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Abstract. The development of natural gas quality parameters deter-
mination system have been studied. The proposed system is based on
neural network analysis and correlation analysis. The structure of the
developed system is presented. The main blocks and subblocks of the
proposed system are presented. The statistical model selection block and
the architecture and parameters of the model selection block that are the
most crucial stages of the proposed system are described in detail. The
mathematical principles of the discussed statistical models are provided.
The architectures of the studied neural network models are presented.
The results of comparative analysis of different statistical models includ-
ing neural networks are shown. The accuracy characteristics both for
training and testing stages of the neural networks are calculated. The
conclusion of final neural network architecture for the studied task was
made. The results of testing of the proposed natural gas quality pa-
rameters determination system are provided. The steps for the further
research of the discussed task are considered.

Keywords: Neural Network Analysis · Natural Gas Quality Analysis ·
Correlation Analysis · Statistical Model Selection

1 Introduction

The natural gas quality analysis is an important task for the gas industry. Slight
fluctuations of natural gas composition and energy characteristics can lead to
unexpected difficulties in calculating its cost indicators. Currently, a wide va-
riety of different natural gas analysis systems are developed. Moreover, many
alternative systems that are based on the correlation methods are under de-
velopment [1]. The possibility to analyze gas quality in real time is the most
significant benefit of this class of systems in comparison with systems based on
the traditional gas chromatography methods. However, systems that are com-
monly used in gas industry have a number of drawbacks: expensive specialized
equipment, significant amount of time of the analysis, the necessity of regular
instrumentation calibration and checkout. Various statistical models are used in
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correlation methods because of high complexity of solving the task with tradi-
tional computational methods. The artificial neural networks are highly utilized
in industrial and engineering applications [2,3]. The choice of statistical model
for the gas quality determination is made by heuristic methods in most cases
due to the lack of a general algorithm. That is why comparative analysis of sta-
tistical models for the discussed task is an urgent problem that should be solved
for reaching the required goal.

This paper provides a structure and description of the main blocks of the
proposed natural gas quality parameters determination system. The system is
based on the method of determination of the properties and the composition
of natural gas by measuring of its physical parameters [4]. The conclusions are
drawn about further development of the proposed system.

2 Development of the Natural Gas Quality Parameters
Determination System

The main structure of the proposed natural gas quality parameters determina-
tion system is shown in Fig. 1. The system consists of three blocks. We suggest
using commercially available and relatively inexpensive sensors for natural gas
physical parameters measurements to obtain necessary measurement data that
are input data of the proposed system. The measurement data include following
natural gas physical parameters: speed of sound, thermal conductivity and molar
fraction of carbon dioxide. The aim of the system is to determine target natural
gas quality parameters using input measurement data.

The first block (pseudogas composition determination) is the main block of
the system that contains the majority of features of the proposed system. The
task of this block are simplifying the studied object and minimizing amount of
measured physical parameters and in its turn amount of applied sensors. This
block we will describe below in more detail. The obtained equivalent pseudogas

Fig. 1. Main structure of the proposed natural gas quality parameters determination
system.

composition is transmitted to the next block where energy parameters calcula-



tion occurs. To calculate the energy parameters of the gas under study, NIST
REFPROP software is used. The target energy parameters for the discussed
task are volumetric superior calorific value and Wobbe index. These parame-
ters along with partial gas composition and relative density are considered to
be final gas quality parameters that system should determine. To calculate the
quality parameters, the GERG-2008 gas state equation was used at standard
temperature and pressure conditions. The amount of output parameters can be
decreased to simplify the calculations or increased by adding volumetric inferior
calorific value in special cases. The next step involves energy parameters accu-
racy check that occurs in the corresponding block. The calculated in previous
block gas quality parameters are compared with reference data. Any data ob-
tained from traditional natural gas analyzers, e.g. gas chromatographs, can be
used as the reference data. The final error parameter ε is calculated to receive
deviation of system parameters from reference parameters. That parameter is
based on a number of accuracy characteristics including maximum absolute er-
ror (MaxAE), mean absolute error (MAE), maximum absolute percentage error
(MaxAPE) and mean absolute percentage error (MAPE). In case of final error
parameter is less than maximum limiting value εmax the system provides the
target gas quality parameters. In the opposite case, the stage of pseudogas com-
position determination is repeated. That includes a number of procedures that
will be carried out until reaching the desired accuracy. The first block includes
many subblocks that should be described separately. It’s structure is shown in
Fig. 2. The gas mixer block forms a natural gas composition. For the data forma-

