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Abstract. We consider a queueing system offering batch service for het-
erogeneous customers. Two types of customers called ordinary customers
and emergency customers arrive to the system according to a marked
Markovian arrival process of order 2. There is an infinite queue and finite
buffer in front of the station. Ordinary customers arrive to the infinite
queue and emergency customers to the finite buffer. Service is provided
in batches with maximum batch size K. If the number of emergency cus-
tomers is greater than or equal to K, the first K of them will be taken
together into service and if it is less than K, ordinary customers are
taken along with emergency customers so as to maximize the batch size.
In the absence of emergency customers, if there are at least K ordinary
customers, then first K of them will be served next. For a batch of size
i, 1 ≤ i ≤ K, the service time follows a phase type distribution with
representation PH(αi, Si). The model possesses the characteristics of a
vacation queueing model. The system is analyzed using Matrix analytic
Method. Performance characteristics are derived. The model is numeri-
cally illustrated with suitable example.

Keywords: Batch Service, Marked Markovian Arrival Process, Emer-
gency Customer, Matrix Analytic Methods, Phase Type Distributions

1 Introduction

In this paper we study the mathematical model of a courier delivery system with
emergency arrivals and bulk service. The model has found applications in priority
based signal transmission systems as well. Numerous real life problems can be
modelled as queues with bulk service and a rich literature on bulk queues is
available. Delivery systems of online marketing, courier services, transportation
vehicles and airline services etc. are typical examples for bulk service systems.
Each of these systems possesses its own special features. In delivering items,
the emergency orders are usually served with priority. Sometimes instantaneous
service is called for the emergency customers due to urgency (e.g. delivery of
highly perishable items like samples of body fluids for diagnostic service, animal
sperm, medical essentials upon order placing etc.). It is effective to incorporate
threshold policies in bulk queues to maximize revenue generation and a great
exploration for mathematical results is possible in this direction.
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One of the early works in bulk queues is due to M. F. Neuts [13]. In this
work, the customers are taken together to the service station until queue length
reaches a specified level (L). If the queue grow beyond L and reaches K all the
customers up to K are taken together, the customers beyond K must wait in
queue. H. Gold and P. Tran-Gia [6] studied an M/G[a, b]/1−S queueing system.
The main motivation for this model is the manufacturing systems with batch
serving stations (machines for computer components and chip production).

M. L. Chaudhry and U. C. Gupta [5] describe an M/Ga,b/1/N queue and
queue is studied using supplementary variables and embedded Markov chain
techniques. A finite buffer M/G/1 queue with general bulk service rule and
single vacation is studied by U. C. Gupta and K. Sidkar [8] and in this model
batch size is restricted to a range of values, and when the queue length falls
below the infimum, the server goes for a vacation.

W. B. Powell [16] studies a general class of vehicle dispatching strategies
for bulk arrivals, bulk service queue. D. J. Van De Rzee, A. Van Haeten and
P. C. Schuur [22] describe control strategies for reading the cost of multi server
batch operation systems. S. Kuppa and G. Dattatreya [10] describe frame ag-
gregation in unsaturated WLAN’s with finite buffers and in this model method
for aggregation of more than one data form for transmission is described as an
application for bulk queues. A. Banerjee and U. C. Gupta [1] analyze a single
server finite buffer queue with Poisson arrival and bulk service and batches are
arbitrarily distributed and depends the size of the current batch in service and
the aim is to reduce congestion in the system.

J. Baetens, B. Steyaert, D. Claeys, and H. Bruneel [2] analyze a discrete
time BMAP/Gl,c/1 queue in which service time of a batch depends the current
batch size and a timing mechanism to reduce waiting time is also proposed.
M. Yu and A. S. Alfa [23] describe an algorithm for computing the queue length
distribution at various time epochs in a DMAP/Ga,b/1/N queue with batch size
dependent service times and the impact of correlation on system characteristic
is also discussed. [11,7,4] and [2] give live descriptions of batch service queues
with dependent batch size.

