
Adapting the LodView RDF Browser for Navigation over

the Linguistic Linked Open Data Cloud in Russian and

the Languages of Russia

Konstantin Nikolaev1 and Alexander Kirillovich1,2

1Kazan Federal University, Kazan, Russia
2Joint Supercomputer Center of the Russian Academy of Sciences, Kazan, Russia

konnikolaeff@yandex.ru, alik.kirillovich@gmail.com

Abstract. This paper is dedicated to using of LodView RDF browser for naviga-

tion on the Linguistic Linked Open Data cloud in Russian and languages of Rus-

sia. We reveal several limitations of LodView, that prevents its using for this

purpose. These limitations are: 1) resolution of Cyrillic URIs; 2) Cyrillic URIs in

Turtle representations of resources; 3) support for Cyrillic literals; 4) support for

URIs with IDs of fragments; 5) human-readable URLs for RDF representations

of resources; 6) deployment of embedded resources. We updated the LodView

for fix the recovered limitations.

Keywords: LodView, RDF browser, Linked Open Data, Linguistic Linked

Open Data.

1 Introduction

Linked Open Data (LOD) is a powerful and flexible tool for sharing and distributing

information. The task of LOD is to establish a link between data and its meaning, which

allows search engines to move from a keyword-based approach to one based on the

meaning of the search query. In addition, research based on the semantic approach to

information allows us to identify more significant characteristics of the text, as opposed

to a simple syntactic approach. LOD is most actively used in medicine (in the task of

establishing links between diseases and possible treatments), in the scientific literature

in the task of structuring citations in a huge number of articles published on the web. In

addition, LOD finds its active application in problems of computational linguistics: in

particular, problems of semantic parsing of texts and problems of generating texts in

natural language. Having a prearranged LOD cloud based on the subject of the text

allows one to analyze the contexts of words in the text more correctly and suggest the

most likely phrases in the generated texts.

On the other hand, it is necessary to develop high-quality tools that allow ordinary

users or researchers from other areas that are not related to LOD development to fully

interact, research and analyze the data presented in LOD sets. Visual data analysis al-

lows one to combine the capabilities of a computer and human research abilities, to

Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

357

mailto:konnikolaeff@yandex.ru
mailto:alik.kirillovich@gmail.com

identify new patterns in complex interconnected data. The steps involved in data visu-

alization are as follows:

 Defining data sources

 Getting and extracting data

 Data modeling

 Data preparation

 Visual preparation

 Data visualization

In most cases, all stages except the last one are performed by the dataset creators, since

the visualization tools that perform data preparation and visual data preparation cannot

be universal for different types and structures of datasets.

There are many ways to visualize data, ranging from basic visualization using histo-

grams, charts of various types (point, column, circle, etc.), to visualization using graphs.

In addition, these types of visualizations are often extended by interaction capabilities.

Yi et al. [1] provide a taxonomy of ways to interact with displayed data that can be

applied in various ways.

 Selection of items

 Exploring the content of a specific element

 Reconfigure: meaning the user can change the location of elements in the visualiza-

tion field

 Encode: changing the appearance of elements

 Abstract: changing the level of abstraction of information as necessary

 Filter: ability to custom filter the currently displayed data.

 Connect: display and hide links between elements.

These visualization methods with interaction capabilities are suitable for small da-

tasets and are often used in such tasks. However, when visualizing large amounts of

data, other methods that take into account the features of big data are necessary. The

following are some of the techniques used by these methods:

 Data reduction: a technique based on the use of approximation techniques, which are

used to calculate abstract datasets. Many of them are based on sampling, filtering

([2,3]) and aggregation ([4,5])

 Hierarchical data exploration: displaying large datasets as layers with different levels

of detail with the ability to navigate between layers ([4,6])

 Progressive data visualization-displaying data in small portions, on the principle of

"as fast as possible", a new portion is loaded by any user action ([7,8,9])

 Data structures and indexes: building indexes or dividing a dataset into subgroups

according to a specific algorithm (HETree in [4], VisTrees in [10], Hashedcubes in

[11] and RawVis in [12]).

Now that we have considered the main methods of data visualization, we need to

provide types and examples of existing tools for data visualization. They can be divided

358

into several groups based on the approach to visualization. For each group, we will give

some of the most relevant examples.

