CEUR-WS.org/Vol-2795/paper5.pdf

Software System Behavior Can Be Analyzed with Visual
Analytics

Yaroslav V. Kotylev?, Alexey A. Mitsyuk®

“National Research University Higher School of Economics,
20 Myasnitskaya St., Moscow 101000, Russia

Abstract

Enterprise software systems are usually large and complex. They can have complicated architecture and mil-
lions of different states. It is difficult to imagine a process of designing new software system or analysis of
developed system without various modeling techniques. Visual presentation of the software system structure
and behavior provides possibilities which can facilitate better analysis. Graphical notation of the Petri net
formalism is often used for software system description. An extension of Petri net is the high-level Petri net
formalism can be successfully used for the description of modular software systems. There are a lot of related
tools that can be used for “static” visualization of high-level Petri net. The current work considers possible
methods of dynamic visualization of high-level Petri nets which describe software system from behavioral
perspective.

Keywords

Software Visualization, High-level Petri Nets, Dynamic Visualization

1. Introduction

Complexity of enterprise software systems steadily grows year by year, release by release [1]. The
software system modeling process has already become too difficult to design and analyze it without
special models and tools. A Petri net is a mathematical modeling language for the description of
distributed systems. A Petri net has not only precise mathematical notation, but a graphical notation
as well [2]. These two aspects made Petri nets useful for several areas such as: process modeling,
software system design and analysis, data analysis, etc.

Modern software systems are characterized by large number of independent processes. For in-
stance, they are often implemented in service-oriented style. Service-oriented architecture (SOA)
represents a system as a set of independent components which provide services to another modules
via communication protocols over a network. Components often have shared resources, for example,
common data storage. As a result, enterprise systems confront two important issues: data integration
and data sharing [3]. How to prove or at least analyze correctness of such systems? perception is
based on graphical visualization, Petri nets could be used for those purposes.

Modern enterprise systems are too complex to analyze them as a single artefact. So that displaying
software systems as a plain graph will not be helpful. There are several approaches to reduce the
perception of complexity such as grouping or abstraction. For example, a dozen of modules of the

Modeling and Analysis of Complex Systems and Processes - MACSPro’2020, October 22—24, 2020, Venice, Italy & Moscow,
Russia
avkotylev@edu.hse.ru (Y.V. Kotylev); amitsyuk@hse.ru (A.A. Mitsyul
& yavkotyl duh Y.V. Kotyl itsyuk@h A.A. Mitsyuk
&} https://pais.hse.ru/en/ (A.A. Mitsyuk)
® 0000-0003-3290-1543 (Y.V. Kotylev); 0000-0003-2352-3384 (A.A. Mitsyuk)
@ ® © 2020 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:yavkotylev@edu.hse.ru
mailto:amitsyuk@hse.ru
https://pais.hse.ru/en/
https://orcid.org/0000-0003-3290-1543
https://orcid.org/0000-0003-2352-3384
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: Plane manual-made visualization of a nested Petri net a) and its layered visualization in 3D b) [5]

system could be grouped by any common feature and could be considered as a single element with
hidden details.

Hierarchical high-level Petri net is an extended formalism with the basic idea of constructing a
large model by combining a number of small Petri nets into a larger net [4]. A hierarchical high-level
Petri net often can be translated into a behaviorally equivalent ordinary Petri net. In case of enterprise
system structure visualization, each part of the system could be depicted as an ordinary Petri net at
the lowest level of visualization abstraction and the set of modules could be drawn as a single element
at the highest level of abstraction.

But visualization of “static” structure of the system does not cover all aspects of systems description.
Behavioral (or “dynamic’) aspect of a system is as important as its structure. In this paper we try to
find ways to answer the question “How to visualize dynamics of a complex hierarchical system?”

2. Software system analysis with high-level Petri nets visualization

As Petri nets language is not only a mathematical formalism but graphical notation as well, it could
be used for software system visualization. We have already mentioned in Introduction section that
modern enterprise software systems are developed with a module-based approach. Modules can be
fully separated on the same level of hierarchy or nested into other modules, and anyway their in-
ternal states are independent and communication between modules carried out overall network. But
nonetheless the modules often share common resources such as data. The extension of ordinary Petri
nets is the high-level Petri net formalism. It could be used for building visualizations of such sys-
tems. Each module of the system can be represented as a single ordinary Petri net. And then, a set of
ordinary Petri nets can be aggregated to a hierarchical high-level Petri net to represent system as a
whole.