A. Sikadar and S. K. Samantha [19] studied a bulk service queue with service
vacation and vacation starts when all the customers are exhaustively served.
In [17] G. V. Krishna Reddy, R. Nadarajan and P. R. Kandasamy considered a
bulk service system with heterogeneous arrivals and bulk service is provided to
the class of customers with low priority. In [2] J. Baetens, B. Steyaert, D. Claeys,
and H. Bruneel analyze a two class batch service queueing model with variable
server capacity and batch size is determined by number of consecutive same-class
customers. In [3] J. Baetens, B. Steyaert, D. Claeys, and H. Bruneel analyze delay
of a random customer in a two class batch service queueing model with variable
service capacity and batch size is determined by the length of the sequence of
same class customers. An excellent survey by S. Sasikala, K. Indhira on bulk
service queueing models is demonstrated in [18].

A phase type distribution may be defined as the distribution of the time until
absorption takes place in a Markov process with a finite state space and a single



absorption state defined over nonnegative real line. A phase type distribution
with transient states {1, 2, . . . , n} and an absorbing state n + 1 is represented
by a two tuple of the form (α, T ), where α is the probability vector of length n
according to which the process selects the initial state from {1, 2, . . . , n} and T

is an n × n matrix such that

(
T T 0

0 0

)
generates the process, given the column

vector T 0 satisfies the condition Te+T 0 = 0, where e is the vector of ones. (α, T )
is called the representation of the phase type distribution. The distribution F
of time until the chain gets absorbed into the state n + 1 is given by F (x) =
1 − αexp(Tx)e, x ≥ 0. The set of all phase type distributions is a dense subset
of the set of all distributions on the non-negative real line and hence it is a best
tool to approximate any arbitrary distribution in this set. For more descriptions
on phase type distributions see [14].

A Marked Markovian arrival process (MMAP) is a stochastic point process
with heterogeneous arrivals in discrete or continuous time. MMAP may be de-
scribed as follows: Let C be set of indices which describes different types of
customers. Let Nh(t) be the number of arrivals of type h in [0, t] such that
Nh(0) = 0,∀h ∈ C. Consider the set of nonnegative matrices {Dh : h ∈ C}.
Let D0 is a matrix with nonnegative off-diagonal elements and negative diag-
onal elements, and D = D0 +

∑
h∈C Dh be an infinitesimal generator of order

m, and {I(t) : t ≥ 0} be a continuous time Markov chain defined by D. Then
(D0, Dh, h ∈ C) defines an MMAP {Nh(t), h ∈ C, I(t), t ≥ 0}. The Markov chain
{I(t) : t ≥ 0} is called the underlying Markov chain of {Nh(t), h ∈ C, I(t), t ≥ 0}.
For description of MMAP model see [9]. Analysis of queues using matrix analytic
method can be seen in [20,21]

Upcoming sections are arranged as follows: Section 2 describes the mathe-
matical model stability condition and stationary distribution is also obtained in
this section. Performance characteristics are included in Section 3. Service time
analysis is done in Section 4. Waiting time analysis is given in Section 5. The
model is numerically illustrated in Section 6. Section 7 concludes the work.

2 Mathematical Model

The customers arriving to the system are of two types, namely ordinary cus-
tomers and emergency customers. The arrival is according to a MMAP deter-
mined by the matrices D0, D1 and D2. D0 gives the rate of transitions in the
underlying process without an arrival, D1 and D2 gives the rate of transitions
for ordinary and emergency arrivals respectively. The matrix D = D0 +D1 +D2

is an infinitesimal generator of the underlying process. If θ is the steady state
distribution of D then λi = θDie, i = 1, 2 is the fundamental rates of ordinary
and emergency arrivals.



If the covariance of number of ordinary customers n1(t) and that of emer-
gency customers n2(t) is given by

cov(n1(t), n2(t)) = −(2λ1λ2 + θ(

2∑
k=1

Dk(D − eθ)−1D3−k)e)t

+ θ(

2∑
k=1

Dk(D − eθ)−1exp(DtI(D − eθ)−1)D3−k))e. (1)

The service discipline is as follows: service is provided in batches with maximum
batch size K. If the number of emergency customers is greater than or equal to
K, the first K of them will be taken together into service and if it is less than K,
ordinary customers are taken along with emergency customers so as to maximize
the batch size. In the absence of emergency customers, if there are at least K
ordinary customers, then first K of them will be served next. Service time for a
batch of size j is distributed with a phase type representation PH(αj , Sj).

