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Abstract. In this research paper, efficient algorithms for computation of
equilibrium as well as transient probability distribution of arbitrary finite
state space Continuous / Discrete Time Markov Chains are proposed.
The effective idea is to solve a structured systems of linear equations
efficiently. The ideas of this research paper could be utilized in solving
structured system of linear equations that arise in other applications.
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1 Introduction

Markov chains provide interesting stochastic models of natural/artificial phe-
nomena arising in science and engineering. The existence of equilibrium behav-
ior enables computation of equilibrium performance measures. Thus, researchers
invested considerable effort in efficiently computing the equilibrium probability
distribution of Markov Chains and thus, the equilibrium performance measures.

Traditionally, computation of transient probability distribution of Continu-
ous Time Markov Chains (CTMCs) was considered to be a difficult open prob-
lem. It requires computation of Matrix Exponential associated with the generator
matrix of CTMC. Even in the case of finite state space CTMCs, efficient compu-
tation of transient probability distribution was considered to be a difficult open
problem. In [5], an interesting approach for recursive computation of transient
probability distribution of arbitrary finite state space CTMCs was proposed. In
the case of infinite state space, Quasi-birth-and-Death (QBD) processes, matrix
geometric recursion for transient probability distribution was found in [16].

It is well known that computation of equilibrium distribution of CTMCs
reduces to solution of linear system of equations. The approach proposed in [6]
reduces the computation of transient probability distribution of finite state space
CTMCs to solving linear system of equations in the transform (Laplace trans-
form) domain. Thus, an interesting question that remained deals with efficient
solution of such structured linear system of equations in the Laplace transform
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domain. In fact, a more interesting problem is to design an algorithm which
meets a lower bound on the computation of solution of structured system of
linear equations arising in the transient/equilibrium analysis of CTMCs.

This research paper is organized as follows. In Section 2, related literature is
reviewed. In Section 3, algorithm for efficient computation of equilibrium prob-
ability mass function (PMF) of CTMCs is discussed. In Section 4, algorithm for
efficient computation of transient PMF of CTMCs is discussed. In Section 5, we
provide numerical results. The research paper concludes in Section 6.

2 Review of Literature

It is well known that computation of equilibrium probability vector π̄ of a Ho-
mogeneous CTMC with generator Q reduces to the solution of the following
linear system of equations (computation of vector π̄ in the left null space of the
generator matrix Q):

π̄Q ≡ 0̄.

It should be noted that in the case of homogeneous Discrete Time Markov Chain
(DTMC) with state transition matrix P̄ , the computation of equilibrium prob-
ability vector π̄ reduces to the solution of following linear system of equations
i.e.

π̄P̄ ≡ π̄ or, equivalently, π̄(P̄ − I) ≡ 0̄.

It readily follows that (P̄ − I) has the properties of a generator matrix. Thus,
in the following discussion, we consider only the computation of equilibrium
probability vector of a CTMC. In computational linear algebra, there are effi-
cient algorithms to solve linear system of equations [3], [12], [15]. Volker Strassen
made fundamental contributions to this problem [13], [14]. He showed that the
complexity of matrix inversion is equivalent to that of matrix multiplication.
It readily follows that the matrix −Q is a Laplacian matrix (i.e. a square ma-
trix with positive diagonal and non-positive off-diagonal elements such that the
row sums are zero). There are efficient algorithms to solve Laplacian system of
equations [1], [2].

3 Efficient Computation of Equilibrium Probability Mass
Function of CTMCs

But, from the point of view of computing π̄, the structure of generator matrix Q
was not completely taken into account. Thus, the goal of this research paper is
to design efficient algorithm for computing π̄, taking into account the structure
of generator matrix Q. Some related effort dealing with Laplacian system of
equations is discussed in [2]. In fact, we would like to design a computationally
optimal algorithm for computation of π̄ (in terms of computational complexity).
We illustrate the essential idea with a CTMC with 4 states.



3.1 CTMC with 4 States

First consider the generator matrix of a CTMC with 4 states (i.e. 4 x 4 matrix)
partitioned using blocks of size 2 x 2 (i.e. there are 4 such 2 x 2 matrices in the
generator) [9], [10]. Specifically, we have

Q =

[
A11 A12

A21 A22

]
(1)

where Ai,j , i, j ∈ {1, 2}, are 2 x 2 square matrices in the 4 x 4 block matrix Q.
Claim: For an irreducible positive recurrent (recurrent non-null) CTMC with

generator matrix Q, it is well known that the matrices A11 and A22 are non-
singular. Hence, we have that

A21 = A22X with X = A−1
22 A21.

Thus, by means of elementary column operations (i.e. multiplication by a scalar
and addition/subtraction), the generator matrix Q can be converted into the
block upper triangular form:

Q̃ =

[
Ã11 Ã12

0 A22

]
. (2)

Note that Ã22 = A22.
Let X = [f1 f2]. Hence, column operations to arrive at Q̃ (from Q) are

determined by the column vectors f1, f2. Also, it follows from linear algebra, that
the equilibrium probability vector π̄ is unaffected by such column operations.
Hence, with π̄ = [π̄1 π̄2], we have the following system of linear equations:

π̄1Ã11 = 0̄,

i.e. the boundary system of two equations and

π̄1Ã12 + π̄2A22 = 0̄.