Fig. 2. Structure of the block for pseudogas composition determination.

tion a sample of gas mixtures based on the typical natural gas is simulated taking
into account the permissible ranges of the molar fractions of the components by



sorting out all possible combinations of components. Then the simulated gas
mixtures are reduced to equivalent fourcomponent pseudogas mixtures in pseu-
dogas mixer block. The physical properties calculation occurs in corresponding
block. That process is similar to energy parameters calculation and includes cal-
culation of theoretical values of parameters that will be used as measured. The
correlation analysis is performed in corresponding block for selection of input pa-
rameters and elimination of their possible multicollinearity. Pearson correlation
coefficients are calculated for each pair of the studied parameters. These coeffi-
cients can be used to determine a linear relationship between two parameters.
The parameter list can be changed due to correlation analysis results. The next
steps are comparative analysis of statistical models and model architecture and
parameters selection. These two stages will be described below in detail. The
data preparation stage that occurs in corresponding block includes data division
on training, validation and test sets. It should be noted that prior to training
the model, the data are cross-validated and normalized in order to be able to be
used uniformly and improve the determination results of the statistical model.
Moreover, the amount of initial data can be reduced due to desired ranges of gas
components. The statistical model training stage involves selected model train-
ing using the selectable learning algorithm (Levenberg-Marquardt algorithm in
default) on prepared at the previous stage data. The main tuning parameters of
training are maximum number of training epochs (1000 in default), initial learn-
ing rate (0.001 in default), maximum validation failures (25 in default). The
statistical model testing stage is the model simulation on the data that were not
involved in training process. The accuracy check is provided both for training
and testing stages. The procedure of accuracy check is similar to accuracy esti-
mation in the energy parameters accuracy check block and involves calculation
of error parameter. The final subblock of pseudogas composition determination
block performs the function of model simulation on measurement data. The final
parameter of the described subblock is the composition of equivalent pseudogas
that will come to the next block of the proposed system.

3 Selection of Statistical Model, Its Architecture and
Parameters

The stage of statistical model selection is considered to be the most crucial part
of the proposed system that’s why it will be described in detail. The choice of
statistical model for the problem under discussion is mostly made by heuris-
tic methods due to the lack of a general algorithm for choosing a model and a
variety of both statistical models and architectures of individual models. There-
fore the methodology of comparative analysis should be developed. A number of
preliminary procedures were developed and implemented prior to conducting a
comparative analysis of statistical models for natural gas composition determi-
nation: selection of initial data and ensuring uniformity of conditions for model
training, as well as selecting necessary data for model testing, selection of criteria
and characteristics to be used for model comparison, selection of statistical mod-



els for comparison. The data preparation stage is conducted in corresponding
block as described above.

The accuracy characteristics of the model are often used as the main param-
eters to make a conclusion about the possibility of using the statistical model [5].
Various accuracy parameters are calculated for both the training and test sam-
ples in the conducted comparative analysis. The fact that the statistical model
can show good results on a training set, but a high error on a testing set is
taken into account. The time that was spent for the model training is another
important parameter in assessing performance of the statistical model. For large
samples training of models with complex architecture can take a long time that
may not respond to the required characteristics. The following parameters are
calculated to assess model accuracy: mean absolute error (MAE) and mean ab-
solute percentage error (MAPE). Taking into account the fact that the model
can have a satisfactory average error, but still have outliers at certain points it is
also necessary to calculate the maximum absolute error (MaxAE) and maximum
absolute percentage error (MaxAPE). The next step of comparative analysis is
to get a number of statistical models that can be used to solve the task of the
natural gas composition analysis. This choice is based on an analysis of sources
that address the problems arising when selecting statistical models for specific
tasks of the gas industry, as well as the practical feasibility of implementing the
selected statistical models. The following models were selected for comparative
analysis on the basis of the study results: multiparameter linear regression, ridge
regression, Gaussian process regression, neural network model.