The following are system descriptors at the time t.

• N1(t) - Length of the infinite queue.
• N2(t) - Number of customers in finite buffer.
• I(t) - Status of the server.
• S(t) - Phase of the service.
• a(t) - Phase of MMAP.

The server status is defined as follows.

I(t) =

{
0, if the server is idle
i, if the sever is busy with i customers, 1 ≤ i ≤ K.

We define

Y(t) = {N1(t), N2(t), I(t), S(t), a(t)}.

Then {Y(t), t ≥ 0} is a continuous time Markov process on the state space

S = ∪i≥0L(i).

For each i < K,

L(i) = L1(i) ∪ L2(i),

where

L1(i) = {(i, 0, l), 1 ≤ l ≤ a}

and

L2(i) = {(i, i1, 1, j, k), 0 ≤ i1 ≤M, 1 ≤ k ≤ a, 1 ≤ j ≤ r}.

L1 contains the states in which there are no priority customers and the server
is idle and L2(i) corresponds to states in which server is active and in this case
buffer can be empty or non empty.



For i ≥ K,

L(i) = {(i, i′, 1, j, k), 0 ≤ i′ ≤M, 1 ≤ k ≤ a, 1 ≤ j ≤ r}.

The states in all the levels greater than or equal to K will only contain states in
which server is busy.

The infinitesimal generator Q of Y takes the form

Q =



A00 A01

A10 A11 A12

A20 A21 A22

...
. . .

. . .

AK−10 AK−11 AK−12
A#

1 AK1 A0

A#
2 AK+11 A0

. . .
. . .

. . .

A#
K A2K−11 A0

...
. . .

. . .



,

A00 = D0, A01 =
(
D1 α1 ⊗D2

)
,

Aj0 = er ⊗
( j∑
i=0

S0
j ⊗ Ia

)
, 1 ≤ j ≤ K,

Ai1 = diag
(
D0, (

i∑
j=1

Si)⊕D0

)
, 1 ≤ i ≤ K − 1,

Ai1 = diag
(
D0, SK ⊕D0

)
, i > K,

Ai2 =

(
D1 αi ⊗D2

Ir ⊗ (D1 +D2)

)
, 1 ≤ i ≤ K − 1,

AK2 =

(
αK ⊗ (D1 +D2)
Ir ⊗ (D1 +D2)

)
, Ai2 =

(
Ir ⊗ (D1 +D2)

)
, i > K,

A#
l =

(
er ⊗ (S0

K ⊗ Ia) er ⊗ (αl ⊗ (S0
K ⊗ Ia))

)
,K + 1 ≤ l ≤ 2K,

A#
l =

(
er ⊗ (S0

K ⊗ Ia) er ⊗ (αl ⊗ (S0
K ⊗ Ia))

)
, l > 2K.

Note that the Kronecker sum ⊕ and product ⊗ are used. The non zero blocks
in the above matrix arise due to the transitions described below.



From To Transition rate
(i,0,0,l), 0 ≤ i < K − 1 (i,i’,0,k) D0(l, k)

(i,0,0,l), i ≥ K − 1 (i,1,j,k) D1(l, k)

(h,0,0,l), h ≥ 0 (h,1,j,k) αj
hD2(l, k)

(i,0,g,j,k), 1 ≤ i ≤ K − 1 (i,0,g,0,k) S0
g(j)

(i,i’,g,j,k), 1 ≤ k, k∗ ≤ a (i, i′, g, j, k∗) U(k, k∗), U = (Sg)⊕D0

(i,i’,g,j,k), ≤ k, k∗ ≤ a (i, 1, j, k∗) U(k, k∗), U = Si ⊕D0, 1

(i,1,j,k), K + 1 ≤ i ≤ 2K − 1 (0, 0, k) Sj0
K

(i,1,j,k), K + 1 ≤ i ≤ 2K − 1 (0,0,k) Sj0
m

(i,1,j,k),K + 1 ≤ i ≤ 2K − 1, (i, 1, j, k∗) V (k, k∗), V = αi−K ⊗ (S0
K ⊗ Ia)

