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Abstract  
Over the last 30 years, numerous studies have shown that repression can de-crease, increase, 

or have some kind of a nonlinear or mixed impact on the intensity of protest. This problem is 

usually referred to as the “protest-repression nexus” or the “punishment puzzle”, and it is still 

not resolved. The mathematical and computational model that we present in this paper is 

intended to shed new light on the causes of puzzling contradictions in empirical results.  

Building upon micro-level approach to political participation, we demonstrate that the reaction 

of protesters to repression can be dramatically different under the virtually same conditions. 

We show that an increase in repression levels leads to a more pronounced division between 

two possible outcomes of a contentious political event: successful protest and failed protest. 

The model highlights the importance of the intensity of the government’s repressive reaction 

to protests. The more disproportionate (“nervous”) this reaction is, the less stable the situation 

becomes. The latter means that the protest will either be suppressed or become extremely 

massive, but it is unlikely to remain moderate. Both findings are qualitatively similar and 

emphasize our general finding: the suppression of protest makes its further course less 

predictable. Methodological contribution of the paper is that our model allows for accounting 

both fueling and stifling effects of repression on participation within the same model 

specification.  
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1. Introduction 

In 1987 the famous conflict researcher Mark Lichbach wrote: “Aggregate data studies of domestic 

political conflict have… produced contradictory findings about the repression/dissent nexus: repression 

by regimes may either increase or decrease dissent by opposition groups” [1]. Nowadays, more than 

thirty years later, another scholar recognizes that “recent reviews of research on state repression 

highlighted contradictory findings about this effect, yet the core question is still debated: what accounts 

for the variation in the effects of repression?” [2].   

Indeed, despite the dramatic growth of the body of literature, that has taken place over the past 

decades, the “punishment puzzle” remains unresolved. Empirical studies still demonstrate that 

repression can decrease, increase, or have some kind of a nonlinear or mixed impact on the intensity of 

protest. In the latter case, various intermediate determinants enter the scene, such as the type of political 

regime [3], organizational infrastructure of the protest movement [4], coercive capacity of the state [5], 

split in the elites [6], “memory of violence”  in the aftermath of civil wars [7], ICT’s penetration rates 

[8],  and many others. 

The variety and number of these factors – structural in their nature – is alone more embarrassing 

than shedding light on the true causal mechanisms of protest backlash. Not to mention the evidence that 

the response to repression may vary substantially under the similar structural conditions [2]. The 

modelling results we present in this paper fully confirm this observation. Moreover, we show that the 

reaction of protesters to repression can be dramatically different under the exact same conditions. 
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We highlight several key reasons of the difficulties that the prevailing research tradition faces to 

explain the protest-repression nexus. Firstly, its de facto macro-level view ignores individual variation 

in the motives and incentives for protest participation. Secondly, it tends to address the problem in terms 

of dependent and independent variables, considering the level of protest as a function of repression, 

which leads to overlooking any feedback loops. The two named features explicitly manifest themselves 

in the dominant tool of corresponding empirical research – regression models with data aggregated, 

mostly, at the country-year level. Third, not enough attention is paid to the emotional component of this 

problem, while both common sense and the literature [9] indicate its special importance for the 

emergence of protest backlash.  

Our goal in this study is to propose a mathematical model that fills the gaps indicated above. We 

build upon a micro-level approach to political participation, with the special emphasis on the socio-

psychological factors of collective action [10]. In this view, repression does not only increase the costs 

for protesters, as in the traditional rational choice theory, but also stimulates group cohesion, increases 

“social rewards” for participating, and, thus, encouraging new participants to join the protest [11, 12]. 

The protest can also be enhanced due to increased group identification, the effect of “common fortune”, 

together with the feeling of suffering from illegal persecution [13]. In these approaches, of great 

importance is the moral justification of retaliatory violence [14], and, especially, the emotional reaction 

to repression – anger or outrage [15].  