Browsers and exploratory tools.

Tools of this type are the simplest and earliest implementations of technologies for data

visualization. Usually, the data in such tools is presented in a form similar to the classic

web browser, but with the addition of functionality for navigation and displaying LD

resources. Existing solutions include the following: Haystack[13], Visor,

PepeSearch[14], RDFSurveyor. Some solutions use the faceted search technique

(/facet[15], BrowseRDF, Explorator[16], Sewelis, Sparklis, tFacet и другие).

Tools using multiple visualization types.

These visualization tools allow the user to choose the desired way of data visualization,

such as diagrams, tables, Euler circles, maps, graphs, and so on. Here are a few tools

that have the most complete set of visualization capabilities: Rhizomer[17], Payola,

SynopsViz, VisWisard[18], YDS.

Graph-based visualization tools.

Tools in this category rely on representing LD as graphs. Many of the tools in the pre-

vious group support the graph representation, so here we present the tools for which

graph representation is the main one: LodLive[19], Aemoo, LODmilla[20], graph-

Visdb, RDF4U, H-BOLD, Tarsier etc.

Domain, vocabulary-specific, and device-oriented visualization tools.

This type of tool is intended for a specific type of data. Such tools are not of particular

interest in this article, so we will point out just a few examples: LinkedGeoData,

Spacetime, Facete.

Ontology visualization tools.

Data visualization tools have been actively developed over the past 20 years. In this

section, we should mention tools that are suitable for different LD, rather than for one

specific data type. The following services are the most flexible: OWLPropViz (addon

for Protégé), OntoStudio, OWLGrEd (addon for Protégé), SOFA, Ontodia. Besides,

OntoSphere [21], Onto3DViz [22], and MVOV [23] implement three-dimensional data

visualization.

2 LodView

As part of our project related to linguistic LOD, there was a need for a tool that will

allow us to display the contents of the Russian linguistic LOD set. LodView[24] was

chosen as the optimal one in terms of functionality and simplicity, since it supports

displaying fields of various resources in text format, and linguistic data assumes a plain

359

text format. In addition, LodView is based on hierarchical data exploration, meaning it

displays a list of objects related to the current one, making it possible to navigate from

one object to another. Fig. 1 shows an example of using LodView to visualize the Lon-

don concept from dbpedia.org.

Fig. 1. Example of LodView usage in dbpedia.org data visualization

However, LodView requires some improvements, which will be given in the next

section.

3 Necessary Improvements of the LodView

1. Resolution of Cyrillic URLs. Datasets from the Russian-language LLOD can use

URIs containing Cyrillic characters. For example, in the RuThes Cloud set, the URI

used to denote the lexical unit "машина" is <http://lod.ruthes.org/resource/en-

try/RU-мaшинa-n>. However, on some configurations, resolving the Cyrillic URIs

in LodView leads to an error (see Figure 2). We must add support for URIs contain-

ing Cyrillic characters to LodView.

360

Fig. 2. Error while resolving a link containing Cyrillic literals

2. Cyrillic URIs in the Turtle representations of resources. In a machine-readable

representation of a resource in the Turtle serialization format, Cyrillic URIs are en-

coded. Figure 3A shows a fragment of the Turtle representation of the

"Автомобиль" concept with encoded URIs. Representing URIs in encoded form

makes it difficult to perceive them. In the Turtle representation, URIs must be rep-

resented in decoded form (for example, as in Figure 3B)

Fig. 3. Fragment of a Turtle representation of the "Car" concept from the RuThes Cloud re-

source with encoded and decoded URIs

361

3. Support for Cyrillic literals. On some configurations, literals are represented with

a broken encoding in the machine-readable representation of the resource. This hap-

pens even if the dataset has Unicode encoding. Figure 4A shows a Turtle represen-

tation of the RuThes Cloud resource with a broken encoding. It is necessary to dis-

play Cyrillic literals correctly on all configurations (as in Figure 4B).