The multiparameter linear regression can be considered in the studied prob-
lem as a reference model. It can be used to obtain a result that will be taken
to compare accuracy of other models with regression. In case of multiparame-
ter linear regression, the value of Y depends on several independent quantities
xi, i = 1, . . . ,m. The initial points are in an m + 1-dimensional space and are
approximated by the m-dimensional hyperplane. The system of equations can
be written in matrix form taking into account the error vector e:

Y = Xβ + e, (1)

where β is a (m+1)-dimensional parameter vector, X is a matrix of row-vectors
xi.

To find an estimate of the regression parameters it is necessary to use the
condition that the partial derivative is zero at the minimum point. A system of
normal equations for multiparameter linear regression in the matrix form can be
obtained by differentiating the expression for the sum of the squared errors with
respect to the variable β and equating the resulting partial derivative to zero.
The estimation of the parameters of multi-parameter regression is the solution
to this system using the least squares method, which may be shown as follows:

β̂ = (XTX)−1XTY. (2)

The ridge regression is used in tasks with data redundancy as one of the meth-
ods of dimensionality reduction. In the problem under study, this is possible



when the input parameters correlate with each other, i.e. multicollinearity is not
completely eliminated by the correlation analysis. Multicollinearity can lead to
instability of estimates of regression coefficients and poor conditioning of the
XTX matrix, that leads to instability of the normal linear regression equation
solution. The ridge regression method consists in introducing an additional reg-
ularizing parameter τ into the minimized functional. The applied regularization
makes it possible to reduce the condition number of the XTX matrix and obtain
a more stable solution. The parameters of the regression model with regulariza-
tion are found through minimizing the functional β∗:

β∗ = argmin(||Y −Xβ||2 + τ ||β||2). (3)

The solution to the minimization problem is found in the same way as to the
linear regression:

β∗ = (XTX + τI)−1XTY, (4)

where I is an identity matrix.
An increase in the regularization parameter leads to a decrease in the condi-

tion number of the regularization matrix. The smaller this parameter, the less is
the error of the solution regarding errors in the input data. Moreover, an increase
in the regularization parameter leads to a decrease in the norm of the parameter
vector. It is worth noting that the ridge regression method improves the stability
of the parameters of the regression model, but does not nullify any of them.

The Gaussian process regression is a nonparametric probabilistic model of the
process, all finite-dimensional distributions of which are normal. The Gaussian
process regression model addresses the question of predicting the value of a
response variable, given the new input vector and the training data (xi, yi),
i = 1, . . . , n. The Gaussian process regression model explains the response by
introducing latent variables, f(xi), i = 1, . . . , n, from a Gaussian process, and
explicit basis functions. The covariance function of the latent variables captures
the smoothness of the response and basis functions project the inputs x into a
p-dimensional feature space.

The Gaussian process is defined by the mathematical expectation function
m(x) and the covariance function k(x, x′) evaluated at x and x′. The Gaussian
process is a set of random variables, such that any finite number of them have a
joint Gaussian distribution. If f(x) is a Gaussian process, then given n observa-
tions x1, . . . , xn, the joint distribution of the random variables f(x1), . . . , f(xn)
is Gaussian. A set of basis functions h transform the original feature vector x
into a new feature vector h(x). A regression model based on Gaussian processes
can be represented as follows:

Y = hT (x)β + f(x), (5)

where Y is the output vector, h(x) is a set of basis functions evaluated at all
training points, β is the vector of basis function coefficients, f(x) is a zero mean
Gaussian process with covariance function k(x, x′).

Then it is necessary to obtain the target distribution of the output vector. The
Gaussian process regression is a probabilistic model. There is a latent variable



f(xi) introduced for each observation xi, that makes the model nonparametric.
Therefore, to obtain a prediction by the studied model it is necessary to know
the coefficients of the vector β, the error variance σ2 to be able to evaluate the
covariance function (often this is a difficult task due to the so-called hyperparam-
eters θ - unknown parameters that can vary). One of the methods for estimating
the necessary parameters is to find the maximum of the following functional:

β̂, σ̂2, θ̂ = argmax(logP (Y |X,β, σ2, θ)), (6)

where β̂, σ̂2, θ̂ are the estimates of parameters, argmax is an argument of the
maximum, log is a common logarithm, P is the posterior distribution.

