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Abstract
When coping with literary texts such as novels or
short stories, the extraction of structured informa-
tion in the form of a knowledge graph might be
hindered by the huge number of possible relations
between the entities corresponding to the characters
in the novel and the consequent hurdles in gather-
ing supervised information about them. Such issue
is addressed here as an unsupervised task empow-
ered by transformers: relational sentences in the
original text are embedded (with SBERT) and clus-
tered in order to merge together semantically simi-
lar relations. All the sentences in the same cluster
are finally summarized (with BART) and a descrip-
tive label extracted from the summary. Preliminary
tests show that such clustering might successfully
detect similar relations, and provide a valuable pre-
processing for semi-supervised approaches.

1 Introduction
Recent applications in the field of Natural Language Pro-
cessing (NLP) are exploiting data-driven techniques from the
general area of Machine Learning (ML). These are typically
Deep Learning (DL) systems based on multi-layer neural net-
works fitted with the input text data, to be converted in nu-
merical objects by some embedding scheme. Such DL-NLP
systems are successful in extracting knowledge from natural
language and capturing the underlying narratives.

As a matter of fact, most of these NLP efforts are focused
on a few mainstream applicative areas, such as biomedical lit-
erature [Zhang et al., 2018; Lv et al., 2016] or news and so-
cial media [Trieu et al., 2017; Ghosh and Shah, 2018]. Other
inputs such as literary text in the form of novels or short
stories received less attention [Wohlgenannt et al., 2016;
Volpetti et al., 2020]. This is unfortunate as literary texts
might exhibit high complexity in the narrative plots, while

⇤Contact Author
Copyright c� 2020 by the paper’s authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY 4.0).
In: A. Jorge, R. Campos, A. Jatowt, A. Aizawa (eds.): Proceed-
ings of the first AI4Narratives Workshop, Yokohama, Japan, January
2021, published at http://ceur-ws.org

also lacking explicit annotations, thus making the knowledge
extraction process very challenging. Handling such complex-
ities, helps in evaluating the models Natural Language Un-
derstanding and creating benchmarks for these low-resource
domains. This could in turn be helpful for common sense rea-
soning, reading comprehensions and enhance NLP applica-
tions such as summary generation, machine translations and
question answering.

Despite their astonishing applications in NLP, e.g., [Zhu et
al., 2019; Paulus et al., 2017], DL models are typically based
on discriminative functions with a huge number of parame-
ters, whose interpretation is often problematic. This prevents
both the explainability of the results and the possibility of
doing reasoning over the model entities. For this reason, al-
ternative approaches to NLP, based on so-called Knowledge
Graphs (KGs), i.e., relational ontologies providing inter-
linked descriptions of the entities involved in a text, are also
popular. Despite the existence of techniques for automatic
KG extraction acting at the syntactic level [Tang et al., 2016;
Ruan et al., 2016], most of the approaches require supervi-
sion in the form of manual annotations or access to knowl-
edge bases, such as UMLS1, for higher level descriptions.

Of course these two orthogonal perspectives, say DL and
KGs, can be combined. DL models can be trained from KGs
[Socher et al., 2013; Li and Mao, 2019] and used for ML,
and, vice versa, DL models such as embeddings can be used
to predict missing links of the KG, classify relations, or align
entities from different KGs [Liu et al., 2019; Lin et al., 2015].

Here, we follow such an integrated point of view, being
motivated by specific features of literary text understanding.
In fact, for this kind of text, the KG entities are typically the
characters in the plot, and no serious alignment issues ap-
pear, while the classification of the relations becomes much
more challenging because of the lack of supervision. In other
domains the number of possible relations is typically limited
(e.g., in [Chen et al., 2010], few relations such as binding,
expression, protein interaction and few others), while in the
literary case the possible relations between characters (e.g.,
Table 1) can be much more. Accordingly, we explore some
directions for an unsupervised approach to the identification
of relations in KGs obtained from literary texts. The goal is to
cluster semantically equivalent relational sentences including
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descriptions of relations between the characters of a novel.
Our preliminary tests seem to be promising with respect to
the proper identification of similar relations, while also giv-
ing directions about the most suitable clustering strategies as
well as further development of semi-supervised tools.

The paper is organized as follows. In Section 2, we sum-
marize the existing literature in the field. Section 3 describes
our workflow, which is demonstrated by applicative examples
in Section 4. Conclusions and outlooks are in Section 5.