Fig. 4. Fragment of the Turtle representation of the RuThes Cloud resource

4. Support for URIs with fragment IDs. Datasets from the LLOD cloud can use URIs

that contain Cyrillic fragment IDs. These URIs are used to indicate a resource that

is closely related to some other resource. For example, in the RDF representation of

the Princeton WordNet, the URI used to denote the lexical unit "cat" is <http://word-

net-rdf.princeton.edu/wn31/cat-n>, and the URI used to indicate the canonical form

of this lexical unit is <http://wordnet-rdf.princeton.edu/wn31/cat-n#Canoni-

calForm>. In this case, the URI for the canonical form of the lexical unit "cat" con-

sists of the URI of this lexical unit, to which the ID of the fragment "#Canoni-

calForm" is added.

However, LodView does not support URIs containing the IDs of the fragment. So,

for example, when resolving the URI <http://wordnet-rdf.princeton.edu/wn31/cat-

n#CanonicalForm>, LodView returns a representation not of the resource that is des-

ignated by this URI, but of the resource that is designated by the URI <http://word-

net-rdf.princeton.edu/wn31/cat-n>. This problem occurs because of the HTTP Pro-

tocol: when sending a request, only a fragment of the URI is sent without the frag-

ment ID. To solve this problem, when resolving any URI, LodView must return a

representation not only of the resource designated by this URI, but also of all re-

sources whose URI is formed by combining the URI of the source resource and some

362

fragment ID. For example, it is necessary that when resolving the URI <http://word-

net-rdf.princeton.edu/wn31/cat-n>, LodView returned not only a representation of

the resource denoted by this URI, but also of the resource denoted by the URI

<http://wordnet-rdf.princeton.edu/wn31/cat-n#CanonicalForm>.

5. Human-readable URLs for the RDF representation of resources. LodView im-

plements the negation content principle in the process of resolving URIs. In accord-

ance with this principle, when a user requests the URI of a certain resource, LodView

redirects the user to the URL where the web page with human-readable resource

representation is located. When a resource URI is requested by a software agent,

LodView redirects the agent to a URL with a machine representation of the resource.

URLs for representing resources as web pages have a user-friendly format: < resource

URI>.html. For example, a web page for a resource with the

<http://lod.ruthes.org/resource/entry/RU-мaшинa-n> URI has the

<http://lod.ruthes.org/resource/entry/RU-мaшинa-n.html> URL. However, URLs

for RDF representations of resources are not easy to read. For example, a Turtle

representation for a resource with <http://lod.ruthes.org/resource/entry/RU-

мaшинa-n> has the <http://lod.ruthes.org/resource/entry/RU-мaшинa-

n?output=application%2Frdf%2Bxml> URL. Machine-readable RDF resource rep-

resentations must have the form like <resource URI>.ttl, <resource URI>.n3 etc. For

example, the Turtle representation of <http://lod.ruthes.org/resource/entry/RU-

мaшинa-n> resource must have the <http://lod.ruthes.org/resource/entry/RU-

мaшинa-n.ttl> URL.

6. The unfolding of the embedded resources. On a web page with a resource view,

the resource properties are presented as a table. The first column contains the prop-

erty name, and the second column contains its value.

If the property value is the URI of another resource, in order to find out the properties

of this resource, the user must follow the link of the resource. The system must allow

the user to expand embedded resources so that they can see the properties of these

embedded resources without leaving the source page.

If the property value is an anonymous resource (blank node), the property value is

the surrogate ID of this anonymous resource, and the description of the anonymous

resource itself is located at the bottom of the page. Similarly, the system should allow

the user to deploy an anonymous resource to see its properties "in place", without

scrolling the page.

4 Implementation of Improvements

At the moment, we have fully implemented improvements 1-3 and 5, as well as partially

implemented improvement 6.

Problem of resolving Cyrillic URIs (improvement №1).

363

http://lod.ruthes.org/resource/entry/RU-мaшинa-n
http://lod.ruthes.org/resource/entry/RU-мaшинa-n.html

After analyzing the source code of LodView, we found that this problem is related to

the fact that the URI text is represented in the SPARQLEndPoint class in Western ISO-

8859-1 encoding. This problem was solved by adding a single line of code to the spec-

ified class that recodes the URI'I from ISO-8859-1 to Unicode:

IRI = new String (URI.getBytes ("ISO-8859-1"), "UTF-8");

After we solved this problem, LodView began to correctly resolve Cyrillic URLs

and return a web page displaying the corresponding resource when accessing them.