Another cornerstone of our model is the consideration of the protest as a continuous event, a dynamic 

process with feedback loops. This idea, of course, is not new; at the end of the last century, Rasler [12] 

pointed out that “timing matters”: repressions are effective in the short term, but are likely to stimulate 

protest over a long time horizon. It has also been observed that repression and protest “are influenced 

by themselves” (are auto dynamical, in other words) [16] and have “inertia” [17]. Sullivan and 

coauthors [18] claim that the impact of repression can vary depending on whether the dissent is on the 

rise or in decline.   

However, in contemporary research, studies that specifically address repression and protest in their 

dynamic relationship are still rare. In empirical literature, there are a few studies employing 

“dynamically oriented” statistical analysis like vector autoregression [17] or a system of simultaneous 

equations [19]. A substantial exception is social media research, which has accumulated a significant 

body of work on the diffusion of protest information and behavior. However, for obvious reasons, the 

study of repression is problematic in an online environment. 

There are at least three streams – quite different in their breadth of use – in the modelling of the 

protest-repression nexus. A number of studies have been conducted within the tradition of game theory 

(see e.g. [6]). Yet the capacities of game-theoretic models for the study of dynamics are seriously 

limited due to the special features of their formal apparatus.  

Occasional attempts have been made in line with the system dynamics methodology. One recent 

example is [20]. Based on interesting ideas, this model is oversimplified: it includes only one dynamic 

variable. In general, their approach has two advantages in studying the protest-repression interplay: the 

models provide an opportunity to study the nuanced dynamics (in contrast to game theory) and they are 

– at least partly – analytically tractable. At the same time, being a macro level methodology, it does not 

allow examining micro-mobilization interactions.  

The limitations of game theory and system dynamics are largely overcome in agent-based modelling 

(ABM), which combines complex dynamics with microfoundation approach [21]. Indeed, a 

considerable share of the existing protest-repression models have been developed within the ABM 

framework. The most influential tradition originates from Epstein's seminal model of civil violence 

[22]. The most important ideas of this and subsequent work – from the point of view of our study – are 

as follows.  

Firstly, the transition of an individual (agent) from a passive state to an active (“rebellious”) one 

depends on the states of other agents. In the original Epstein’s specification, as well as in [23], the agent 

reacts to the behavior of other individuals within her spatial neighborhood – the number of lattice 

positions in all directions that the agent is able to inspect (so called “vision”). In other models, this 

principle can be implemented differently. For example, agents may be interconnected in networks [24]. 

In some models, additional selection mechanisms – such as homophily [25], group identity [26], or 

incomplete information [27] – may work. In the model presented in this paper, we stick to the simplest 



version of the agent’s interconnection, dating back to seminal Granovetter’s [28] work: every agent has 

complete information about the total number of protesters.        

Secondly, the individual’s decision to join the protest is based upon a threshold rule: switching 

between passive and active states occurs when the difference between the incentives to protest exceeds 

the constraints. Motives for participation can be formed by individual (e.g. personal hardships in the 

original model) and global (e.g. legitimacy of the regime) properties. Disincentives may be determined 

by personal characteristics (risk aversion) and, more importantly, by external risks - namely repression. 

To measure the latter Epstein used the probability of being arrested, calculated as a function of the cop-

to-rebel ratio within the agent's neighborhood. It is influenced, among other parameters, by "cop 

density" - the fraction of law enforcement forces in the total population. Some replicas of his model 

introduce additional parameters, such as effectiveness in the military capacity [29], apply different 

forms of arrest probability function [30] etc.  

One way or another, in the whole family of such models, repression affects only one side of the 

motivation-constraint balance. It increases the perceived cost of protest, - completely in line with the 

classical rational choice view. From the socio-psychological perspective, though, we must allow the 

possibility of an alternative effect: repression can provoke anger and outrage, thus contributing to the 

motivational side. This does not exclude, of course, the deterrent role of repression described above.  

