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Abstract
In this paper, we discuss the question of approximate stability in group partition (Alesina-Spolaore-like) models.
Consider a world with a finite number of agents living along a line. The coordinate may represent a location in
some geographical or virtual space. A subgroup of agents may build a facility at some point and enjoy benefits
from it. Each facility costs some amount 𝑔, and every agent pays for her transportation. These costs may be
somehow redistributed.

We seek for a stable division of the whole society into subgroups. Two main stability concepts are consid-
ered. Migrational stability means that no individual may decrease his cost by changing the group. Coalitional
stability means that no new group may emerge and decrease the costs of all its members. We relax these con-
cepts: an individual must substantively decrease her cost in order to break the structure, otherwise the change
is not worth it.

It was shown by Bogomolnaia et al that for some rules there are no stable configurations. We try to maximize
the approximation rate for which the counterexamples still exist. Specifically, we study three cases: coalitional
stability without redistribution, migrational stability with the central median rule and migrational stability with
Rawlsian redistribution. We found the worlds with instability 6.2%, 2.5% and 9.6% respectively. In the first case
we prove that this is the maximal rate for all bipolar worlds.
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1. Introduction

Every person in a society belongs to many groups and communities. For some specific relations,
the groups must be disjoint. For instance, in the USA a citizen may be a registered supporter of
only one political party. In many countries a person must have a unique address of residence, thus
the municipalities or regions may be treated as non-intersecting communities. If a group of tourists
choose where to go on a particular day, then everyone may choose only one excursion.

What is the rationale behind forming groups (communities, clubs, coalitions, jurisdictions etc.)?
Why people cannot just live alone? The answer is that some valuable goods are either impossible or
too costly to produce by a single agent. Thus, people unite themselves into clubs in order to provide
such club goods. But organizing a club is costly, and the members may disagree with each other about
the type and quantity of the provided club goods. Sometimes there could be congestion issues: the
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club good deteriorates when the number of users rises. This is why there could be no grand coalition,
but some coalitional structure.

In this paper we study the question of horizontal differentiation. The club good has some features
and all agents have preferences over them. The cost of organizing a club and providing the club good
is constant and does not depend on the number of users. Thus, there are two opposite forces. On the
one hand, large groups are better since they provide economy of scale. Each member pays less share
of the total cost. On the other hand, small (and homogeneous) groups are better since they can tune
the features of the good precisely under members’ preferences. The main question is whether these
forces can always equilibrate each other. And how do details of the model influence the answer?

Two main equilibrium concepts appear in the literature. Migrational stability means that no indi-
vidual wishes to change her community unilaterally in order to reduce her costs. Coalitional stability
suggests that no group of agents would like to secede from the club system, organize a new club and
thus reduce the costs of all members. The distribution of agents may be described in different ways.
Firstly, the underlying feature space may be of different dimensions. Secondly, the distribution itself
may be of three types. It may be discrete, when a finite set of agents live at some specific points.
It may be continuous, when a continuum of agents live according to some density. And it may be
atomic, when a continuum of agents live at a finite number of points. The costs may be redistributed
between the agents in some way: usually, less satisfied agents may be subsidized or pay a less share
of the fixed cost. The combinations of these specifications lead to a family of models. In some of them
an existence theorem may be proven. In some others an example without a stable partition may be
constructed.

This study considers the frameworks without an equlibrium. We relax the notions of stability: sup-
pose that a threatening individual or group must not only get better after the change, but decrease
their costs by a considerable amount. Of course, if this amount is large enough, the stable configu-
ration will always exist. Our research question is to find the maximal size of this amount when the
configuration is still unstable. We consider three uni-dimensional frameworks:

• Coalitional stability without cost redistribution;

• Migrational stability without cost redistribution;

• Migrational stability with egalitarian redistribution.

In each case we find the most unstable world in some family. We do not know whether our examples
are the furthest from stability globally, but we provide some evidence in favour of this conjecture.

1.1. Related literature

In this subsection we describe some previous studies in the areas of club goods, facility location and
group partition.