However, after this, we found a new problem: the resource URI is also displayed incor-

rectly on the returned web page (see Figure 5).

Fig. 5. Incorrect display of the resource URI

We solved this new problem by performing a similar recoding in the code of the

corresponding web page (resource.jsp).

Problem with displaying Cyrillic literals (improvement №3).

This problem was solved in the same way as the previous one, using a similar recod-

ing.

Problem with encoded URIs (improvement №2).

To solve this problem, we have made changes to the ResourceBuilder class.

Problem with fragment identifiers (improvement №4).

In the course of solving this problem, we encountered that it is not possible to cor-

rectly send the # symbol to the server, which is why the server displays the basic version

of the resource, and not the requested one. The solution to this problem (although not

the most elegant) is to replace the # symbol with another character (rarely used in nor-

mal texts and URLS) on the client side and decode it to # on the server side. This way,

364

we can correctly pass the address of the resource we are looking for to the server (Fig.

6).

Fig. 6. Blank nodes representation in the resource with fragment identifier.

The disadvantage of this approach is that we can only go to a resource with the frag-

ment ID from another resource. If we enter an address <http://wordnet-rdf.prince-

ton.edu/wn31/cat-n#CanonicalForm> in the address bar, the <http://wordnet-

rdf.princeton.edu/wn31/cat-n> resource will be displayed instead. For this reason, in

the future we will have to change the structure of the web page that displays the resource

content and include related resources with different fragment IDs.

Problem with human-readable URLS (improvement №5).

To solve this problem, we added support for such URIs by making changes to the

ResourceController class.

The problem with the deployment of the embedded resources (improvement №6).

This task is completely solved and consists of two changes. For easy viewing of

embedded resources, we added the “Expand" button, which displays an iframe contain-

ing a page with a web view of the embedded resource (Fig. 7).

Displaying fields in blank nodes was implemented using an existing block with

blank nodes. Part of its content associated with a resource that is present in the main

365

block of the web page is moved to the parent element of this resource. Thus, detailed

information about the contents of the blank node is displayed directly below it (Fig. 6).

Fig. 7. Example of deploying an embedded resource using an iframe

5 Conclusion

This article provides an overview of the main principles, methods, and existing solu-

tions for LD visualization, as well as ways to improve the web application for visualiz-

ing resources from triplet stores, aimed at correctly displaying Russian-language re-

sources (or any other ones that use non-Latin characters).

These improvements include: 1) Resolution of Cyrillic URIs; 2) Cyrillic URIs in

Turtle representations of resources; 3) Support for Cyrillic literals; 4) support for URIs

with IDs of fragments; 5) Human-readable URLs for RDF representations of resources;

6) Deployment of embedded resources.

At the moment, we have fully implemented revisions #1-3 and #5-6, and partially

implemented revision #4. The implementation of these improvements is the main con-

tribution of this article.

These improvements will be offered as a fork to the LodView project and will be

used as the main resource for viewing the contents of triplet repositories within our

project.

Acknowledgements. The work was initiated for navigation over LLOD cloud by

K. Nikolaev and A. Kirillovich at KFU, where was funded by Russian Science Foun-

dation according to the research project no. 19-71-10056, and then adapted for naviga-

tion over specialized LaTeX-based mathematical collections by A. Kirillovich at JSC

RAS.

366

References

1. Yi, J., Kang, Y., Stasko, J., and A. Jacko, J.: Toward a deeper understanding of the role of

interaction in information visualization. IEEE Transactions on Visualization and Computer

Graphics (TVCG), 13(6):1224–1231 (2007).

2. Moritz, D., Fisher, D., Ding, B., and Wang, C.: Trust, but verify: Optimistic visualizations

of approximate queries for exploring big data. In Conference on Human Factors in Compu-

ting Systems (CHI) (2017).

3. Park, Y., Cafarella, M., and Mozafari, B.: Visualization-aware sampling for very large da-

tabases. In IEEE International Conference on Data Engineering (ICDE) (2016).

4. Bikakis, N., Papastefanatos, G., Skourla, M., and Sellis, T.: A hierarchical aggregation

framework for efficient multilevel visual exploration and analysis. Semantic Web Journal,

8(1), (2017).