There are several approaches for high-level Petri net visualization. One of them is hierarchical
layered-layout visualization [5]. The main idea of layered-layout approach is to display each element
net onto a single layer on distinct level with links to main net. Figure 1 a) shows a manual-made
visualization of a nested Petri net [6], and Figure 1 b) shows the same nested Petri net visualized
using layered layout (some element nets are collapsed).

This method is useful for static analysis of Petri net structure, when users are able to collapse
needless element nets to hide redundant structures and expand element nets which are needed to be
analyzed to investigate them in detail. But this approach does not support any dynamic features. In
this work, we are going to consider dynamic visualization of real behavior of the system.

2.1. What does it mean “real behavior” and how to analyze it?

Let’s imagine that user has already had a software system prototype or a fully developed system.
And the model of the system is described in the high-level Petri net formalism. It is possible to run
the system on a test data and gather produced logs. Surely the logging part of the system should be
prepared in advance: logs should be presented entirely and in appropriate format. Each event record
should contain at least:

« timestamp;
« identifier of log activity (it’s needed to define a related transition of the Petri net model);
« thread identifier (for multi-thread or multi-agent environments).

These logs can be used for replaying and visualizing system behavior on a high-level Petri net model.

2.2. Existing approaches to visualize process dynamics in information systems

In this project, our aim is to achieve convenient visualization techniques by combining ideas from
graph drawing, process visualization, and introducing completely new ideas.

Existing approaches to visualize process dynamics in information systems came mostly from pro-
cess modeling and process mining fields. In process modeling, many tools have been developed to
edit process models, show them graphically. They allow us to view and change model structure. Such
tools often enhanced with a simulation module/plug-in that is able to execute model step-by-step
showing changes in model state to the user.

Let us consider several examples of modeling tools and editors. One of the tools applied in business
process management education is WoPeD [7] (https://woped.dhbw-karlsruhe.de/). It is suitable for
working with static workflow nets, editing their structure, calculating properties of these models.

Another tool to deal with ordinary Petri nets is called Carassius [8] (https://pais.hse.ru/research/
projects/carassius). The tool is typical for such type of applications. It supports editing and visualizing
of Petri nets shown on a plane view.

Carassius supports simulation of ordinary Petri nets. In this mode, a user can study how a system
modeled by the Petri net is executed due to P/T-net semantics. Figure 2 shows how Petri net simulation
looks in Carassius. Here the intensity of blue coloring depicts the time from the firing of a transition.
Yellow token is the one that has been produced at the last simulation step.

At the same time, approaches have been proposed to visualize static structure of high-level Petri
nets of different types. Coloured Petri nets are one of the most commonly used type of high-level
Petri nets. They support a concept of hierarchy and complex control-flow constructs. CPN Tools [9]
(http://cpntools.org/) is a tool for Coloured Petri nets. Figure 3 shows the very basic CPN model.

Reference nets is another type of high-level Petri nets which support the concept of hierarchy. Also
these nets support data-flow modeling. Renew [10] (http://www.renew.de/) is a well-designed tool for
modeling, analyzing, and simulating reference nets. A basic sample model during simulation process
is shown in Figure 4.

https://woped.dhbw-karlsruhe.de/
https://pais.hse.ru/research/projects/carassius
https://pais.hse.ru/research/projects/carassius
http://cpntools.org/
http://www.renew.de/

o« tr2

trl

o« tr3

Figure 2: Petri net simulation in Carassius

Figure 3: Coloured Petri net in CPN Tools

Figure 4: Reference net simulation in Renew

What is common in all these tools supporting Petri net modeling? Models are shown using basic
graph drawing algorithms. Moreover, special algorithms for Petri net drawing can apply the fact that
an ordinary Petri net is s bipartite graphs. Petri net structure can be shown in a flat view independently
of their type. They have nodes and arcs of different types which are shown by rectangular, ellipse, and
arrow forms of different appearance. Petri net marking is usually shown by tokens in place nodes.
These tokens graphically depicted as dots or small circles inside larger places. Marking can also be
shown by a number of tokens in a corresponding place (like in Figure 4).