The discussion about local public goods started in the 1950s. Samuelson [1] presented a model
that demonstrated inefficiency of decentralized public good provision. The main idea was that the
freerider problem is inevitable. If an agent buys a public good by himself, then he cares only about his
own benefits, not about the others. This is why it will be always underfinanced. Tiebout [2] agreed
that this is the case for the whole economy, but stated that the situation with local public goods is
different. There is an option to change the jurisdiction, or to “vote by feet”. This move simultaneously
changes the tax level and the characteristics of the provided public good, so one may hope to obtain
an equilibrium.



Tiebout’s paper lacked a formal model. This is why the successive studies tried to formalize
Tiebout’s intuition. In particular, the researchers tried to justify the existence and efficiency of the
suggested equilibrium. The early endeavours included the papers by Westhoff [3] and Bewley [4]. A
thorough analysis was done by Greenberg and Weber [5] who introduced the notions of migrational
and coailitional stability and justified both of them by quotes from the Tiebout’s paper. All these
efforts were done in the framework of vertical differentiation: the good was homogeneous, but the
agents differed in willingness to pay for it and were self-selecting in jurisdictions with different levels
of public good.

The notion of horizontal differentiation was brought to the field by the seminal paper of Alesina
and Spolaore [6]. They introduced a one-dimensional parameter that describes both the local public
good and the agents’ preferences. They interpreted the model in the spirit of political science: the
parameter describes a geographical location, the coalitions are nations and the facilities are their
capitals. Each citizen pays taxes to finance the capital and needs to visit it sometimes. The paper also
considered the concepts of migrational and coalitional stability.

In the next decades many variations and generalizations of the model were considered in vari-
ous papers. In particular, the issues of nonuniform density or discrete configuration, various cost
redistribution rules and multiple dimensions were studied. In some frameworks it was shown that
an equilibrium does always exist, in other cases very involved counterexamples were constructed.
Haimanko et al [7] show that if any redistribution may be applied, then a coalitionary stable partition
does always exist. Weber et al [8] present an example where no migrational equilibrium may exist un-
der the egalitarian redistribution rule. Bogomolnaia et al [9], [10] and Savvateev [11] studied discrete
models with a finite number of agents and presented several examples in different frameworks where
no equilibrium exists. On the other hand, Musatov et al [12], Savvateev et al [13] and Marakulin [14]
presented rather general existence theorems in the continuous framework.

The concept of approximate stability was employed in the two-dimensional analysis by Drèze et al
[15]. It was later elaborated by Golman and Musatov [16]. This paper expands the results obtained
there.

1.2. Roadmap

The remaining part of the paper is organized as follows. In Sect. 2 a detailed formal model is pre-
sented, including the definitions of approximate stability. In Sect. 3 we extensively analyze the case
of coalitional stability of a bipolar world. In Sect. 4 and Sect. 5 we present a preliminary analysis of
migrational stability in two settings: egalitarian redistribution and the central median rule. Finally,
Sect. 6 presents a conclusion.

2. The model

2.1. General setting

Here we formulate a model of jurisdiction formation in a linear world with a finite number of agents.
This model is similar to the models in [9] and [8]. A continuous model may be found, for instance,
in [12]. In our model we have an agent set 𝐴 = {1,… , 𝑁}. Every agents 𝑖 “lives” at location 𝑥𝑖 , where
𝑥1 ≤ ⋯ ≤ 𝑥𝑁 . A community 𝑆 is a nonempty subset of 𝐴. It may build a facility at some point 𝑚. We
consider two possible rules of determining 𝑚:

• The median rule. The point 𝑚 is a median of 𝑆, i.e., the sets {𝑖 ∣ 𝑥𝑖 ≤ 𝑚} and {𝑖 ∣ 𝑥𝑖 ≥ 𝑚} must
have equal sizes. If 𝑆 contains an even number of agents and there is a segment of medians,



then any median will fit.

• The central median rule. The same as before, but if there is a segment of medians, than the
middle point of this segment is chosen.

