinking and UCD with the common final aim of designing,

realizing, and evaluating interactive mockup prototypes. Table 1 summarizes main learning objectives
of the four project assignments (projects of level Li rely on learning achievements of projects of level
L1 to Li-1). The first three levels are focused on users/contexts/tasks students are familiar with and act

97

as a training ground in view of the ‘big’ exam project of level L4. Notice that, though the general theme
is the same for all student teams in levels L1 to L3, assignments of different teams differ in specific
requests about the tasks, the type of users, and the context of use. By comparing each other proposed
artifact in plenary in-class discussions, students make a first-hand direct experience of the lack of “the
one universal solution” in design. As to users’ studies, projects of level L2 and L3 address predefined
users’ types (first time, novice, intermittent, expert/frequent) to start by addressing universal
psychological facts. Furthermore, teams are assigned different types in the two levels for experiencing
how a change of the users’ type impact on the design. Finally, the project of level L4 makes a step
forward from generality to specificity requiring a “true” users study to address differences across
individuals and groups with respect to the expected usage of the system. As to social and organization
aspects, they are included in all project of levels L2 to L4; in particular, all L4 projects include some
kind of social feature in the system. It is interesting to notice that, though not explicitly requested,
students’ teams sometimes choose to include system social capabilities also in projects of previous
levels.

Table 1
The path of team assignments and objectives

Level Project focus Learning objectives
L1 Interacting with a smart TV

(common them, different
teams address different user’s
intentions)

Supporting specific user’s intentions, articulating
intentions, modeling few specific tasks, addressing
consistency among tasks, addressing a specific device

L2 Booking a meal at the
University canteen via a tablet-
based app (common theme,
different teams address
different users’ type)

Formalizing simple users’ requirements, addressing a
predefined user type (first time, novice, intermittent,
expert/frequent), modeling a multi-step procedure,
addressing organizational rules/constraints, addressing
a specific more constrained device

L3 Designing an innovative
context-specific hot/cold
drinks vending machine
(common theme, different
teams address different
scenarios, like a rock concert, a
laboratory, a train station)

Formalizing users’ requirements, addressing a
predefined user type (first time, novice, intermittent,
expert/frequent) different from the previous one,
addressing contexts of use, modeling multi-step tasks,
thinking out of the box, addressing organizational
rules/constraints, addressing groups of users acting as a
whole, making choices about technology

L4 The “big” team project
(individual theme)

Using data gathering techniques, observing users, asking
users and experts, modeling users, making choices
about technology, addressing organizational
rules/constraints, addressing social aspects, addressing
community purposes and policies

4. Discussion and conclusions

The course structure discussed so far is the results of around 15 years of experience that gradually
modified the course syllabus and approach, based on a continuous analysis of achieved results. Starting
from a “pure” HCI course mostly based on UCD, the most sensible improvements came from: (1) the
shift from the lecture based approach of the early editions, with project developed after the course, to
the current project-based approach with students working on their projects during the course with the
teacher, (2) the introduction of the Hevner-like design framework as “rigor recommender”, and (3) the

98

introduction of the Design Thinking framework with the explicit reference to the alternation of
divergent and convergent thinking.

One of the most critical choice was to decide whether to maintain implementation aspects as part of
the student work. Implementation is a real double-edged weapon: if not included, there is a significant
risk that Engineering students may perceive the course as “not nerd enough” but, when included, as this
course experience showed, often students do not explore all design options in fear of future difficult
implementation work. We decided to make the course less and less focused on implementation aspects
(anyhow learned in other curricular courses) and more and more focused on methodological ones and
opted for a trade-off choice: in L4 projects student teams are requested to conduct feasibility studies
and to carefully address the consistency of design choices with the selected technological platform,
without implementing the “engine” of the system while realizing a mockup interactive prototype. In
summary, to take care of students’ skepticism with respect to “less technical subjects” and to carefully
single out the ingredients necessary to make the course act as a “trojan horse” for HCI/STS points of
view in engineering studies, exam projects are conceived according to the following measures:

• to boost students’ interest, exam projects rely on technological infrastructures that provide an
ample variety of hints for individual assignments on specific technical aspects (e.g., Recommender
Systems, Augmented/Virtual Reality);
• to make them reason on community rules/policy/purposes, exam projects include social
aspects;
• to make them perceive the usefulness of considering personal and community levels, exam
projects address student problems and communities students belong to.
In conclusion we observe that nowadays bridging the gap between the engineering mindset and the

softer design mindset is more and more mutually beneficial, since, on the one hand, technology becomes
more and more pervasive thus heavily influencing soft design decisions, while, on the other hand, the
technological innovation pace make engineers more and more often face novel problems without ready-
made solutions: crafting new skills from the beginning is therefore a must.

