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Abstract. The estimation of the failure probability is an important and
hard problem, arising in the optimal control of unreliable systems. The
required performance measure is usually not analytically available. Thus,
simulation becomes the most adequate technique to evaluate a rare event
failure probability. We develop a variance reduction technique to estimate
a small failure probability in a special unreliable system with repairs. A
few variants of the importance sampling method are adapted to estimate
the quantity of interest.
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1 Introduction

Currently, research in the field of the technical system reliability is associated
with rather complex models of degradation processes, for which it is difficult to
obtain analytical or heuristic solutions. An important feature of assessing the
parameters of the degradation process or the probability of system failure is
the varying rate of degradation and failures with a natural or predetermined
threshold level, which is usually a random variable [8,15]. The key point in
the analysis of complex shock models is the transition to simulation methods
and naive Monte Carlo method is still popular in a large number of modern
works (see [5,6,11,16,17]), despite its widely known inefficiency for the study of
highly reliable systems. Speed-up simulation methods and variance reduction
techniques provide a more efficient way of investigating models associated with
rare events than the naive Monte Carlo method.

In case of applying variance reduction techniques for the analysis of the
degradation models the non-standard formulation of the rare events estimation
problem to be considered, when the level of system failure is a random variable.
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In particular, earlier in [3] the variance reduction technique based on Asmussen-
Kroese method [1] has been extended to estimate the failure probability that a
random sum exceeds a random threshold. This approach provides a decreasing
of the relative error for the heavy-tailed degradation stages.

In this work, we describe the different strategies of applying the importance
sampling (IS) method for the considered problem of estimation of the rare-event
failure probabilities related to a degradation process containing a few steps, in
which a maintenance repair is used to prevent a failure. The rest of the paper is
organized as follows. In the second section, we recall the basic definitions of the
degradation process. Then, in the next third section, the problem of rare-event
estimation is formulated. Section 4 provides the description of the importance
sampling (IS) estimators adapted to the considered failure probabilities. Finally,
numerical results are presented in Section 5.

2 Model Description

Consider the degradation process X := {X(t), t ≥ 0} with a complete failure
state F and state space

E = {0, 1, . . . , L, . . . ,M, . . . ,K;F},

that represents degradation stages of the system (see Fig. 1). The states (stages)
L, K, M play a specific role and assumed to be fixed. With the help of this
model, the dynamics of the state of the anti-corrosion coating was previously
studied, and in some cases, an analytical solution for the characteristics of the
process is known (see [4]). Nevertheless, this model allows us to develop and test
a number of methods for variance reduction and further extend these techniques
to more general degradation processes with independent increments.

Fig. 1. Realization of the degradation process with two types of cycle



In what follows, we will assume that the two-level policy for managing pre-
ventive maintenance and restoration of the system is fixed and the values of
(K,L) are known, where K stands for preventive repair stage, after which the
process returns to stage L. Consider the possible states of the system, illustrated
in Fig. 1. The process starts in state X(0) = 0 and then passes K−1 intermediate
degradation stages.

Two types of failures are possible in the system: gradual failure, which corre-
sponds to the next stage transition, and instantaneous failure, when the process
enters the final state F . Tracking of instantaneous system failures is a key feature
for highly reliable systems modeling.

Let Ti be a random length of the ith stage of the degradation, with a given
probability density function (pdf) fTi . (Note that in general, distribution of Ti
may depend on the stage number i.)

An instantaneous failure becomes possible starting from stage M , when the
system does not have time to go to stage K and, accordingly, the time

SM,K =

K−1∑
i=M

Ti

of transition from stage M to stage K exceeds the time to failure V , where V
is a random value (r.v.) with given distribution function FV . As a result, the
process X jumps to the state F . Following the transition to the state F , the
system again is ready for work from the state 0 after a random repair time UF
with a known distribution. If, on the contrary, the process X enters the state K,
then repair is performed during random time UK,L, and after that, the process
returns to stage L.