Thus, we have
π̄2 = −π̄1Ã12A

−1
22 .

The boundary system of equations corresponds to a singular matrix Ã11 for an
irreducible, recurrent non-null Markov chain (otherwise π̄ will be zero). Thus
the boundary system of linear equations leads to a single linear equation in two
variables π̄1 = [π1,1 π1,2]. Hence we have a linear equation of the form

π1,1α+ π1,2β = 0. Thus, π1,2 = −π1,1
α

β
.

Further, since π̄2 can be expressed in-terms of π̄1, we utilize the normalizing
equation

π̄ē = 1,



where ē is a column vector of ones, to determine π1,1 and hence all the other
equilibrium probabilities.

Remark 1: We realize that the inverse of a 2 x 2 matrix can be computed
by inspection and essentially only requires computation of the determinant. For
instance, let us consider a 2 x 2 matrix B:

B =

[
b11 b12
b21 b22

]
. (3)

It is well known that

B−1 =
1

∆

[
b22 −b12
−b21 b11

]
, (4)

where
∆ = det(B) = (b11b22 − b12b21).

Computational Complexity Now we determine the computational complex-
ity of our algorithm:

– The number of arithmetic operations required to convert the generator ma-
trix Q into block upper triangular matrix Q̃ are as follows. We need one 2 x
2 matrix inversion, one 2 x 2 matrix multiplication and one addition of 2 x
2 matrices.

– π2
1 computation requires one division.

– π2 computation requires inversion of 2 x 2 matrix A22 and one matrix mul-
tiplication (of 2 x 2 matrices Ã12 and A22).

– Also, the normalizing equation to determine π1,1 requires 3 additions and
one division.

– Finally, to determine π̄1, π̄2 in terms of π1,1, we require 3 multiplications.

3.2 CTMC with Arbitrary Finite Number of States

Now, we generalize the above algorithm for the case, where the number of states,
N = 2m, where m > 2. In such case, the generator matrix is of the following
form:

Q =


A11 A12 A13 · · · A1m

A21 A22 A23 · · · A2m

A31 A32 A33 · · · A3m

...
...

... · · ·
...

Am1 Am2 Am3 · · · Amm

 ,
where Aij , i, j = 1, . . . ,m, are 2 x 2 matrices.

Lemma 1: For a positive recurrent CTMC, the following sub-matrices of
generator i.e.

{Aii : 1 ≤ i ≤ m}

are all non-singular matrices, except A11 or Amm.



Proof: Refer [5]. The proof utilizes the fact that strictly diagonally dominant
matrix is non-singular. ut

Hence, as in the m = 2 case, by means of elementary column operations on
the generator matrix Q, we arrive at the following block upper triangular matrix
Q̃.

Q̃ =


Ã11 Ã12 Ã13 · · · Ã1m−1 Ã1m

0 Ã22 Ã23 · · · Ã2m−1 Ã2m

...
...

... · · ·
...

...

0 0 0 · · · Ãm−1m−1 Ãm−1m

0 0 0 · · · 0 Amm

 .
Thus, the equilibrium probability vector π̄ satisfies the following linear system
of equations:

π̄1Ã12 ≡ 0̄

π̄1Ã12 + π̄2Ã22 ≡ 0̄.

...

π̄1Ã1m−1 + π̄2Ã2m−1 + · · ·+ π̄m−1Ãm−1m−1 ≡ 0̄

π̄1Ã1m + π̄2Ã2m + · · ·+ π̄mAmm ≡ 0̄.

The above system of linear equations is recursively solved to compute the equi-
librium probability vector i.e.

π̄1Ã11 ≡ 0̄

π̄2 = −π̄1Ã12Ã
−1
22 .

...

π̄j = −π̄1Ã1jÃ
−1
jj − π̄2Ã2jÃ

−1
jj − · · · − π̄j−1Ãj−1jÃ

−1
jj

for 2 ≤ j ≤ (m− 1),

π̄m = −π̄1Ã1mÃ
−1
mm − π̄2Ã2mÃ

−1
mm − · · · − π̄m−1Ãm−1mA

−1
mm.

As in the m = 2 case, using non-singular matrices on the diagonal of generator
matrix, Q, it can be converted to a block upper-triangular matrix. Since inverse
of 2 x 2 matrices on the diagonal of Q can be computed efficiently, an efficient
algorithm exists for such a computational problem.

Definition: finite memory recursion of order L for the equilibrium proba-
bility vector is of the following form

π̄(L+ 1) = π̄(1)W1 + π̄(2)W2 + · · ·+ π̄(L)WL,

where Wi, i = 1, . . . , L, are recursion matrices. We call such a recursion forward
finite memory recursion [8]. Such a forward finite memory recursion holds true
for infinite state space CTMCs also [5], [6], [8].