5. References

[1] G. Baxter, I. Sommerville, Socio-technical systems: From design methods to systems engi-
neering, Interacting with computers 23 (2011) 4–17.

[2] T. Brown, Change by design: How Design Thinking transforms organizations and inspires
innovation, HarperCollins e-books, 2009.

[3] A.B. Cherns, The principles of sociotechnical design, Human Relations 29 (1976) 783–792.
[4] A.B. Cherns, Principles of sociotechnical design revisited, Human Relations 40 (1987) 153–162.
[5] C. Clegg, Sociotechnical principles for system design, Applied Ergonomics 31 (2000) 463–477.
[6] M.C. Davis, R. Challenger, D.N.W. Jayewardene, C.W. Clegg, Advancing socio-technical systems

thinking: A call for bravery, Applied Ergonomics 45 (2014), 171–180.
[7] C.S. de Souza, J. Preece, A framework for analyzing and understanding online

communities, Interacting with Computers 16 (2004) 579–610.
[8] A. Dix, J. Finlay, G.D. Abowd, R. Beale, Human Computer Interaction, 3rd ed. Addison-Wesley,

Harlow, UK, 2004.
[9] K. Eason, Sociotechnical systems theory in the 21st century: Another half- filled glass?, in: D.

Graves, D (Ed.), Sense in social science: A collection of essays in honour of Dr. Lisl Klein, 2008,
pp. 123–134.

[10] S. Gregor, The nature of theory in Information Systems, MIS Quarterly, 30 (2006) 611–64,.
[11] J. Gulliksen, B. Görannson, I. Boivie, S. Blomkvist, J. Persson, Å. Cajander, Key principles for

user-centred system design, Behaviour & Information Technology 22 (2003) 397–409.
[12] S. Harrison, P. Sengers, The Three Paradigms of HCI, in: CHI 2007 Proceedings, 2007.
[13] A. Hevner, A three cycle view of Design Science Research, Scandinavian Journal of Information

Systems, 19 (2007) 87–92.
[14] International Standards Organisation: Ergonomics of Human–System Interaction – Part 210:

Human-centred Design for Interactive Systems, ISO, Geneva, Switzerland, 2010.

99

[15] E. Mumford, The story of socio-technical design: reflections in its successes, failures and potential,
Information Systems Journal 16 (2006) 317–342.

[16] J. Nielsen, Usability Engineering, Academic Press, London, UK, 1993.
[17] D.A. Norman, Things that make us Smart: Defending human attributes in the age of the machine,

Addison-Wesley, Boston, MA, 1993.
[18] D.A. Norman, The invisible computer: why good products can fail, the personal computer is so

complex, and information appliances are the solution, MIT Press, 1998.
[19] D.A.Norman, S. Draper (Eds.), User Centred System Design, LEA, Hillsdale, NJ, 1986.
[20] J. Raskin, The Human Interface: new directions for designing Interactive Systems, Addison

Wesley, Reading, Massachusetts, 2000.
[21] F. Ricci, L. Rokach, B. Shapira, Recommender Systems Handbook, 2nd ed., Springer US, 2015.
[22] G. Salvendy (ed), Handbook of Human Factors and Ergonomics, 4th ed., John Wiley & Sons, Inc.,

Hoboken, New Jersey, 2012.
[23] D. Wegner, Interface Design, 2004. URL https://instant-thinking.de/2004/03/08/interface-design/.
[24] B. Whitworth, A. Ahmad, Socio-technical system design, in: C. Stephanidis (ed.), The

encyclopedia of human-computer interaction, 2nd ed., Interaction Design Foundation, 2012,
chapter 24.

100

