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Abstract. Signal imitation is widely used today since it helps to bring the exper­

iment to the virtual domain thus eliminating risks of damaging real equipment. 

At the same time all signals used in the physical world are limited Ьу the fшite 

band of frequencies rendering bandpass signal studies especially important. Тhе 

method for imitating bandpass signals in complex basis is favoraЫe in the case 

of а bandpass signal as it uses resources effectively and provides the desired ac­

curacy. 

Тhе author has implemented the method in the form of the РС application 

generating signals according to the characteristics set Ьу the user. Тhese charac­

teristics are: borders defining the signal's frequency band, the time period, the 

number of steps for discretization, the spectral density form. Тhе РС application 

uses the characteristics to generate the signal and its experimental autocorrela­

tion. Тhе application calculates theoretic and algorithmic autocorrelations in or­

der to evaluate the quality of the imitation Ьу computing the error function. Тhе 

application visualizes all the resulting information via the simple interface. 

Тhе application was used to generate two-dimensional signals to highlight the 

present limitations and to sketch the direction for the future. Тhе application is 

later to Ье adapted completely to imitating multidimensional signals. 
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1 Introduction 

The word "signal" today is known to everyone and is used regularly but often we don't 
even suspect how often this word could Ье used but wasn't. Temporal changes of some 
physical value сап Ье represented as time series or as signals. The term "signal pro­
cessing" is applicaЫe to any processes that change in time [1, 2] including the very 
large time series data [3]. The proЫem of forecasting brings these two terms especially 
close and also links them to events happening in the real world [4]. The fundament of 
such analysis is derived ftom the theory of digital signal processing [1]. 

Copyright © 2020 for this paper Ьу its authors. Use permitted under Creative 

Commons License Attribution 4.0 Intemational (СС ВУ 4.0). 
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Increasing volumes of data breed growing amounts of information all of which have 

to Ье contained in the form of а signal ( or а time series ), and as you have to represent 

more and more linked processes the dimensions of signals being used grow [5]. Multi­

dimensional signals are involved when dealing with visual information: image pro­

cessing and generation [6] or scanning different sections of а brain [7]. Finance uses 

one-dimensional time series widely but today multidimensional signals can represent 

more complex financial phenomena [8]. Thus, digital signal processing provides meth­

ods used when analyzing or managing data which nowadays is often multidimensional. 

Some methods are more effective and work faster which is desiraЫe when data is used 

intensively. 

The complex basis has shown itself to Ье useful for imitating one-dimensional band­

pass signals [9, 10]. The program that uses the complex basis was designed and tested 

on one-dimensional and two-dimensional unidirectional signals. Since the reviewed 

works don't consider methods of two-dimensional signal imitation in depth [5], deal 

with visual methods [6], do not consider the broadband signals separately and do not 

use complex basis, it is planned then to upgrade the designed program for imitating 

multidimensional signals with varying numbers of dimensions. 

Section 2 shows the results gained Ьу using the program in the case of one-dimen­

sional signals. Section 3 embarks upon settling whether the method of signal imitation 

in complex basis described in section 2 can Ье used to generate two-dimensional signals 

and what changes have to Ье made to increase quality of such generating. The future 

plans are described in the conclusion. 

2 One-Dimensional Signal lmitation in Complex Basis 

2.1 Complex Basis Imitation Algorithm 

Bandpass signal's spectrum is constrained within two border frequencies [10]. The 

spectral density of the bandpass signal is shown on the figure 1. 

S(ro) 
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Fig. 1. Bandpass signal's spectral density 

The goal of the imitation is to acquire the signal that has such spectrum [11]. User inputs 

the form of the spectrum, its limiting frequencies ffiL and ffiR, the period Т and the num­

ber of discretization intervals N [12]. Discretization replaces ffiL and ffiR with discrete 
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borders NL and NR. "L" stands for "Left" and "R'' stands for "Right". Х FE and Х FO are 
even and odd Fourier coefficients. 

Formula of the random complex spectrum is as follows: 

The formula derived for calculating the resulting signal is presented below: 

The spectrum and the signal are connected through the Fourier transform. When imi­

tating random signal, coefficients µk and Yk randomly take on values of "1" or "-1". 
When imitating determined signal all of themjust remain set to "1". The values ofYF 

on the borders depending on whether the N is odd or even are to Ье considered sepa­
rately which is dropped here in favor of the general method. These formulas to Ье used 

in the program were derived Ьу Professor Syusev V. V. [9] and tested experimentally 
Ьу the author of the current paper. 

2.2 Applying the Method 

Three the signals and also three experimental autocorrelations generated Ьу the pro­
gram are presented on the figure 2. 