Firstly, an estimate of the parameters β for the given values of σ2 and θ is
obtained. Then, the functional presented above is maximized with respect to σ2

and θ to obtain their estimates.
The neural network model (multilayer perceptron) is a three-layer network

with a sigmoidal activation function in the form of a hyperbolic tangent for a
hidden layer and a linear activation function for the output layer, the Levenberg-
Marquardt algorithm was used as a learning algorithm. The neurons of each
layer are connected with the neurons of the previous layer, and each input signal
has a certain weight, that is the identical in this case for all input neurons
due to the equal importance of all input values. Each neuron has an activation
function, that argument is the input signal of the neuron. The chosen training
algorithm is used to optimize the parameters of nonlinear regression models.
The optimization criteria of the algorithm is the standard error of the model on
the training set. The main idea of the algorithm is to achieve the desired local
optimum by approximating the given initial parameter values.

The architecture of the used neural network model is shown in Fig. 3. The

Fig. 3. Structure of the neural network model (multilayer perceptron).

number of neurons in the input layer (n = 3) is chosen for the case when the
concentration of carbon dioxide, the speed of sound and thermal conductivity



are included in the input parameter vector. The number of neurons in the hidden
layer (k = 11) is chosen for this particular model and is selected in accordance
with the analysis of various models. The number of neurons in the output layer
(m = 3) is chosen for the case of a four-component gas mixture. Wi and bi are
weights and bias factors for the hidden layer, Wj and bj are for the output layer.

All selected statistical models were trained on the same data generated ac-
cording to the previously described requirements. The selected models were
trained on the same data several times, and then the average model training
time and the average accuracy characteristics of the model for several training
cycles were taken for increasing the analysis adequacy. A comparative analy-
sis of the time spent on training for the studied models is presented in Table
1. A comparative analysis of accuracy characteristics at the training stage for

Table 1. Training time for the studied models.

Studied model Average training time

Multiparameter linear regression (LINREG) 5 seconds

Ridge regression (RIDGE) 7 seconds

Gaussian process regression (GPR) 43 minutes

Neural network model (multilayer perceptron) (ANN) 1.2 hours

the models under study is shown in Table 2. Absolute errors (MAE, MaxAE)
are given in units of determined concentrations (in %), relative errors (MAPE,
MaxAPE) are given in %. A comparative analysis of the accuracy characteristics

Table 2. Accuracy characteristics at the training stage for the studied models.

Component Characteristic Model
LINREG RIDGE GPR ANN

MaxAE, % 5.383 5.373 0.581 0.491
Methane MAE, % 0.382 0.321 0.007 0.007

MaxAPE, % 5.396 5.386 0.611 0.491
MAPE, % 0.441 0.442 0.008 0.008
MaxAE, % 6.464 6.450 0.362 0.247

Nitrogen MAE, % 0.479 0.480 0.025 0.010
MaxAPE, % 6.481 6.472 0.383 0.249
MAPE, % 0.514 0.501 0.027 0.011
MaxAE, % 1.081 1.077 0.589 0.426

Propane MAE, % 0.107 0.107 0.011 0.007
MaxAPE, % 1.095 1.087 0.589 0.446
MAPE, % 0.109 0.109 0.011 0.009

at the testing stage for the studied models is shown in Table 3. The statistical
models under consideration: multiparameter linear regression, ridge regression,



Table 3. Accuracy characteristics at the testing stage for the studied models.

Component Characteristic Model
LINREG RIDGE GPR ANN

MaxAE, % 5.531 5.399 0.592 0.511
Methane MAE, % 0.416 0.399 0.009 0.008

MaxAPE, % 5.578 5.423 0.712 0.529
MAPE, % 0.567 0.487 0.012 0.010
MaxAE, % 6.691 6.689 0.353 0.236

Nitrogen MAE, % 0.523 0.501 0.024 0.009
MaxAPE, % 6.526 6.516 0.394 0.253
MAPE, % 0.578 0.561 0.028 0.011
MaxAE, % 1.125 1.099 0.592 0.432

Propane MAE, % 0.109 0.109 0.012 0.007
MaxAPE, % 1.239 1.102 0.596 0.448
MAPE, % 0.131 0.115 0.011 0.009

regression based on Gaussian processes, a neural network model (multilayer per-
ceptron) were put to comparative analysis for selection the most suitable model
for solving the discussed task. It was concluded that the neural network model
will be used as the main statistical model for solving the task.