5. Godfrey, P., Gryz, J., Lasek, P., and Razavi, N.: Visualization through inductive aggrega-

tion. In International Conference on Extending Database Technology (EDBT) (2016).

6. Lins, L., Klosowski, J., and Scheidegger, C.: Nanocubes for realtime exploration of spatio-

temporal datasets. IEEE Transactions on Visualization and Computer Graphics (TVCG),

19(1):2 (2013).

7. Angelini, M., Santucci, G., Schumann, H., and Schulz, H.: A review and characterization of

progressive visual analytics. Informatics, 5(3):31 (2018).

8. Fekete, J., Fisher, D., Nandi, A., and Sedlmair, M.: Progressive data analysis and visualiza-

tion. Dagstuhl Seminar 18411, Dagstuhl Reports, 8(10) (2018).

9. Zgraggen, E., Galakatos, A., Crotty, A., Fekete, J., and Kraska, T.: How progressive visual-

izations affect exploratory analysis. IEEE Transactions on Visualization and Computer

Graphics (TVCG), 23(8) (2017).

10. El-Hindi, M., Zhao, Z., Binnig, C., and Kraska, T.: Vistrees: Fast indexes for interactive data

exploration. In HILDA (2016).

11. Augusto de Lara Pahins, C., Stephens, S., Scheidegger, C., and Luiz Dihl Comba, J.:

Hashedcubes: Simple, low memory, real-time visual exploration of big data. IEEE Transac-

tions on Visualization and Computer Graphics (TVCG), 23(1) (2017).

12. Bikakis, N., Maroulis, S., Papastefanatos, G., and Vassiliadis, P.: RawVis: Visual explora-

tion over raw data. In 22nd European Conf. on Advances in Databases & Information Sys-

tems (ADBIS) (2018).

13. Quan D., A., Karger, R.: How to make a semantic web browser. In International World Wide

Web Conference (WWW), pp. 255–265 (2004).

14. Vega-Gorgojo, G., Slaughter, L., Giese, M., Heggestøyl, S., W. Klüwer, J., Waaler, A.:

Pepesearch: Easy to use and easy to install semantic data search. In Extended 138

BIBLIOGRAPHY Semantic Web Conference (ESWC), pp. 146–150 (2016).

15. Hildebrand, M., van Ossenbruggen, J., and Hardman, L.: Facet: A browser for heterogene-

ous semantic web repositories. In International Semantic Web Conference (ISWC), pp. 272–

285 (2006).

16. F. C. Araújo, S., Schwabe, D., D. J. Barbosa, S.: Experimenting with explorator: A direct

manipulation generic RDF browser and querying tool. In Visual Interfaces to the Social and

the Semantic Web (2009).

17. Maria Brunetti, J., Auer, S., García González, R., Klímek, J., Necaský, M.: Formal linked

data visualization model. In International Conference on Information Integration and Web-

based Applications and Services, IIWAS, p. 309 (2013).

367

18. Tschinkel, G., E. Veas, E., Mutlu, B., Sabol, V.: Using semantics for interactive visual anal-

ysis of linked open data. In International Semantic Web Conference (ISWC), pp. 133–136

(2014).

19. Valerio Camarda, D., Mazzini, S., Antonuccio, A.: LodLive, Exploring the Web of data. In

International Conference on Semantic Systems, I-SEMANTICS, pp. 197–200 (2012).

20. Micsik, A., Tóth, Z., Turbucz, S.: LODmilla: Shared visualization of linked open data. In

Theory and Practice of Digital Libraries—TPDL 2013 Selected Workshops, pp. 89–100

(2014).

21. Bosca, A., Bonino, D., Pellegrino, P.: OntoSphere: More than a 3D ontology visualization

tool. In Semantic Web Applications and Perspectives, SWAP (2005).

22. Suigen Guo, S., W. Chan, C.: A tool for ontology visualizaiton in 3D graphics: Onto3DViz.

In Canadian Conference on Electrical and Computer Engineering, CCECE (2010).

23. Dmitrieva, J., Verbeek, F.: Node-link and containment methods in ontology visualization.

In International Workshop on OWL: Experiences and Directions (OWLED) (2009).

24. LodView homepage, https://lodview.it, last accessed 2020/05/03

368

https://lodview.it/