1 ≤ k, k∗ ≤ a
(i,1,j,k), 0 ≤ i ≤ K − 2 (i, 1, j, k∗) Ω(k, k∗), Ω = Ir ⊗ (D1 +D2)
(i,1,j,k),0 ≤ i ≤ K − 2 (i, 0, k∗) Ω′(k, k∗), Ω′ = Ir ⊗ (D0)

(i,1,j,k),i > K − 2 (i, 1, j, k∗) Ω(k, k∗), Ω = Ir ⊗ (D1 +D2)

Clearly in the infinitesimal generator Q there are non-zero blocks A∗j , 1 ≤ j ≤
K, due to which Q loses its QBD structure. In order to gain a QBD structure for
the matrix Q, the levels are redefined by merging them appropriately. The levels
lK + 1 to (l+ 1)K, l = 0, 1, 2, . . . , are merged together, and modified generator
Q′ is described below.

After merging of cells the modified form of Q take the structure

Q′ =


A00 A01

B10 B11 B12

B20 B21 B0

B2 B1 B0

. . .
. . .

. . .

 .

A00 = D0, A01 = (D1α1 ⊗D2), B10 = [A∗1A
∗
2 . . . A

∗
K ]T ,

B11 = diag(A11, A21, . . . , AK1) + (Ω0 + diag(A12, A22, . . . , Ak−12)),

B21 = diag(AK+11, AK+21, . . . , A2K1) + (Ω0 + diag(A12, A22, . . . , Ak−12)),

B1 = diag(A2K+11, A2K+21, . . . , A3K1) + (Ω0 + diag(A12, A22, . . . , Ak−12)),

B12 = diag(diag(D0, Ir ⊗ (D1 +D2), . . . , diag(D0, Ir ⊗ (D1 +D2)),

B2 = diag(A#
1 , A

#
2 , . . . , A

#
K),

B0 = diag(Ir ⊗ (D1 +D2), . . . , Ir ⊗ (D1 +D2)).

Clearly Q′ posses a QBD structure. The matrix B = B0 + B1 + B2 is an
infinitesimal generator and the steady state distribution of B is obtained below.

B = IK ⊗ diag(V1, V2, . . . , Var),

Vi = e⊗ αi ⊗ (S0
3 ⊗ Ia + SK ⊗ Ia + Ir ⊗D), 1 ≤ i ≤ ar.



Let π = (π1, π2, . . . πK) be the corresponding steady state probability vector,

πi = (πi1, πi2, . . . , πiK), i ≥ 1.

π may be obtained as the solution to the system πB = 0 and πeKar = 1 where
eKar is a column vector of ones having length Kar. B is a singular matrix as
it can have at most Kar − 1 linearly independent rows. Hence πB = 0 has a
non trivial solution π, this solution can be normalized to satisfy the condition
πeKar = 0.

Theorem 1. The system is stable if and only if

K∑
i=1

πiIr ⊗ (D1 +D2) <

K∑
i=1

πi(e⊗ αi ⊗ (S0
3 ⊗ Ia)).

Proof. The system is stable if and only if πB2e < πB0e, see [15]. From matrices
defined in Lemma 2

πB2e =

K∑
i=1

πiIr ⊗ (D1 +D2),

πB0e =

K∑
i=1

πi(e⊗ αi ⊗ (S0
3 ⊗ Ia)).

ut

The stationary distribution of the system process is obtained as follows. Un-
der the assumption of the stability condition, the steady state probability dis-
tribution exists. Let y = (y0, y1, y2, . . . ) be the steady state probability vector of
the Markov Chain Y, where yi = (y0i , y

1
i , . . . , y

M
i ). Then y is the unique solution

to the system of equations yQ = 0 and ye = 1. Then each component yi ia a
vector of length Kar.

From yQ′ = 0 and ye = 1, we have the system of equations

y0A00 + y1B10 = 0
y0A01 + y1B11 + y2B20 = 0
y1B12 + y2B21 + y3B2 = 0
y1B0 + y3B1 + y4B2 = 0

...

Now from Matrix analytic method, yc+i = ycR
i, i = 0, 1, 2 . . .,where R is the

minimal nonnegative solution of matrix quadratic equationR2A2+RA1+A0 = 0.
R is computed algorithmically, using the logarithmic reduction algorithm [12].