Degradation process X is regenerative with two types of regeneration cycles.
Denote by YF the length of the regeneration cycle with a failure, and let YNF be
the length of the cycle without failure. Thus (unconditional) regeneration cycle
length Y can be written as

Y = YF · I{V≤SM,K} + YNF · I{SM,K<V }.

where I{·} denotes indicator function and cycle lengths are determined as follows:

YF = V + UF + S0,M

YNF = SM,K + UK,L + SL,M ,

where r.v. V , UF , S0,M =
∑M−1
j=0 Tj are independent as well as r.v. SM,K , UK,L,

SL,M =
∑M−1
j=L Tj .

Since for reliability models the greatest risk comes from the instantaneous
failure, then the main target is to find the probability of instantaneous failure
within the regeneration cycle, that is

l = P(SM,K ≥ V ) = ESM,K
[
E[I(SM,K ≥ V )|SM,K ]

]
= ESM,K [FV (SM,K)],



where it was taken into account independence of the r. v.’s V and SM,K .

Another critically important reliability descriptor of the system quality is a
reliability function which is defined as

R(t) = P[T > t|X(0) = 0], t ≥ 0,

where T stands for the lifetime of the system. In our model, the mean lifetime
can be written as

E[T ] = E[YNF ](E[N ]− 1) + E[V |V ≤ SM,K ],

where N is the number of cycles completed before the total failure happens. It
is easy to see that the mean number of such cycles equals E[N ] = 1/`.

For the exponential reliability model, the classical evaluation of the function
R(t) based on the solution of the Kolmogorov differential equations for the state
probabilities, thus the results are obtained in terms of the Laplace transform.
However, this approach is not acceptable in the rare failure case in general.
Nevertheless, for rare failures, the reliability function asymptotic can be used
(see [4]):

R(t) ∼ e−t
`

E[YNF ] as `→ 0,

and the mean lifetime becomes (approximately)

E[T ] =

∫ ∞
0

R(t)dt ≈ E[YNF ]

`
.

If ` is close to zero, then the naive Monte-Carlo fails, thus the variance
reduction methods must be applied.

3 Rare event simulation of the failure probability

In this section, we describe a general problem arising in the estimation of a
small probability (the rare event simulation problem). Suppose that θ > 0 is the
so-called rarity parameter, namely

`θ := P(SM,K ≥ Vθ)→ 0, as θ →∞.

The rarity parameter is associated with the parametric set of the distributions
Vθ, in particular, one can consider θ = EV .

Denote by Zθ an estimator of `θ, that means EZθ = `θ. To estimate `θ
by Monte Carlo (MC) simulation, one has to generate the independent and
identically distributed (i.i.d) copies of the r. v. Zθ and calculate the sample
mean

ˆ̀
θ :=

1

N

N∑
n=1

Z
(n)
θ . (1)



The typical measure of the goodness of the estimator is expressed by the
relative error (RE) defined as follows:

RE
[
ˆ̀
θ

]
:=

√
Var

[
ˆ̀
θ

]
E
[
ˆ̀
θ

] . (2)

The simple example is indicator function of the target event, i.e.

ZMC = I(SM,K ≥ V ),

which corresponds to the naive Monte Carlo. It is straightforward to show that

RE
[
ˆ̀MC
θ

]
∼ 1√

`θN
as `θ → 0,

where a ∼ b means that a/b→ 1.
From the equation above it is clear that the RE of the naive MC estimator

diverges for small values of the target probability and the sample size required
to get a suitable RE is inversely proportional to

√
`θ.

There are many rare event simulation techniques [12,9] which aim at modify-
ing the estimator (1) in order to reduce its variance, hence requiring less sample
size for the desired accuracy. The best-desired case is the vanishing RE, that is

RE
[
ˆ̀
θ

]
→ 0, as θ →∞.