2 Existing Work
As discussed in the previous section, DL tools such as se-
quence and self-attention models as well as transformers
(e.g., BERT, Xlnet, BART) have been widely and success-
fully used in NLP for word and sentence encoding [Pe-
ters et al., 2018; Devlin et al., 2018; Yang et al., 2019;
Lewis et al., 2019]. These models can be fine-tuned and used
for various tasks such as classification, summarization and
sentiment analysis. This also concerns KGs, where DL mod-
els are used for embedding the triplet information and used
for tasks such as link predictions and KG completion [Lin et
al., 2019; Yao et al., 2019], while other researchers worked
on the training of embedding from KGs [Ji et al., 2015;
Wang et al., 2014; Lin et al., 2015; Bordes et al., 2013].

None of these application was concerned with literary text.
Despite some attempts to apply ML and DL models in the
field [Worsham and Kalita, 2018; Short, 2019; Labatut and
Bost, 2019; K and Antonucci, 2019; Volpetti et al., 2020] to
analyze character relations, sentiments and visualizations, a
connection with KGs still remains under-explored. The goal
of this paper is to fill this gap by providing an unsupervised
alternative to the relational classifiers recently developed for
supervised tasks in [K et al., 2020].

3 Workflow
Figure 1 depicts the workflow of the approach we propose
for the unsupervised identification of similar relations in the
KGs obtained from literary text. This involves a NLP part
for preprocessing (entity recognition, sentence tokenization,
detection of relational sentences and triplet generation) cor-
responding to the red blocks, a DL abstraction level (sen-
tence embedding and summarization) corresponding to the
blue blocks, as well as classical ML techniques (characters
de-aliasing, sentence clustering, semi-supervised extension)
associated with green blocks. These steps in their sequential
order are described here below together with the main chal-
lenges they present. The tool is available as a free software.2

Named Entity Recognition (NER). The very first step is
the identification of the entities to be associated with the KG
nodes. These are detected by a custom version of the Stanford
NER Tagger3 such that consecutive entities in a sentence (i.e.
words tagged as PERSON), are detected as a unique element
(e.g., Harry James Potter).

2https://github.com/IDSIA/novel2graph
3https://nlp.stanford.edu/software/CRF-NER.html

Dealiasing. As a same character can be termed with dif-
ferent aliases in the same novel, a de-aliasing might be re-
quired. This issue has been already addressed in [K et al.,
2020], where a satisfactory solution based on ML and NLP
has been found. Here we adopt a similar strategy based on the
classical DBSCAN clustering (✏ = .3 and Levenshtein string
distances), together with a number of manual adjustments. In
our approach in fact, we first perform separate pre-clustering
over entities starting with the same letter (e.g., Hermione and
Hermione Granger are identified as a cluster while Harry,
Harry Potter and H. Potter as another one), and then adding
similar but unassigned names to a cluster (e.g., Granger as-
signed to Hermione’s cluster and Potter to Harry). All the
occurrences of the aliases in the same cluster are finally re-
placed by identifiers (e.g., CHAR0 replaces Harry, Potter,
Harry Potter and so on).
Tokenization. Embeddings based on tranformers are based
on contextual information. Since, sentences are considered
as the simplest logical and meaningful unit that provides a
semantic intuition of the context, we rely on a segmentation
at this level.
Relational Sentence Identification. Let us call relational
a sentence including two or more characters. We extract re-
lational sentences from the de-aliased and tokenized text, by
also evaluating whether or not the text between the two char-
acter occurrences is a simple proposition or not (e.g., Harry
and Ron were having good time and Harry looked at Ron).
If this is the case we call the relation symmetric and we gen-
erate two distinct input for the pipeline. Note also we only
use sentences containing exactly two characters and exclud-
ing self-relations (e.g., Harry, I am Harry Potter).
Sentence Embedding. To identify the relations between
entities, we embed the relational sentences using Sentence
BERT (SBERT) [Reimers and Gurevych, 2019]. SBERT uses
a Siamese network structure [Schroff et al., 2015] to repro-
duce meaningful encodings. The method was specifically
modelled for clustering and semantic search. SBERT adds
a pooling operation on top of BERT to derive these embed-
dings. SBERT is fine tuned on SNLI [Bowman et al., 2015]
and MNLI [Williams et al., 2018] datasets with a three-way
soft-max classifier objective function for one epoch with the
default pooling strategy MEAN (computing the mean of all
output vectors).
Sentence Clustering. Since, these embeddings encode se-
mantic and contextual information, sentences with similar
vector representations are supposed to share similar relations.
Hence, we adopt a simple clustering approach to group the
sentences with similar relations. The distances between the
vectors returned by SBERT are assumed to reflect the seman-
tic similarity between the corresponding sentences and hence
the relations included in these sentences. Classical clustering
methods such as k-means or DBSCAN can be therefore used
to create groups of sentences and hence triplets with the same
relation. We considered the Euclidean distance, as well as the
classical cosine distance. Even though clustering the entire
sentence may not explicitly cluster the relationships, the sen-
tences that fall into similar semantic spaces can provide us a
coarse-grained grouping of relations.