Fig. 2. Тhree random signals ( on the left) and three resulting autocoпelations ( on the right) 

based on the same spectral density 

The resulting experimental autocorrelation is calculated as follows: 
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The program calculates different autocoпelations (figure 3). The first one (figure 3, а) 
is an а priori theoretical autocoпelation derived directly from the spectral density. The 
second one (figure 3, Ь) is an algorithmic autocoпelation that uses Fourier coefficients. 
The third one (figure 3, с) substitutes Fourier coefficients with their complex basis ver­
sions, this is the resulting experiment autocoпelation that is compared to the other two 
in order to estimate the quality of imitation. 
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Fig. 3. Comparison of different autocoпelations: а) theoretical a-priori autocoпelation, Ь) algo­
ritlmiic Fourier autocoпelation, с) resulting experiment autocoпelation 

The епоr function and the mean епоr are computed Ьу finding the difference between 
the two autocoпelation being compared. An example ofthe епоr function calculated is 
presented on the figure 4. Due to the symmetry of the digital spectrum the right half of 
the епоr function plot with the peak on the very right could Ье ignored. 

О 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 

Fig. 4. Епоr function shown Ьу the program 
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When generating determined signals comparison is done between the resulting auto­
coпelation and the theoretical autocoпelation that is derived а priori. The random sig­
nals are qualified on the difference between the experimental autocoпelation and the 
algorithmic autocoпelation. 

3 Two-Dimensional Signal lmitation in Complex Basis 

3.1 The Specifics of Two-Dimensional Signal Processing 

The structure of multidimensional signals presents the certain level of difficulty when 
it comes to both representing and processing [5]. Figure 5 shows the two-dimensional 
signal S(ш1, ш2) = sin(шf + ш�). 

Fig. 5. Two-dimensional spectral density 

The Fourier transform is different when it comes to multidimensional signals as the 
Fourier functions are defined in the !И.n space. But discrete Fourier transform exchanges 
the !И.n space for the n-dimensional апауs of numbers. The direct discrete Fourier trans­
form: 

where О � Ki � A i - 1, i = 1, 2, ... , п. Inverse transform: 

where О � а1, ... , й-п � Ас1, ... ,п) - 1. 
However, before advancing into two-dimensional domain it was decided to study 

the specifics of the "quasi-two-dimensional" signals that are obtained Ьу stacking to­
gether random broadband one-dimensional signals generated earlier. 
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3.2 Applying One-Dimensional Algorithm to Two-Dimensional Signals 

Despite the need of readjusting the method for two-dimensional signals this method can 

already Ье used. То do so we just have to transform the two-dimensional spectral den­

sity into an array of one-dimensional broadband ones stacked together. Resulting two­

dimensional spectral density is presented on figure 6. 

Fig. 6. Two-dimensional spectral density 

Then the one-dimensional signals comprising the two-dimensional one can Ье gener­

ated separately and stacking them together side Ьу side provides us with а two-dimen­

sional signal (figure 7). This signal inherits the quality of either being determinate or 

random Ьу the virtue of its coefficients. 

Fig. 7. Two-dimensional signal imitated 

Signals generated while being two-dimensional are unidirectional as clear from the fig­

ure 7 - the most obvious trends are visiЫe on the main horizontal axis so the so called 

waterfall plot appears. Waterfall plots are encountered in medicine [13], in physics [14] 

and in other fields where one-dimensional signals that follow the same trend are ana­

lyzed [15], therefore the need for generating arrays of such codirected signals is also 

present. 
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4 Conclusion 

This paper is а part of а new development for high-dimensional signal simulation that 

is presented in the conference Ьу the paper where the author was involved too. The 

method of imitation developed earlier for one-dimensional imitation was used to imitate 

two-dimensional signals. Further research and adaptation of this method is to Ье per­

formed in due course. 

The method of imitation in complex basis reduces algorithmization to the execution 

of pre-derived mathematical equations, which reduces the computational complexity 

and resource intensity of the algorithm, and the use of linear data structures positively 

affects the scalaЬility of the developed solution. 
The software solution was implemented in the Lazarus IDE which allowed to meet 

all the accuracy criteria and to create the interface. Free Pascal language used in Lazarus 

IDE is very clear as it was designed Ьу mathematicians to Ье understood Ьу their col­
leagues. This language is also widely used in education field in Russia so the program 

developed could Ье studied Ьу the future students during their digital signal processing 

course. 

Since the in-box work with two-dimensional signals is not supported yet and to Ье 
added later the results in section 3 were obtained Ьу putting the one-dimensional signals 

comprising the two-dimensional one through the software and later stacking the results 

back together for the visualization through MS Excel 2010. 

The first test of the one-dimensional algorithm being expanded to imitate two-di­

mensional signals highlighted the direction for future development: the algorithm 

should Ье adopted to allow for signals with different numbers of dimensions, the visu­
alization facilities should Ье expanded. The method as it is can Ье used for modeling 

the unidirectional two-dimensional data in the form of а waterfall plot. 
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