In the latter case, the accuracy of the estimation increases in the rarity of the
event. However such property is less implementable in practice, and in many
situations, the RE grows but slower than in naive MC. Note that for the tail
probabilities of the sum of independent subexponential r. v.’s such a property
takes place under some additional conditions on the distributions of the r.v. T ,
when V is a constant. In other words, in this case, V = θ is a rarity parameter.
(For more detail see [7].)

4 Importance Sampling for the Failure Probability
Estimation

Importance sampling is a popular method for variance reduction aimed at chang-
ing the probability measure, so that the target rare event becomes more likely
to occur.

We assume that Ti are i.i.d. with a common pdf fT , then the pdf of the
random vector (TM , ..., TK) has the following product form

f(x) = f(xM , .., xK−1) =

K−1∏
i=M

fT (xi).



Let further denote

hθ(x) = FVθ

(
K−1∑
i=M

xi

)
and g(x) = g(xM , ..., xK−1) be some proposal density function, then the target
probability

`θ =

∫
hθ(x)

f(x)

g(x)
g(x)dx = Eg

[
hθ(X)

f(X)

g(X)

]
,

̂̀IS
θ =

1

N

N∑
i=1

hθ(X
i)
f(Xi)

g(Xi)
, (3)

where X1, ..., XN is the sample of the random vector with the density g.

4.1 Exponential Twisting

In this subsection, we describe the classical algorithm based on the importance
sampling with a exponential change of measure. This approach can be applied
to a restricted class of problems when the moment generating function

Q(γ) = E[eγTi ]

exists, that is for the light-tailed stages Ti. The classical approach consists in
selecting an importance sampling distribution from a family of pdf’s

fγT (x) =
eγx

Q(γ)
fT (x). (4)

Note that in general sampling from the twisting pdf could be technically difficult,
but it is possible to use acceptance-rejection method for this aim.

The target probability can be expressed as

`θ = Eγ [FV (SM,K)Wγ(SM,K)] ,

where Eγ is the expectation under pdf (4), and then the corresponding likelihood
ratio is defined as

Wγ(SM,K) = exp
{
− γSM,K + (K −M) lnQ(γ)

}
.

So, given the two sequences of the samples

{T (i) = (T
(i)
M , ..., T

(i)
K−1), i = 1, ..., N}, {V (i), i = 1, ..., N},

where elements of the random vector T (i) are independent realizations of the r.v.
with the twisted pdf fγT defined in (4), one can estimate the failure probability
in the following way

ˆ̀IS
θ :=

1

N

N∑
i=1

FV (S
(i)
M,K)Wγ(S

(i)
M,K),



where S
(i)
M,K are independent copies of SM,K .

To select the twisting parameter γ, adaptive IS is used. Let consider the
second moment of the IS estimator:

E
[
I(SM,K ≥ V )W 2

γ (SM,K)
]
≤ (Q(γ))2(K−M)E[e−2γV ]

It is reasonable to choose γ∗ which minimizes given above upper bound. For
example, when Ti ∼ exp(λ) and V = const, one can obtain

γ∗ =
V λ−K +M

V
.

In general, such a one-dimensional optimization problem can be solved nu-
merically.

4.2 Laplace approximation of the zero-variance distribution

For the positive function h consider the following distribution

g∗(x) =
hθ(x)f(x)∫
hθ(x)f(x)dx

=
hθ(x)f(x)

`
.

It is quite straightforward to show that g∗ is the optimal density which pro-
vides the zero variance of the estimator.

But in practice, it is not implementable because it requires knowledge of
the target quantity `. Nevertheless, given above expression provides an insight
into the general form of a good proposal distribution. Following [2] rewrite the
intractable optimal proposal:

g∗(x) =
1

`
hθ(x)f(x) =

1

`
exp(−E(x)),

where
E(x) = − log hθ(x)− log f(x).

The Laplace method gives a Gaussian approximation of g∗(x) based on a local
expansion around a mode

x∗ = argmin
x

E(x).