It is important to mention that usually editors can not really show dynamics. They show static
pictures or GUI with structure and state of modeled system. These pictures are able to change because
of the user action.

Rather different approach for visualizing process dynamics can be found in process mining. ProM
Framework [11] is the most developed open source process mining tool. This tool supports different
types of process visualization including dynamic views.

Fuzzy mining [12] is used to discover process models which show how process activities relate
to each other via a directly follows relation and other relations. This approach is implemented as a
ProM-plugin Fuzzy miner. This plug-in is equipped with an ability to show dynamic visualizations
out of a model and an event log. Figure 5 shows how this visualization looks like.

As earlier, we have a graph-based process model. Nodes represent process activities, while arcs
represent relations between these activities. For example, an arc connects two nodes if there is a
directly-follows relation between the two corresponding activities. Thus, the process structure is
shown. But we also can see black tokens which are actually moving through the model. Active arcs
are shown in red coloring. We can also see frequency of activities: frequent ones became dark-red
after several times.

Another tool with the same capability is called Inductive visual miner [13]. It is also implemented

decide

<no transition=

R

reinitiate request pay compensation| reject request

/

pay compensation| reject request

<no transition> <no transition=>

=no if =no =no fransition

a) b)

Figure 5: Two moments (a and b) of a fuzzy process movie

3
9
9 9
e 9
2)

Figure 6: Two moments (a and b) of visualization supported by Inductive visual miner

as a ProM plug-in but now also exists as a separate tool. Inductive mining is one of the most popular
process discovery algorithms as it allows us to discover a well-structured process model consuming
a relatively short time period. Inductive miner is enhanced with a convenient GUI which is able to
visualize dynamics of the discovered process as it is shown in Figure 6. Yellow tokens run through
the model. More frequently executed parts of the model became more bluish with time.

Both these approaches show to the user how real behavior from and event log can be replayed on the
corresponding process model. Commercial tools like Fluxicon Disco [14] (https://fluxicon.com/disco/)
or Celonis (https://www.celonis.com/) support the same functionality.

Visual representation of process dynamics as process movies has been also researched for declarative
on-line discovery [15]. Of interest is the approach of mapping event logs on specially prepared visual
backgrounds to show process characteristics [16].

The goal of our project is to combine ideas of static graph-based model visualization for high-level
Petri nets with the concept of “process movies” from process mining which allow us to show process

https://fluxicon.com/disco/
https://www.celonis.com/

dynamics recorded in event logs.

2.3. Why you can not visualize high-level Petri net dynamics easily?

There are several difficulties related to dynamic visualization of software system behavior with high-
level Petri nets. If the system is displayed as a whole, users will disperse concentration due to high
amount of redundant information. On the other hand, if the most system modules (element nets) are
collapsed as it feasibly in layered-layout approach, users will have a chance to lose important details
hidden in collapsed nets. Therefore, a method of auto hiding/exposition of element nets should be
proposed to maintain completeness-clarity visualization balance between details and system com-
plexity.

2.4. Objectives

Let us summarize the main objective of the project. The main objective is to develop visual analytics
methods which will successfully catch process dynamics in multi-agent systems represented as high-
level Petri nets. Proposed methods should take into attention key properties of multi-agent systems:
their complex and hierarchical multilevel structure; dynamic asynchronous agent activities, commu-
nications and collaborations; large number of events and activities in such distributed systems. It is of
most importance to support user with visual tools to highlight the most important fraction of system
behaviour while shading immaterial detail. As navigation device shows only roads which are impor-
tant for driver, visual analytics tool should assist a researcher by highlighting the most significant
model parts.

3. Completeness-clarity balance

We are going to introduce the four variables intended for automatic decision making on the display-
ing/hiding element Petri nets during dynamic visualization of high-level Petri net model of the system
based on logs:

« rate of event importance;

« time interval of calculation;

« distance between time intervals;
+ displaying threshold.