Remark 2: Since Ãjj are all non-singular 2 x 2 matrices, their inverse can
be efficiently computed.



Computational Complexity We now compute the computational complexity
of the algorithm to determine equilibrium probabilities in most general case.

– Conversion of Q into a Block Upper Triangular Matrix: This task is accom-
plished using an approach similar to Gaussian elimination using the 2 x 2
non-singular matrices. It requires
(i)

(M − 1)2 + (M − 2)2 + · · ·+ 22 + 1 =
M(M − 1)(2M − 1)

6
,

2 x 2 matrix multiplication,

M(M − 1)(2M − 1)

6
,

2 x 2 matrix additions and (M − 1) inversions of 2 x 2 matrices.
(ii) 2 x 2 Matrix inversions needed in Finite Memory Recursion: We require

(m−2) inversions of 2 x 2 matrices (since ˜Amm is already inverted in step
(i)). Each 2 x 2 matrix inversion requires (a) Determinant computation
i.e. 2 multiplications and one subtraction; (b) Division of elements by
determinant i.e. 4 divisions.

(iii) 2 x 2 Matrix Multiplications: In the above system of linear equations, we
require

1 + 2 + 3 + · · ·+ (m− 1) =
m(m− 1)

2

multiplications of two 2 x 2 matrices. Each such multiplication (of two
2 x 2 matrices) requires at most 8 multiplications and 4 additions. To
reduce the complexity, we can utilize Strassen’s multiplication algorithm.
The number of multiplications required to compute the product of 2 x 2
matrices reduces to 7 (using Strassen’s algorithm). But with Strassen’s
algorithm we require 18 additions/subtractions.

(iv) Vector Matrix Multiplications: We require

1 + 2 + 3 + · · ·+ (m− 1) =
m(m− 1)

2

multiplications of 1 x 2 and 2 x 2 matrices ( i.e. multiplication of row
vector and 2 x 2 matrix).

– Normalization requires (2m− 1) additions and one division to obtain π1,1.
– Finally, we require (2m − 1) multiplications to determine the equilibrium

probabilities using π1
1 .

Thus, total number of 2 x 2 matrix inversions, 2 x 2 matrix multiplications and
2 x 2 matrix additions and other arithmetical operations required can be readily
determined.

Note that in the computer implementation of any algorithm, divisions are
“more expensive” than multiplications. Hence, in the above inversion of 2 x 2
matrices, we first compute the inverse of determinant ∆ and convert the associ-
ated divisions to multiplications.



Note also that in the case of QBD processes, Latouche et.al utilize Gaussian
Elimination method to compute the equilibrium probability distribution [4]. In
fact they provide probabilistic interpretation of the method.

Remark 3: Suppose, the number of states of the CTMC is an Odd number.
Then, we consider the 3 x 3 boundary system of linear equations (i.e. the initial
probability vector is of dimension 3) and utilize the above idea to compute the
equilibrium probability vector efficiently.

Remark 4: It should be noted that using similar idea (as discussed above), by
means of elementary column operations, the generator matrix can be converted
into a block lower triangular matrix. In this case, the boundary system of linear
equations is at the trailing boundary. By solving for the last probability vector,
we recursively compute the equilibrium probabilities. We call such a recursion
as the backward finite memory recursion [5].

4 Efficient Computation of Transient Probability Mass
Function of CTMCs

It is well known that the transient PMF of a homogeneous CTMC (generator
matrix doesn’t depend on time t, unlike non-homogeneous CTMC) satisfies the
following vector matrix differential equation i.e.

d

dt
π̄(t) = π̄(t)Q.

Taking Laplace-Transform on both sides, we have that

sπ̃(s)− π̃(0) = π̃(s)Q.

Equivalently, we have the following expression for π̃(s):

π̃(s) = −π̃(0)[Q− sI]−1.

These constitute a structured system of linear equations. Our goal is to efficiently
solve such system of equations for π̄(s) and compute the inverse Laplace trans-
form of π̄(s) to arrive at the time dependent (transient) PMF of CTMC.

Lemma 2: For a positive recurrent (recurrent non-null) CTMC, in the Re-
gion of Convergence (ROC) (of Laplace transform) the sub-matrices on the di-
agonal of (Q− sI) are non-singular.

Proof : As in the equilibrium case, such matrices are all strictly diagonally
dominant and hence are all non-singular. ut

Thus, as in the case of computation of equilibrium PMF, π̄(s) can be deter-
mined efficiently for the values of s lying in the Region of Convergence. Detailed
duplication of equations is avoided for brevity.



5 Conclusions

In this research paper, efficient algorithms for computing the equilibrium and
transient probability distribution of an arbitrary finite state space CTMC are
discussed. The algorithms effectively solve a structured system of linear equa-
tions efficiently. It might be interesting to apply the proposed method to solving
system of linear equations, where the coefficient matrix has the structure similar
to a generator matrix (i.e. structured diagonally dominant matrix), for instance,
the generator matrix has Toeplitz structure in some applications. This idea,
however, is left for future research.
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