In general, the mode can be calculated by numerical methods. Then a Taylor
expansion up to second order around the mode gives

E(x) ≈ E(x∗) + (x− x∗)∇E
∣∣
x=x∗ +

1

2
(x− x∗)TH(x− x∗).

where ∇E is the gradient vector and H is the Hessian matrix evaluated at the
mode. This leads to the following Gaussian approximation of the zero-variance
distribution:

g̃∗(x) =
1

`∗
exp

(
−1

2
(x− x∗)TH(x− x∗)

)
= N(x |x∗, H−1).



Then, having the sample X1, ..., XN of the multivariate normal distribution, the
corresponding estimator ̂̀LA is calculated by formula (3) with

g(·) = N(· |x∗, H−1).

4.3 Cross-Entropy Method

The aim is to find the proposal distribution g close to the desired zero-variance
distribution g∗ in the sense of the Kullback-Leibler divergence

D(g∗, g) = Eg∗
[
log

g∗(x)

g(x)

]
=

∫
g∗(x) log g∗(x)dx−

∫
g∗(x) log g(x)dx.

Additionally assume that the nominal pdf fT is parameterized by a finite
dimensional vector u: fT (x) = fT (x;u). Let the proposal pdf is f(·,v) for some
parameter v (i. e. belongs to the same parametric class). The CE algorithm is
based on finding an optimal parameter v∗:

v∗ = argmin
v

D(g∗, f(·,v))

= argmax
v

Ew [hθ(X)W (X;u,w) log f(X;v)] ,

where

W (X;u,w) =
f(X;u)

f(X;w)
.

The given above stochastic optimization problem is usually replaced by its
stochastic counterpart:

v∗ = argmax
v

1

N1

N1∑
k=1

hθ(X
k)W (Xk,u,w) log f(Xk;v), (5)

where X1, .., XN1 is the sample from the distribution f(·;w). In some cases the
solution of this optimization problem is available in closed form.

The main problem when dealing with the rare-event simulation is that most
values of the hθ(X

k) are zero. In this case the so-called multi-level CE procedure
[10,13,14] can be applied. This procedure constructs the sequence (θi,vi) of both
rarity and reference parameters, where vi is a solution of the problem (5) with
previous values of the parameters: w = vi−1; hθ = hθi−1

.



5 Numerical Examples

In this section, we present the simulation analysis of the considered IS estimators.
We have used N = 10000 replications for all experiments. We compare proposed
IS estimators with the naive MC estimator in terms of the relative error (RE)
denoted by the formula (2) and the relative experimental error (RER) defined
as

RER =
|̂̀− `|
`
· 100%,

where ` is the true value (when available).

5.1 Exponential Twisting

We assume that the stages Ti have exponential distribution with a rate parameter
λ. Performance analysis of the IS with exponential twisting estimator is presented
in Tables 1, 2. In the first example, we assume that V is uniformly distributed on
the interval (θ−δ, θ+δ), with θ > δ > 0, in which case θ is the rarity parameter.
The following numerical parameters are used: K −M = 10; λ = 1; δ = 5. The
second example, where V is exponentially distributed with the rate parameter
1/θ, is used as a benchmark for which the closed-form expression is available [4]

` = 1−
(

λ

λ+ 1/θ

)K−M
.

The same set of parameters was used as for the first experiment.

Table 1. Performance of the exponential twisting estimator: Ti ∼ exp(λ),
V ∼ U(θ − δ, θ + δ)

θ ̂̀MC ̂̀IS RE(̂̀MC) RE(̂̀IS)

10 0.4804 0.4827 0.0104 0.0057
15 0.1224 0.1239 0.0267 0.0065
20 0.0151 0.0136 0.0807 0.0108
25 9e-04 8.1e-04 0.3332 0.0144
30 – 3.2e-05 – 0.0172
35 – 9.9e-07 – 0.0196
40 – 2.4e-08 – 0.0221
45 – 4.9e-10 – 0.0244

Numerical results indicate a significant decrease of the RE. Moreover, simu-
lation results are very close to the theoretical ones. However, as it was pointed
out above, in general (non-exponential) case the sampling from the twisting
distribution could be technically difficult.