3 Performance Characteristics of the System

• Expected number of ordinary customers in the system.

EN1
=

∞∑
i=0

iyie.



• Expected number of emergency customers.

EN2
=

∞∑
i=0

M∑
j=0

jyie.

• Expected rate of departure from the system.

Er =

K−1∑
i=0

yiAie+

∞∑
l=0

l+2K−1∑
i=l+K

yiAi
#e.

• Probability that server is idle with i customers i < K customers in the
queue.

P i
idle =

K−1∑
i=0

y0i0e.

4 Expected Service Time of a Customer

The expected service time of a customer is described as follows. The service
process can be considered as a continuous time Markov process on the finite
state space

{#} ∪ {(j, l,m), 1 ≤ j ≤ K, 1 ≤ l ≤ r, 1 ≤ m ≤ a}

and {#} is the absorbing state.

Qs =

(
0 0
Σ Σ0

)
,

Σ =


A11 A12

A21 A22

. . .
. . .

AK−11 AK−12
AK1

 , Σ0 =
(
A10 A20 . . . AK0

)T
.

The service time of an arbitrary customer follows phase type distribution with
representation (β,Σ), where β = (β1, β2, . . . , βK , βK+1), βi = 1

(K+1)arαi ⊗ eT

and βK = 1
ar

∑K
i=1 αir+1.

Expected service time of an arbitrary customer is given by

Est = −βΣ−1e.



5 Expected Waiting Time of an Emergency Customer
When at Least K Ordinary Customers are in Waiting

The expected waiting time of an emergency customer is described as follows.
Consider the process H = {(τ(t), I(t), s(t)), t ≥ 0}. Then H is clearly an ir-
reducible continuous time stochastic process defined on a finite state space
{(i, j, k), 1 ≤ i ≤ M, 1 ≤ j ≤ K, 1 ≤ k ≤ r} ∪ {∗}, where ∗ represents the
absorption state and all other states are transient. The infinitesimal generator
of this process is as shown below.

QH =

(
C C0
0 0

)
,

where

C =



CM C∗M−K
CM−1 C∗M−(K+1)

. . .

CK C∗0
. . .

C1


,

Ch = diag(S1, S2, . . . , SK), 1 ≤ h ≤M,

C∗g =



0 . . . 0 S0
1 ⊗ αK

...
. . . S0

2 ⊗ αK

. . .
...

S0
K−1 ⊗ αK

0 0 0

 , 0 ≤ g ≤M −K,

C0 = (C0
M , C

0
M−1, . . . , C

0
1 )T ,

C0
i = (0, 0, . . . , S0

K ⊗ αK), 0 ≤ i ≤M.

The waiting time of an emergency customer follows a phase type distribution
with representation (γ, C), where γ = (γ1, γ2, . . . , γK) and γi = 1

Krαi ⊗ eT .
Expected waiting time of an emergency customer is

Ew
e = −γC−1e.

6 Numerical Example

We illustrate the model by considering a system with K = 2, the service times
are exponentially distributed with parameters µ1 and µ2. We take arrival rate
of ordinary customers as λ and arrival rate of emergency customers as γ. The
matrices defining the MMAP process takes the form D0 = (−λ − γ), D1 =
(λ), D2 = (γ).



Fig. 1. Variation in queue length with respect arrival rates.

Fig. 2. Variation in number of customers in queue with variation in µ1 ans µ2.



Fig. 3. Idleness with λ.

In Figure 1 variation in expected number of ordinary customers in the system,
(EN1

) with respect to the variations in arrival rates of ordinary and emergency
customers is depicted. It is observed from Figure 1 that accumulation of ordinary
customers increases in the queue as arrival rate of emergency customers increases.
Figure 2 describes the variation in (EN1

) with respect to the service rates µ1

and µ2. Figure 3 shows that the probability that system is in idle state decreases
with the increase of rate arrival of the ordinary customers.

7 Conclusion

In this paper we have studied a queue with batch service and batch size de-
pends the number of customers in the buffer. The model is observed in a courier
delivering system with two kinds of arrivals. The strategy for batch size determi-
nation is designed for reducing system cost. The model is analyzed using matrix
analytic method and is illustrated with a numerical example.
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