https://nlp.stanford.edu/software/CRF-NER.html
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Figure 1: The workflow of the triplet generation process, with relation clustering.

Cluster Summarization. After the clustering of the rela-
tional sentences, we might want to represent these relations as
a summary of the sentences involved in the cluster. To achieve
that we adopt the BERT summarization pipeline based on the
BART [Lewis et al., 2019] model. This includes an encoder
like BERT and a decoder like GPT [Radford et al., 2019] and
it is trained on CNN/Daily Mail dataset with learning rate
3 · 10�5 (Adam optimizer). This performs extractive summa-
rization, giving most suitable representative sentences of each
cluster. Although training is not in-domain, as news articles
are also narratives, we use this for a preliminary set-up.
Triplet Generation. Once the extractive summary is pro-
duced, for asymmetric relations we extract the phrase which
comes between the two reference characters. We then extract
only the verbs from these phrases, which are the considered
as part-of-speech tags that could convey some information
about the type of relations.
From Unsupervised to Semi-Supervised Learning. The
overall procedure described in this section is purely unsuper-
vised. Yet, the clusters of relational sentences are described
by the summaries, first, and then labels generated by the sys-
tem. This might be the basis of a system where, part of those
clusters are manually inspected and their summaries/labels
validated or fixed by a human annotator. This would turn the
system into a semi-supervised one, where the annotated clus-
ters can be used as classifier of the relations.

Book Sentence
HP Dumbledore smiled at the look of amazement on Henry’s face
HP Ron grinned at Henry
LW Brooke smiling at Meg as if everything had become possible him now
HP Henry stared as Dumbledore sidled back into the picture . . . gave him a small smile

Table 1: Relational sentences from the same cluster.

4 Experiments
For a first empirical validation of our pipeline we process, in a
single run, two novels, namely Harry Potter and the Philoso-
pher’s Stone (HP) by J. K. Rowling and Little Women (LW)
by Louisa May Alcott. 1307 suitable sentences out of 32365
are identified and grouped in 200 clusters (i.e. different rela-
tions types). As the characters of the two books are distinct,
the system generates a KG with two disconnected compo-
nents (see Figure 2). Yet, the relation clustering is able to
detect similarities between sentences in the two books. E.g.,
sentences in Table 1 are related to smiling actions. For that
cluster the extractive summarization returns the first sentence
as a summary and, finally, the triplet generation mechanism
return smile as representative label.

Concerning sentence clustering we considered both DB-
SCAN and k-means algorithms both paired with Euclidean
and cosine distance. In the considered setup we did not found
significant differences with the two metrics. Regarding the
algorithms, an observed issue with DBSCAN was a sudden
transition from a huge number of single-sentence clusters to
very large clusters. Both these extreme scenarios prevent a
meaningful identification of relations. Yet, it was not possible
to automatically decide the number of clusters with k-means,
as the silhouette analysis returned monotone results.

Dumbledore Amy

Jo

Laurence

Beth

Harry

Hagar

Hermione

Ron

Snape

Meg

Say Smile Look Others

Figure 2: Narrative KGs of HP (left) and LW (right). Nodes corre-
sponds to de-aliased characters and arcs to clustered relations.

5 Conclusions
An unsupervised approach to KG extraction from narrative
texts has been proposed. The procedure exploits transformer
models to detect similar relations in the triplets, then gener-
ates summaries and representative labels for these clusters of
similar relations. This represent a pre-processing step for a
semi-supervised approach where the representative labels are
validated by human annotators and used as a relational classi-
fier. Validated clusters can define relational classifiers, while
the automatically generated labels are used for the others. As
a future work we want to apply our pipeline to a corpus of
literary texts and validate the clusters. This being a starting
point for the creation of a knowledge base for literary texts.
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