The stage of architecture and parameters selection of statistical model was
conducted similarly to previous procedure. The various applications of neural
networks were analyzed taking into account the wide variety of architecture
types of neural networks. For example, the convolutional neural networks were
excluded from consideration due to the application of this type of neural networks
mainly for recognition and classification tasks. In addition to the above-described
neural network architecture in the form of a multilayer perceptron, a simple
recurrent neural network and a recurrent neural network with long short-term
memory were chosen for analysis.

Recurrent neural networks (RNN) is a class of neural networks that can use
their internal memory when processing input data. The functioning of this class
of neural networks is based on the use of previous network state to calculate the
current one. A recurrent network can be considered as several copies of the same
network, each of which transfers information to a subsequent copy. Currently,
there are a large number of architectures of recurrent neural networks. Taking
into account the computational difficulties encountered in developing this class
of neural networks, it was proposed to consider a simple recurrent neural network
first. The hidden elements have links directed back to the input layer in such type
of network. This allows to take into account the previous state of the network
during training. Mathematically, the process of saving information about the
previous training step is as follows: at each i-th training step, the output value
of the RNN hidden layer hi is calculated taking into account the output value
of the hidden layer in the previous step hi−1:

hi = f(WhXi + Uhhi−1 + bh0), (7)



where Wh, Uh, bh0 are parameters of the RNN hidden layer.
The output value at the i-th training step is calculated as follows:

yi = Wouthi + bout0, (8)

where Wout, bout0 are parameters of RNN output layer.
The architecture of the considered RNN is shown in Fig. 4. The number

of neurons at the input (n), hidden (k) and output (m) layers, the activation
functions for the layers (for the hidden layer - sigmoidal function in the form
of hyperbolic tangent, for the output layer – linear function), the learning algo-
rithm (Levenberg-Marquardt) were chosen the same as for the neural network
model in the form of a multilayer perceptron. A comparative analysis was pro-

Fig. 4. Architecture of recurrent neural network model.

posed of a recurrent neural network with long short-term memory to test the
idea that increasing the complexity of the neural network architecture within
one type of network (for example, RNN) does not lead to a significant improve-
ment of the natural gas composition analysis. Long short-term memory (LSTM)
is a special type of architecture of recurrent neural networks, that is capable of
learning long-term dependencies. A more complex method is used to calculate
both the output value of the hidden layer and the output value of the network
as a whole in neural networks with a similar architecture. This method involves
use of so-called gates. A gate is a special unit in LSTM architecture, that is
implemented as a logistic function and operation of elementwise multiplication
(Hadamard’s product). The logistic function layer shows how much of the infor-
mation coming from a particular unit should be transmitted further along the
network. This layer returns values in the range from zero (information does not
go further along the network structure at all) to one (information completely
goes further along the network structure). There are three such gates in tradi-
tional LTSM architecture: a forget gate, an input gate and an output gate. The
sigmoid function is often used as a logistic function for gates.

Let us take a closer look at the functioning of the LSTM unit. The input
vector Xi, the long-term memory vector LTMi−1 (the state vector of the unit at



the (i− 1)-th step) and the vector of the working memory WMi−1 (the output
vector of the unit at (i− 1)-th step) come to LSTM unit at the i-th step of the
model training. The forget gate and the input gate are used while calculating
the long-term memory vector. Firstly, the forget gate is used to determine the
proportion of long-term memory from the previous step, which should kept in
use at the current step. The forget gate is calculated by the formula:

forgeti = σ(WfXi + UfWMi−1 + bf0), (9)

where σ is a sigmoid function of the forget gate, Wf , Uf , bf0 are parameters of
the forget gate of LSTM unit.

After that, the proportion of information from the input data vector that
can be added to long-term memory is determined.

LTM ′i = tanh(W ′Xi + U ′WMi−1 + b′0), (10)

where tanh is an activation function in the form of hyperbolic tangent, W ′, U ′,
b′0 are LSTM unit parameters.