One of the most convincing attempts to take this duality into account was made by Siegel [31]. 

Though the main focus of this widely cited paper is the social network structure (with very promising 

findings), here we draw attention to the way in which the psychological response to repression is 

considered. Within Siegel's framework, repression is modeled by removing protesters from the network, 

thus eliminating both their direct participation and their influence on others via local network 

connections. The psychological impact is that those with whom the repressed were connected grow 

either angry or fearful. From a formal point of view, this means that two different specifications are 

needed: one with a positive effect on motivation (in our terms), the other with a positive effect on 

deterrence.  

Yet, in reality, these bidirectional effects act simultaneously. And the solution of the protest-

repression puzzle may not be completely reliable without directly taking this fact into account. In this 

paper, we develop a general design of such a model and examine its performance using numerical 

experiments and - supplementary - analytical investigation.  

2. Model 

The considered type of process is a multi-day street action, such as Euromaidan in Kyiv (21 

November 2013 - 24 February 2014), Jasmine Revolution in Tunisia (18 December 2010 – 14 January 

2011) etc. The key variable in the model is the number of protesters Р(t), measured in thousands of 

people without loss of generality. Here t is the day’s number. Another important variable is the severity 

of repression against the protesters: s(t) = [0, 1]. It can be imagined, for instance, that s = 0.1 refers to 

a fine, while s = 0.9 constitutes a risk of physical injury or a long imprisonment. 

Aiming at obtaining the dynamical equation of the model, we start from considering a sympathizer 

to the protest and analyzing this individual’s motives to participation in this protest on a certain day 

versus non-participation, that is motive to action and motive to inaction.  

The risk of suffering from repression is an obvious component of motive to inaction. Here the word 

“risk” refers to the exposure to something detrimental. The measure of risk is a quantitative value 

     ,s t q P t called net risk [22]. It depends on the severity of repression s(t) and the probability q 

of the individual to get hurt in case of participation. This probability, in turn, depends on the current 

number of participants so that it is low when the number of participants is high. We put   Pq P e . 

Under this specification, the probability of getting hurt is approximately 0.95 if as little as 50 protesters 

turned out ( 0.05 0.95e  ), and the probability is 0.0025 if there are 6000 protesters ( 6 0.0025e  ).  

For the net risk we put    , 1 exp 100s q sq    . This functional form means that even moderate 

repression constitutes a strong motive for non-participation if combined with high probability of 

punishment. Similarly, even a low probability of getting suffered is aversive if the repression is severe. 



In this paper we assume that risk is the only component of the motive to inaction, thus 

       1 ,inactionM t s t q P t   , that is 

      1 1 exp 100
P t

inactionM t s t e


    . 

This formula presumes that the individual estimates the net risk of participation on day t+1 basing on 

data from previous day. 

Let us now proceed to the motive to action. 

Following the modern developments of the psychology of protest, we employ the psychological 

antecedents of the decision-making as mediators between social factors and the individual’s decision 

on whether to participate or not (today). The antecedents are anger a, efficacy belief b, and personal 

identification with the protest movement d [15].  

The constant component of anger is the one that triggered the protest: 0a const . It may be caused, 

for instance, by election fraud or unpopular economic reform. The second component appears as a 

backlash against repression; the simplest specification of it is 1a s . Note that in this case only the 

existence and severity of repression matter, but not the individual probability of suffering from it. We 

put that individual anger is the mean of the two components:  0 / 2a a s  , 0 1a  . 

Efficacy belief “refers to perceived efficacy of an action in achieving the political goals of the 

movement” [15] and can by thought of as the perceived possibility of success of protesters. It depends 

on their current number: 
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. 

Here k and P0 are positive constants. Efficacy belief equals 0.5 when the number of participants is equal 

to P0. For our numerical experiments we take P0=100 and  0.01k  . Under these values of parameters 

efficacy belief is approximately 0.39 when P=50 (thousand), and it is 0.95 when P=400. 