Table 2. Performance of the exponential twisting estimator: Ti ∼ exp(λ),
V ∼ exp(1/θ)

θ ` ̂̀MC ̂̀IS RE(̂̀MC) RE(̂̀IS) RER(̂̀IS)

103 9.94e-03 1.16e-02 9.92e-03 0.0939 0.0015 0.1898
104 9.99e-04 5e-04 1.58e-03 0.4471 0.0015 0.1425
105 9.99e-05 – 9.97e-05 – 0.0016 0.2629
106 9.99e-06 – 1e-05 – 0.0016 0.0929
107 9.99e-07 – 9.98e-07 – 0.0015 0.1689
108 9.99e-08 – 1e-07 – 0.0016 0.3619

Table 3. Performance of the estimators: Weibull stages Ti, V ∼ U(θ − δ, θ + δ)

γ ̂̀MC ̂̀LA ̂̀CE RE(̂̀MC) RE(̂̀LA) RE(̂̀CE)

20 2.3e-04 2.8e-04 2.5e-04 0.2493 0.0480 0.0293
21 9.5e-05 5.9e-05 6.4e-05 0.3831 0.0298 0.0231
22 2.7e-05 1.5e-05 1.5e-05 0.6246 0.0436 0.0261
23 – 3.4e-06 3.5e-06 – 0.0448 0.0289
24 – 6.1e-07 7.2e-07 – 0.0304 0.0397
25 – 1.2e-07 1.3e-07 – 0.0355 0.0344
26 – 2.0e-08 2.3e-08 – 0.0256 0.0397
27 – 3.4e-09 3.5e-09 – 0.0332 0.0455
28 – 5.3e-10 5.3e-10 – 0.0428 0.0763
29 – 7.1e-11 7.3e-11 – 0.0363 0.0852
30 – 9.5e-12 9.2e-12 – 0.0305 0.0718

5.2 Approximation of the Zero-Variance Distribution

In this subsection, two strategies of the approximation of zero-variance distri-
bution are compared, namely the Laplace approximation (LA) and the cross-
entropy (CE) algorithm.

We assume that the stage T has Weibull distribution,

FT (t) = 1− exp(−(t/b)a), t ≥ 0,

where a > 0 is a shape parameter and b > 0 is a scale parameter. In the
experiments we put b = 1.

Whereas the implementation of the Laplace approximation is quite straight-
forward, the CE procedure requires additional specification of the parameters,
namely the reference parameter u of the nominal pdf f(·;u) and the number
of replications N1 in the stochastic counterpart optimization problem (5). It is
assumed that the nominal pdf is parametrized by the set of the scale parameters,
thus

u = (uM , ..., uK−1) = (1, ..., 1).

The CE algorithm attempts to find the new set of the scale parameters

v = (vM , ..., vK−1)



which provides the optimum to (5). Under such a parametrization the closed
form solution of (5) is available (see [13] for more details).

The simulation experiments were performed with the following values of the
parameters: K −M = 10; δ = 5; N1 = 100. The numerical results presented in
the Table 3 show that both LA and CE algorithms provide a significant decrease
of the RE. It seems that the LA procedure slightly outperforms the CE for
sufficiently small probabilities but we also note that the RE is also estimated
from generated samples, thus is a r. v. itself. Furthermore, increasing the number
of samples N1 leads to further decreasing of the RE.

6 Conclusion

In this paper, we consider a variance reduction technique based on the impor-
tance sampling with the different strategies of choosing the proposal distribution,
to estimate the failure probability of the degradation process. A few numerical
examples were presented to demonstrate the properties and accuracy of the es-
timators. It is assumed in future research, to study the performance of the pro-
posed estimator by both numerical and analytic methods and combine it with
the advanced acceleration techniques based on the splitting of the trajectories.
As a possible extension one can consider the so-called heterogeneous case when
the stages are not identically distributed.
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