The input gate is calculated in order to estimate the useful proportion of the
previous step that will be added to the long-term memory. The formula for the
input gate is similar to the forget gate taking into account sigmoid function and
parameters of the input gate. Taking into account the performed operations, i.e.
eliminating unnecessary information from the previous step and adding useful
information from the current step, the vector of updated long-term memory can
be calculated:

LTMi = forgeti ∗ LTMi−1 + inputi ∗ LTM ′i , (11)

where ∗ is an elementwise multiplication operation.
After that, it is necessary to calculate the vector of working memory. An

output gate is used for calculating the vector of working memory. It is necessary
to calculate proportion of information from long-term memory that should be
used at the current training step to calculate the vector of working memory. The
output gate is calculated similarly to forget and input gate taking into account
sigmoid function and parameters of the output gate. Then, the vector of working
memory is calculated at the current step:

WMi = outputi ∗ tanh(LTMi). (12)

The calculated vectors of long-term memory LTMi and working memory WMi

will go to the LTSM unit at the following training step. The architecture of the
LTSM unit is shown in Fig. 5. The general RNN architecture with long short-
term memory is the same as for a simple RNN, taking into account an LSTM
unit in the hidden layer. The output value at the i-th training step for the RNN
with the LTSM unit is calculated the same way as for a simple RNN.

The comparative analysis of different architectures was carried out similarly
to comparative analysis for the selection of a statistical model. A comparative



Fig. 5. Architecture of long short-term memory unit.

Table 4. Training time for the studied model architectures.

Studied model Average training time

Neural network model (multilayer perceptron) (ANN) 1.2 hours

Recurrent neural network (RNN) 3.5 hours

RNN model with long short-term memory (LSTM) 5.6 hours

Table 5. Accuracy characteristics at the training stage for the studied model archi-
tectures.

Component Characteristic Model
ANN RNN LSTM

MaxAE, % 0.491 0.184 0.184
Methane MAE, % 0.007 0.001 0.001

MaxAPE, % 0.495 0.183 0.182
MAPE, % 0.008 0.001 0.001
MaxAE, % 0.247 0.253 0.241

Nitrogen MAE, % 0.010 0.012 0.011
MaxAPE, % 0.249 0.255 0.254
MAPE, % 0.011 0.012 0.011
MaxAE, % 0.426 0.189 0.174

Propane MAE, % 0.007 0.005 0.004
MaxAPE, % 0.446 0.183 0.171
MAPE, % 0.009 0.004 0.004



analysis of the time spent on training for the studied models is shown in Table
4. A comparative analysis of accuracy characteristics at the training stage for
the model architectures under study is shown in Table 5. A comparative anal-
ysis of the accuracy characteristics at the testing stage for the studied model
architectures is shown in Table 6. The statistical models under consideration:

Table 6. Accuracy characteristics at the testing stage for the studied model architec-
tures.

Component Characteristic Model
ANN RNN LSTM

MaxAE, % 0.511 0.361 0.191
Methane MAE, % 0.008 0.004 0.001

MaxAPE, % 0.529 0.421 0.216
MAPE, % 0.010 0.005 0.002
MaxAE, % 0.236 0.241 0.233

Nitrogen MAE, % 0.009 0.010 0.010
MaxAPE, % 0.253 0.258 0.255
MAPE, % 0.011 0.012 0.011
MaxAE, % 0.432 0.193 0.181

Propane MAE, % 0.007 0.005 0.004
MaxAPE, % 0.448 0.188 0.175
MAPE, % 0.009 0.004 0.004

neural network model (multilayer perceptron), recurrent neural network, recur-
rent neural network model with long short-term memory were put to comparative
analysis for selection the most suitable model for solving the discussed task. It
was concluded that the simple recurrent neural network model will be used as
the main statistical model for solving the task.

In this paper we considered models that architecture has one hidden layer.
The dimension of the input layer is determined by the number of input physical
parameters. The dimension of the output layer is determined by the number of
determined concentrations of gas components. Therefore the number of neurons
in the hidden layer was used as the main tunable parameter for the model.
The accuracy characteristics are given in Table 7 only for the testing stage due
to the slight difference in training time and accuracy at the testing stage. It
was determined that the model with eleven neurons in the hidden layer has the
highest accuracy based on the results of the study.

To sum up, the simple recurrent neural network with three layers and eleven
neurons in hidden layer was chosen as the main statistical model.

4 Testing of the Proposed Natural Gas Quality
Parameters Determination System

The proposed natural gas quality parameters determination system design and
testing were carried out in the Matlab 2019b software with NIST REFPROP



Table 7. Accuracy characteristics at the testing stage for the different number of
neurons in hidden layer.