Let us consider proposed values on the example of a typical learning management information
system (LMS). The system has a lot of different modules. Also, this system has been modeled using
the high-level Petri net formalism. In graphical notation, each module of the system is depicted as an
element Petri net. Also, system logs were translated into Petri net run. For example, the system has
an event - user submitted login and password. This event could be transformed into the following
part of the run: input tokens #; (login), t, (password) were removed from the place P/, and output
token #; was added to the P, with firing of transition T,.

One of the modules is an academic discipline support module. This module provides functions
related to learning process such as updating course info, uploading homework exercises by students.

3.1. Rate of event importance

The idea is to assign weights or measure of importance for each activity of the system. This measure
should be allocated by user to distinguish significant events and secondary events. The value of rate
of event importance will be taken into account to make a decision whether to display the element net
to which the activity belongs or not. The value of rate of event importance belongs to the interval
[0; +o0).

For instance, the system has logs for two types of activities: visiting “discipline info” page by any
user, and changing a course material. We can assume that the activity of changing course materials is
much more important than the activity of visiting info-page by a single user. It doesn’t make sense to
display the element net of the discipline each time when users visit the info-page. At the same time
we expect that the element net will be displayed at the moment of changing course materials because
it may lead to additional activities such as user notification, database updates, uploading new files,
etc. Thus, based on a subjective opinion we can assign “0” rate of event importance to info-page visit
event and “20” to material course update event.

3.2. Time interval of calculation

In order to analyze dynamic behavior of the system, we propose to split up logs of each module by
time intervals and make a decision of displaying an element net for each interval separately. Let’s
examine new activity of the academic discipline support module of the LMS — uploading homework
exercises by students. Event of this type are a meaningful activity with rate of event importance greater
than zero. We can assume that in terms of behavioral analysis, we don’t care about infrequent home-
work loadings. Contrariwise, we definitely know that frequency of uploads rises sharply before a
deadline. The deadline may lead to updating course materials (new home tasks, for example), chang-
ing discipline description or even to the finish of the academic discipline. Time interval of calculation
provides the ability to measure the frequency of process activities (events). On the subject of the pre-
vious example, we would like to display element net of the module before a deadline, when rate of
posting homework by students is bigger than 100 per hour. “Hour” is a time interval of calculation.
The value of time intervals of calculation could be tuned for each element Petri net of high-level Petri
net individually.

3.3. Time gap between intervals

Time gap between intervals — time between beginnings of two nearest time intervals of calculation.
The value of time gap between intervals should not be greater than time interval of calculation and
could be tuned for each element Petri net of high-level Petri net individually as well as time intervals
of calculation.

3.4. Displaying threshold

Displaying threshold is the final value for decision making about displaying the certain element net for
a chosen time interval. It should be compared with level of interval importance (see Equation 1) — sum
of events from the chosen time interval multiplied by events’ rate event of importance. If the result
of calculation is greater than the value of displaying threshold, then the element net should be drawn
fully. If the result of calculation is smaller than the value of displaying threshold, then the element net
should be hidden for a time interval. The value of threshold of displaying could be unique for each
element net.

Module M A~ trM1 7>

_¥ —~ _
M2 N/ Q

'Module F

odule téb.f\

(o tﬂ <>.<

—

Figure 7: Schematic representation of the software system with high-level Petri net

where:

O C

f
Level of interval importance : Loll; = Z Nik * Tk

i = time interval identifier,

k = type of chosen event,
nix = number of k-type events within the i interval,
ry = rate event of importance of k-type event.

Module F

t2

3.5. How can we apply the proposed completeness-clarity balance method?

Let’s consider a simple example. There is a pack of logs for a software system with three different
modules — F, M and K). Modules M and K are submodules of the module F, and they are “packed”
in tokens #; and #, of the module F. This system has the high-level Petri net representation. Figure 7
shows the system with all modules at the a) part and shows the system with hidden submodules at

the b) part.

Module M has three types of events: aj, a; and as. Event a; is very important activity and we don’t
want to lose visualization of the element net of the the M module when a; happens. This event relates
to transition trM1. Event a, (happens when the transition trM2 is firing) doesn’t deserve attention
as a unique activity, but it will be useful to analyze system behavior in case of sequence of a, events.
And finally, a3 event is not significant at all.