The individual’s identification d(t) with the movement depends in theory on the severity of 

repression, but for the sake of simplicity we consider it constant. 

Our model combines these three psychological antecedents of decision-making in the motive to 

action as 

        1 0.5 1actionM t a t b t d t   , 

so that  0 1actionM t  . Using the above formulae, we get  

      
  
  0

exp 0.01 1
1 0.25 1

1 exp 0.01 1
action

P t
M t d a s t

P t


   

 
. 

The difference between the motive to action and motive to inaction gives the total motive: 

     action inactiont M t M t    

According to the neurological model [32], the individual’s political position is the sum of their attitude 

φ and the total motive ψ: 

 t   . 

Here attitude φ is the individual’s long-term predisposition towards participation, which depends on 

the person’s social experience and status, supposed to be developed before the commencement of the 

protest action and to remain constant over the whole course of it. 

The individual attends the protest action on day t if their latent position is positive on that day. In 

terms of the model, the manifest position p = 1 if   0t  , that is  t   . Similarly, the manifest 

position p = 0 (the individual does not attend the action) if   0t  . Thus, latent position is a continuous 

scalar variable, while manifest position is a binary variable. 

It follows from these definitions that the number of protesters is given by  

   
 t

P t n d





   ,  

where n(φ) is the distribution of attitudes among individuals. 



Specification of severity of repression as a function of time (and/or anything else) is the matter of 

the strategy of the government. 

This completes the formulation of the model. 

In what follows we assume the continuous uniform distribution of attitudes, that is  

  0 , 1 0

0,

N
n

otherwise

   
  


 , 

where N0  is the total number of individuals. 

3. Steady State under Constant Severity of Repression 

Probably the main question about an impending protest, or uprising, or revolution is what is going 

to be the turnout at the end of it. In radical form, the question is whether the projected number of 

protesters is high enough to topple the government down.  

Accordingly, this Section studies the number of protesters when t→∞. 

Under the assumption of uniform distribution of attitudes made in the previous Section we have 
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Considering only the case when some proportion of the population attends the protest (that is, 

leaving out situations   0P t   or   0P t N  for some t), assuming constant severity of repression s and 

taking N0  = 100 for the sake of definiteness, we obtain after some algebra that 

     1 ,t t F s     , 

where 

    
  
  

    100

0

exp 1
, 0.25 1 1 exp 100

1 exp 1

t
t

F s d a s se t
t

 
 

       
  

. 

Steady-state solution is given by    1t t    , that is  , 0F s  . We considered the function  ,F s  

with parameters d = a0 = 1, and different values of severity s. As an example, the graph for s = 2 is 

presented in Fig. 1.  

 
Figure 1: The graph of the function  ,F s  with s = 2 (blue line) 

 

There are two steady states, namely 1 0.051   (unstable) and 2 0.184   (stable). This means that: 

- if on the first day of the protest the number of protesters is less than 0 1 5.1N    (thousand people), 

then    1 0t t     for each t, that is the turnout decreases from day approaching to zero, 

- if on the first day of the protest the number of protesters exceeds 0 1 5.1N   , then the turnout 

approaches to the value 0 2 13.4N    (thousand people). 

Thus 0 1 5.1N    can be thought of as the threshold the opposition needs to overcome in order to 

succeed in gathering big numbers. Once the threshold has been overcome, they ride the positive 

dynamics. 



Considering different levels of severity, we obtained that both ψ1 and ψ2 are increasing functions of 

s. That is, more severe repression raises the threshold before the opposition, but overcoming this 

threshold allows them to achieve a greater turnout. 