Component Characteristic Number of neurons
5 11 25

MaxAE, % 0.467 0.361 0.499
Methane MAE, % 0.006 0.004 0.008

MaxAPE, % 0.481 0.421 0.511
MAPE, % 0.009 0.005 0.010
MaxAE, % 0.179 0.241 0.223

Nitrogen MAE, % 0.008 0.010 0.009
MaxAPE, % 0.193 0.258 0.261
MAPE, % 0.010 0.012 0.012
MaxAE, % 0.318 0.193 0.421

Propane MAE, % 0.006 0.005 0.007
MaxAPE, % 0.371 0.188 0.439
MAPE, % 0.008 0.004 0.009

plug-in. The main aim of testing is to verify system efficiency on the theoretical
data. The initial data include 137214 gas mixtures that are based on typical nat-
ural gas. The ranges of its components are the following: 90-100% for methane,
0-3% for nitrogen and ethane, 0-1% for carbon dioxide and propane, 0-0.5%
for butane and pentane, 0-0.2% for hexane. These mixtures were transformed
to fourcomponent pseudogas mixtures. Then physical parameters of both types
of mixtures were calculated. The number of parameters exceeds the number of
statistical model input parameters to verify the previous results of correlation
analysis. Additional physical parameters are dielectric permittivity, dynamic vis-
cosity and isobaric heat capacity. The conducted correlation analysis proved the
results of previous research. Speed of sound, thermal conductivity and molar
fraction of carbon dioxide were selected as input parameters for the next stages.

The simple recurrent neural network with default architecture and parame-
ters was chosen as working model. On the next step, the initial data was reduced
to 111000 gas mixtures by eliminating gas mixtures with composition not close
to the natural gas, e.g. pure methane. Then the data was divided on two sets
for training and testing. The special data set was formed for simulation stage.
It included 200 gas mixtures with calculated physical parameters. The selected
recurrent neural network was trained, tested and simulated on the corresponding
sets with accuracy characteristics shown in table 8. Each procedure was started
only when the previous procedure (training in case of testing and testing in
case of simulation) was successful. Carbon dioxide errors were set to zero, be-
cause the content of this component is input value and considered to be known.
The calculated composition of simulation set was transmitted to energy param-
eters calculation block. Theoretical values of natural gas energy parameters was
used as reference data. The volumetric superior calorific value and Wobbe index
were calculated using determined pseudogas composition and compared with
reference data. The accuracy of determination of target gas quality parame-



Table 8. Model accuracy characteristics at the training, testing and simulation stages.

Component Characteristic Stage
Training Testing Simulation

MaxAE, % 0.423 0.496 0.581
Methane MAE, % 0.007 0.008 0.012

MaxAPE, % 0.531 0.625 0.751
MAPE, % 0.008 0.010 0.014
MaxAE, % 0.286 0.374 0.517

Nitrogen MAE, % 0.011 0.012 0.018
MaxAPE, % 0.301 0.372 0.521
MAPE, % 0.013 0.015 0.022
MaxAE, % 0.251 0.333 0.491

Propane MAE, % 0.007 0.009 0.014
MaxAPE, % 0.237 0.299 0.456
MAPE, % 0.006 0.008 0.014

ters (deviation between determined by system and reference values) is shown in
Fig.6 (for volumetric superior calorific value) and in Fig. 7 (for Wobbe index).
The maximum absolute error of gas quality parameters determination (0.0364
MJ/m3 for calorific value and 0.0914 MJ/m3 for Wobbe index) is less than the
allowable error that is equal to 0.1 MJ/m3. The allowable error is permissible
deviation of gas quality parameters determination for the first accuracy class
according to current regulatory document.

Fig. 6. The accuracy of determination of volumetric superior calorific value by proposed
system.



Fig. 7. The accuracy of determination of Wobbe index by proposed system.

5 Conclusion

The natural gas quality parameters determination system was presented. The
main advantages of the proposed system in comparison with the commonly used
gas quality determination methods are the high adaptability and capability of
operation in real time. The target gas quality properties, volumetric superior
calorific value and Wobbe index determined by the system were compared with
reference data. The system showed acceptable performance on theoretical data.
Further research is required in the field of testing the model on experimental
data and adjusting system algorithms to solve the task of analyzing specific gas
mixtures.

The authors are grateful to BRISK II TA and Erasmus + 2017-1-SE01-
KA107-034292 Staff Mobility for providing the opportunity to conduct this
study.
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