The following values were chosen as parameters for completeness-clarity balance method:

Time interval 1

Time gap between intervals

T- X e = @ = =Om

00:00 AM 00:40 AM
® al
O a2

a3

Figure 8: Completeness-clarity balance example

= QO =Om O =
T

« rate of event importance:

— for a; = 90,
— for ay = 10,
— for a; = 0;

« time interval of calculation = 1 hour;

Time interval 3

01:20 AM

« distance between time intervals = 40 minutes;

« displaying threshold =

90.

01:40AM 02:00 AM 02:20 AM

Figure 8 shows the example of a;, a; and as distribution through the time period from 00:00 AM to
02:20 AM. There are three intertwined time intervals (equals to time interval of calculation = 1 hour)
with distance equals to time gap between intervals = 40 minutes:

« time interval 1 - from 00:00AM to 01:00AM contains 1 a;, 4 a; and 19 as;

o time interval 2 - from 00:40AM to 01:40AM contains 0 a;, 4 a; and 13 as;

o time interval 3 - from 01:20AM to 02:40AM contains 0 a;, 10 a; and 8 as;

Using Equation 1 we can calculate level of interval importance (Loll) for each interval:

* LOIItime interval1 = 1 * 90 + 4 « 10 + 19 = 0
* LOIItime interval2 = 0 * 90 + 4 » 10 + 13 = 0

o Lolliime intervalz = 0 * 90 + 10 = 10 + 8 = 0

130;
40;

100.

And finally we can compare each Loll with displaying threshold (DT) = 90. The results of calculation
show that element net will be displayed for time interval 1, time interval 3 and will be hidden for

time interval 2:

Time interval

Loll of interval | Loll > DT ‘ Element net will be displayed

Time interval 1 130 Yes Yes
Time interval 2 40 No No
Time interval 3 100 Yes Yes

Module M M1

{ A) Module M M1
L] A \
(@ - S)
, [] (@ (@
trM2 /) {)
iModuIe F tl. Module F Module F

| 1@) | / |

Module K Module K

K o

Figure 9: The system states by time intervals

Figure 9 shows three states of the system: the left state at the time interval 1 (we can see the a;
event - trM1 is firing), the central state during the time interval 2 (the module M is hidden) and the
right one is about time interval 3, when the element net for the module M appears again due to a,
event. Please note that for the example module K has its own events and the time when the element
net is displayed differs from the module M.

4. Conclusions and Future Work

In this paper we presented the first ideas on how process dynamics can be visualized based on hierar-
chical high-level Petri nets. The paper documents a first part of development of dynamic visualization
tool of high-level Petri net. The result of the research will provide methods of dynamic Petri net vi-
sualization and make it possible to develop visualization tool.

The visualization tool will be executed together with simulation/log processing engine. This engine
will be a back-end part of the product which will scan real software systems’ logs and send related
commands to visualization tool. Working together log processing engine and visualization tool will
provide the user with the ability to analyze structure and behavior of chosen software system.

Dynamic visualization based on real logs can help to find bottlenecks and unwanted processes
interaction. Also, it will help to analyze interaction of different modules with shared resources. A hi-
erarchical approach of the software system visualization will allow user to get rid of redundant details
by wrapping layers of hierarchy. It means that dynamic visualization of the software system via high-
level Petri net will combine advantages of static (structural) and dynamic (behavioral) visualization
for more convenient analysis of the software systems.

Acknowledgments

This work is supported by the Basic Research Program at the National Research University Higher
School of Economics.

References

(1]

[10]

[11]
[12]

[13]

[14]

[15]

M. M. Lehman, Programs, life cycles, and laws of software evolution, Proceedings of the IEEE
68 (1980) 1060-1076. doi:10.1109/PROC.1980.11805.

J. Desel, G. Juhas, "what is a petri net?”, in: Unifying Petri Nets, volume 2128 of Lecture Notes in
Computer Science, Springer, 2001, pp. 1-25.

P. Ai, Z. Wang, Y. Mao, Service-oriented architecture of specific domain data center, in: GCC,
volume 3251 of Lecture Notes in Computer Science, Springer, 2004, pp. 855-858.

K. Jensen, Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use - Volume
1, Second Edition, Monographs in Theoretical Computer Science. An EATCS Series, Springer,
1996.