4. Numerical Experiment: Constant Severity and Stochastic Element in 
Attitudes 

We test the model’s key interactions by outlining several protest scenarios. We investigate the 

stationary number of protesters ( tP ) and its dependence on the severity (s) of repression. We apply a 

combination of different designs: we calculate dynamical motivation ψ(t) within the dynamical model, 

while attitude φ is individual for each actor in the sample. 

Let there be a population of 100 attitudinally heterogenous citizens, so  1;0i   . The attitudes of 

individuals are uniformly distributed, and each individual’s position is re-calculated at the beginning of 

each experiment. Therefore, we use the simple form of the Monte-Carlo method.  
In all scenarios the system reaches stationary state after about 10 model days, but we let the 

experiment run for 100 model days. We record the number of protesters P(t) at t = 100. Every scenario 
consists of 1000 experiments, each with a fixed value of repression severity s set at t = 1. In other words, 
for this simplified experiment we assume that the government makes a single decision about repression 
severity on the first day of the protest event and then never deviates from that decision. We increase the 
value of s between experimental runs by increments of 0.1, beginning with 0 and ending with 1. 

The sequence of events in the model unfolds as follows. It is supposed that at the onset of the 
experiment there are no protesters and no repressions (P(0) = s(0) = 0). We record each individual’s 
attitude i , then calculate the system’s balance of motivation ψ(t). Thus 'in the morning' of day t=1 each 

of the individuals makes their decision concerning whether to participate in this day’s protest event. The 
individuals who decided to participate demonstrate their manifested position p = 1 by taking to the streets. 
We add up all the values of p to calculate the total number of protesters on day t = 1. On the same day 
the government carries out repressions of a set severity level against the protesters (zero-repression 
policy s(1) = 0 is also an option, which simply means there are no repressions). Next morning, each 
individual makes a decision about their participation in the protest at t = 2 based on their attitude, the 
number of protesters P(1) and the severity of repression s(1). The process continues until t = 100, at 
which point we record the number of protesters.  

We analyse the experimental outcomes using descriptive statistics for values of P at different levels 
of repression severity. Fig. 2-4 show the distributions for s = 0, s = 0.4 and s = 0.9, respectively. 

 
Figure 2: Distribution of protester numbers at t = 100 for s = 0  

 



 
Figure 3: Distribution of protester numbers at t = 100 for s = 0.4  

 

 
Figure 4: Distribution of protester numbers at t = 100 for s = 0.9  

 

At zero repression, the protest level distribution is close to normal with a relatively small mean 

(about 11 out of 100 individuals), case minimums ranging from 3 to 21 and a standard deviation of 3.4. 

Of note is the absence of a zero equilibrium (although it is possible with a rare combination of individual 

positions): there is always a relatively small group of people whose willingness to participate outweighs 

the difference in motivation. 

The distribution changes qualitatively at non-zero repression levels: there is a split in the distribution 

proportional in magnitude to repression severity. Fig. 2 and especially Fig. 3 show a pronounced 

stationary outcome with zero protesters which corresponds to repressions reaching their intended 

purpose.  

However, in the cases when the repressions fail to coerce the population into compliance, we observe 

a significant increase in the number of protesters. Table I. demonstrates descriptive statistics for various 

levels of s: of note is that the maximum number of protesters increases monotonously with the increase 

in repression. 

The results of the numerical experiment show that the model retains the qualitative causal 

mechanism introduced during specification: in accordance with our expectations and existing research, 

repressions demonstrate a complex interaction with protest activity. An increase in repression levels 

leads to a more pronounced division between two possible outcomes of a contentious political event: 

successful protest (up to a revolutionary change in government) and failed protest. 

 



Table 1 
Descriptive statistics of numerical results (constant severity) 

S Mean median St. dev. min max 

0 11.08 11.00 3.39 3 21 
0.1 11.63 12.00 5.16 0 22 
0.2 11.91 13.00 6.23 0 27 
0.3 12.46 14.00 6.93 0 28 
0.4 12.74 15.00 7.92 0 26 
0.5 13.98 17.00 8.29 0 27 
0.6 15.45 18.00 8.81 0 30 
0.7 16.33 19.00 9.79 0 35 
0.8 16.96 21.00 10.17 0 37 
0.9 16.93 22.00 11.80 0 34 

5. Numerical Experiment: Adaptive Severity and Stochastic Element in 
Attitudes 

In this Section we suppose the severity to be the increasing function of the number of protesters from 
the previous day. The underlying idea is that the government decides to heighten severity of repression 
if faces a greater number of protesters. For the sake of definiteness, we take the following specification: 

 
1

( ) 1 exp ( 1)Ss t k P t b


       . 

Here the parameter kS characterizes the “asymmetry” of government’s forcible response to the mass 
action. Relatively small values of kS correspond to restrained policies when the government exercises 
low-severity repression while the number of protesters is not too large. Greater values of kS correspond 
to harsher policies. In our numerical experiments kS was given values 0; 0.1; 0.2; … 1. 

First, consider the severity of repression as a function of kS. Figure 5 presents the average (over Monte 
Carlo realizations) of maximum (over time) value of repression for various values of the parameter kS. 

 
Figure 5: The average maximum value of repression for various values of k 

 

 
Figure 6: The average number of protesters for various values of k 

 



Table 2 
Numerical results (adaptive severity) 

k P(average) P(max) S(average) S(max) 

0 10.91 10.96 0.01 0.01 
0.1 10.5 10.56 0.02 0.02 
0.2 11.75 11.93 0.09 0.1 
0.3 15.57 16.15 0.41 0.44 
0.4 18.99 20.01 0.69 0.73 
0.5 20.02 21.16 0.78 0.82 
0.6 19.09 20.73 0.77 0.84 
0.7 19.01 20.82 0.75 0.85 
0.8 18.06 20.16 0.72 0.88 
0.9 19.9 21.73 0.77 0.93 
1 18.49 20.44 0.75 0.95 

 
The number of protesters depends on k nonmonotonously (Fig. 6, Table 2). However, the big picture 

is that the less self-restrained is the government, the greater is the number of protesters.  

Note that the distribution of the average number of protesters under various values of k could hardly 

be guessed without modeling.  

 
Figure 7: The distribution of the average number of protesters 

 
If the government pursues a restrained policy (k is low), then the protest is quite predictable and 

limited. However, if the government acts harshly, the process becomes twofold: it will either grow 

strong or become fully suppressed. A small difference in the distribution of attitudes can be decisive 

between these two scenarios. 

6. Conclusion 

The dynamic model of the protest-repression interaction, which we present in this paper, makes 

several contributions to the literature. It provides an explanation for the mixed results of studies that 

examine how repressions affect the possibility of the protest backlash. We show, on the one hand, that 

an increase in repression levels leads to a more pronounced division between two possible outcomes of 

a contentious political event: successful protest and failed protest. On the other hand, the model 

highlights the importance of the intensity of the government’s repressive reaction to protests. The more 

disproportionate (“nervous”) this reaction is, the less stable the situation becomes. The latter means that 



the protest will either be suppressed or become extremely massive, but it is unlikely to remain moderate. 

Both findings are qualitatively similar and point towards a general conclusion: the suppression of 

protest diminishes the predictability of its further course. 

We offer several new model solutions to bring simulation dynamics closer to real life. Most 

importantly, we found a way to simulate both the positive and negative effects of repression on 

participation within the same model specification. Next, the model endogenizes not only the dynamics 

of the number of protesters, but also the intensity of repression. Finally, we demonstrate practical tools 

for modeling a wide range of individual behavior motives.  

Prospects for the further development of the model are seen, primarily, in the complication of agent 

interaction. A promising strategy is to add a network structure to existing mechanisms of agents’ 

decisions about participating in protest events. Experiments with distribution shapes of individuals' 

attitudes can also bring interesting results. 
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