A. A. Mitsyuk, Y. V. Kotylev, Layered layouts for software systems visualization using nested
petri nets, in: V. Itsykson, A. Scedrov, V. Zakharov (Eds.), Tools and Methods of Program Anal-
ysis, Springer International Publishing, Cham, 2018, pp. 127-138.

I. A. Lomazova, Nested petri nets - a formalism for specification and verification of multi-
agent distributed systems, Fundam. Inform. 43 (2000) 195-214. URL: http://dx.doi.org/10.3233/
FI-2000-43123410. doi:10.3233/F1-2000-43123410.

T. Freytag, M. Sanger, Woped - an educational tool for workflow nets, in: BPM (Demos), volume
1295 of CEUR Workshop Proceedings, CEUR-WS.org, 2014, p. 31.

N. Nikitina, A. Mitsyuk, Carassius: A simple process model editor, Proceedings of ISP RAS 27
(2015) 219-236.

A. V. Ratzer, L. Wells, H. M. Lassen, M. Laursen, J. F. Qvortrup, M. S. Stissing, M. Westergaard,
S. Christensen, K. Jensen, Cpn tools for editing, simulating, and analysing coloured petri nets,
in: W. M. P. van der Aalst, E. Best (Eds.), Applications and Theory of Petri Nets 2003, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 450-462.

L. Cabac, M. Haustermann, D. Mosteller, Renew 2.5 - towards a comprehensive integrated devel-
opment environment for petri net-based applications, in: Application and Theory of Petri Nets
and Concurrency - 37th International Conference, PETRI NETS 2016, Torun, Poland, June 19-
24, 2016. Proceedings, 2016, pp. 101-112. URL: http://dx.doi.org/10.1007/978-3-319-39086-4_7.
doi:10.1007/978-3-319-39086-4_7.

H. M. W. Verbeek, J. C. A. M. Buijs, B. F. van Dongen, W. M. P. van der Aalst, Prom 6: The process
mining toolkit, Proc. of BPM Demonstration Track 615 (2010) 34-39.

C. W. Gunther, W. M. P. van der Aalst, Fuzzy mining - adaptive process simplification based on
multi-perspective metrics, in: BPM, volume 4714 of Lecture Notes in Computer Science, Springer,
2007, pp. 328-343.

S.J. J. Leemans, D. Fahland, W. M. P. van der Aalst, Process and deviation exploration with
inductive visual miner, in: BPM (Demos), volume 1295 of CEUR Workshop Proceedings, CEUR-
WS.org, 2014, p. 46.

C. W. Giinther, A. Rozinat, Disco: Discover your processes, in: BPM (Demos), volume 940 of
CEUR Workshop Proceedings, CEUR-WS.org, 2012, pp. 40—-44.

A. Burattin, M. Cimitile, F. M. Maggi, Lights, camera, action! business process movies for online
process discovery, in: Business Process Management Workshops, volume 202 of Lecture Notes
in Business Information Processing, Springer, 2014, pp. 408—419.

M. de Leoni, S. Suriadi, A. H. M. ter Hofstede, W. M. P. van der Aalst, Turning event logs into
process movies: animating what has really happened, Software and Systems Modeling 15 (2016)
707-732.

http://dx.doi.org/10.1109/PROC.1980.11805
http://dx.doi.org/10.3233/FI-2000-43123410
http://dx.doi.org/10.3233/FI-2000-43123410
http://dx.doi.org/10.3233/FI-2000-43123410
http://dx.doi.org/10.1007/978-3-319-39086-4_7
http://dx.doi.org/10.1007/978-3-319-39086-4_7

	1 Introduction
	2 Software system analysis with high-level Petri nets visualization
	2.1 What does it mean ``real behavior'' and how to analyze it?
	2.2 Existing approaches to visualize process dynamics in information systems
	2.3 Why you can not visualize high-level Petri net dynamics easily?
	2.4 Objectives

	3 Completeness-clarity balance
	3.1 Rate of event importance
	3.2 Time interval of calculation
	3.3 Time gap between intervals
	3.4 Displaying threshold
	3.5 How can we apply the proposed completeness-clarity balance method?

	4 Conclusions and Future Work