Any median point has two features. Firstly, if the transportation cost function is linear, then a
median location minimizes the total cost. Secondly, it wins over any other option by majority voting.
The central median rule, moreover, always returns a unique point. In the sequel we denote by med(𝑆)

the set of suitable medians under the specified rule. It will be either a segment or a singleton.
If a jurisdiction is established, then all its members may use its facility. There is no congestion, so

the cost of maintenance does not depend neither on the number of users, nor on the location of the
facility. Denote this cost by 𝑔. Apart of this cost, all members should be transported to the location.
The transportation cost of an agent at point 𝑥 to the facility at point 𝑚 equals 𝑡 ⋅ |𝑥 −𝑚|. We consider
two rules of distributing the total cost:

• The private cost rule. Every agent pays for himself, so the total cost of agent 𝑖 within coalition
𝑆 with facility at 𝑚 equals

𝐶𝑃 (𝑖, 𝑆, 𝑚) =

𝑔

|𝑆|

+ 𝑡 ⋅ |𝑥𝑖 −𝑚|,

where |𝑆| is the cardinality of 𝑆.

• The Rawlsian (egalitarian) rule. The total cost is redistributed such that every agent pays an
equal share. Here we have the following cost function:

𝐶𝑅(𝑖, 𝑆, 𝑚) =

1

|𝑆|

(𝑔 + 𝑡∑

𝑗∈𝑆

|𝑥𝑗 −𝑚|).

Note that under the central median rule the facility is uniquely located, so we can omit 𝑚 in the
notation.

Suppose that the whole society is divided into communities 𝑆1,… , 𝑆𝑘 with facilities at medians
𝑚1,… , 𝑚𝑘 . We analyze the following notions of stability:

• Migrational (or Nash) stability. No individual wishes to change his community. Formally, for
every agent 𝑖 belonging to community 𝑆𝑗 and any other community 𝑆𝑙 it holds that

𝐶(𝑖, 𝑆𝑗) ≤ 𝐶(𝑖, 𝑆𝑙 ∪ {𝑖}).

Note that agent 𝑖 anticipates that she would change the community she joins and the distribu-
tion of costs within it. The existing members of 𝑆𝑙 may become better off or worse off, it does
not matter. The median of 𝑆𝑗 is predetermined, and the median of 𝑆𝑙 ∪ {𝑖} is either uniquely
defined, or can be chosen arbitrarily among possible variants.

• Coalitional (or core) stability. No group of agents wish to establish a new community such that
all members become better off. Formally, there is no set 𝑆 with a median 𝑚 such that for all
communities 𝑆𝑗 and all agents 𝑖 ∈ 𝑆 ∩ 𝑆𝑗 it holds that

𝐶(𝑖, 𝑆, 𝑚) < 𝐶(𝑖, 𝑆𝑗 , 𝑚𝑗),

where 𝑚𝑗 is the median of 𝑆𝑗 .



Note that migrational and coalitional notions of stability are incomparable. Namely, if an individual
changes the jurisdiction, then the old members of the new jurisdiction may become worse off due to
the change of the median. Thus, they would not like to admit the new member. Thus, this change
would be a threat for migrational stability but not for coalitional stability. Vice versa, it may occur
that no individual move may decrease the cost, but a collective change may decrease the costs of all
participants.

2.2. Approximate notions of stability

Suppose that changing the jurisdiction or establishing a new one is costly: for instance, it takes some
effort for negotiation. In this case a structure would be unstable only if some change may substantively
decrease the cost of all involved agents. We consider two measures of instability:

• Absolute, or additive, instability. A threat is credible only if all agents performing the move
decrease their costs by some absolute value 𝛼 . Of course, the scale should be fixed somehow in
order to compare different unstable societies with each other.

• Relative, or multiplicative, instability. A threat is credible only if all agents performing the move
decrease their costs by some fraction 𝛿 . This definition does not depend on the scale.

Now let us put it formally.

Definition 1. Consider a society structure  , i.e. a partition 𝑋 = 𝑆1 ⊔⋯ ⊔ 𝑆𝑘 with facilities at points
𝑚1,… , 𝑚𝑘 , respectively. Denote by 𝑆(𝑖) the community that contains agent 𝑖 and by𝑚(𝑖) the respective
median. Denote by 𝐶(𝑖,) the cost of 𝑖 in  , i.e. 𝐶(𝑖, 𝑆(𝑖), 𝑚(𝑖)). (Where 𝐶(⋅) denotes either 𝐶𝑃 (⋅) or
𝐶𝑅(⋅)). Now define two measures of absolute instability of a group structure:

• The absolute migrational instability of the structure is the value

Δ
𝑀

𝑎𝑏𝑠
() = max

𝑖∈𝐴

(𝐶(𝑖,) − min

𝑗=1,…,𝑘

𝑚∈med(𝑆𝑗∪{𝑖})

𝐶(𝑖, 𝑆𝑗 ∪ {𝑖}, 𝑚));

• The absolute coalitional instability of the structure is the value

Δ
𝐶

𝑎𝑏𝑠
() = max

𝑇⊂𝐴,𝑇≠∅,𝑚∈med(𝑇 )

min

𝑖∈𝑇
(𝐶(𝑖,) − 𝐶(𝑖, 𝑇 , 𝑚)).

Note that all instability measures are always non-negative: the status quo costs lie in the range of
minimization, so the zero difference is achievable. It should be also clear that the instability is zero if
and only if the structure is stable. We proceed by defining the relative measures.

Definition 2. Keep all the notation from the previous definition. Define the following measures of
relative instability:

• The relative migrational instability of the structure is the value

Δ
𝑀

𝑟𝑒𝑙
() = max

𝑖∈𝐴

𝐶(𝑖,) − min 𝑗=1,…,𝑘

𝑚∈med(𝑆𝑗∪{𝑖})

𝐶(𝑖, 𝑆𝑗 ∪ {𝑖}, 𝑚)

𝐶(𝑖,)

;

• The relative coalitional instability of the structure is the value

Δ
𝐶

𝑟𝑒𝑙
() = max

𝑇⊂𝐴,𝑇≠∅,𝑚∈med(𝑇 )

min

𝑖∈𝑇

𝐶(𝑖,) − 𝐶(𝑖, 𝑇 , 𝑚)

𝐶(𝑖,)

.



We call the structure 𝛿-stable in some sense, if its instability in this sense is not greater then 𝛿 .

Note that instead of taking the maximin of 𝐶(𝑖,)−𝐶(𝑖,𝑇 ,𝑚)

𝐶(𝑖,)
we may take the minimax of 𝐶(𝑖,𝑇 ,𝑚)

𝐶(𝑖,)
. Later

we refer to this value as to the new-to-old ratio.
Our general question is the following:

Problem 1. Find the least upper bounds on Δ(𝑥1,… , 𝑥𝑛) in different variations. Which worlds are the
least stable under which rules? And which rules produce the least stable worlds?

Partial solutions to this problem include computing the values of Δ(𝑥1,… , 𝑥𝑛) for particular worlds,
finding parameters with large instability, establishing some upper bounds and exact solution for some
families of worlds (for instance, parametric).

3. Approximate coalitional stability

This question was previously studied by the last two authors in [16]. That paper was focused on
bipolar worlds, where the agents live in just two points. It was found out that the least absolutely stable
configuration is the one with 3 agents at one point and 4 agents at another point. For cost parameters
𝑔 = 𝑡 = 1 the distance is 5

24
≈ 0.208. The analysis of relative instability was done numerically. It

was shown that the maximal possible relative instability is somewhere between 0.061 and 0.063. In
this paper we provide an exact solution and prove that the maximal instability in a bipolar world is
(asymptotically)

√

65 − 8 ≈ 0.0622. Our conjecture is that this bound holds for any world.

3.1. Group structures in a bipolar world

Consider a bipolar world with 𝐿 agents at point 0 and 𝑅 agents at point 𝑑 . W.l.o.g. we postulate that
𝑔 = 𝑡 = 1 and 𝐿 ≤ 𝑅. It is also instrumental to think that the weight of a single agent is 1

𝐿
, so the total

weight of the left agents is 1 and the total weight of the right agents is 𝑟 = 𝑅

𝐿
≥ 1. We consider several

specific structures.

Definition 3. • Union is the structure with one grand coalition and the facility at point 𝑑 .

• Federation is the structure with two coalitions: the left coalition with all agents at 0 and the
right coalition with all agents at 𝑑 .

• Mixed structure is a structure where one coalition includes equal number of agents from both
poles and has a facility somewhere in between (we call such a coalition ambiguous). Among
those structures we consider the MaxAmbigs, where one coalition includes a unit weight of
agents from each pole and the other contains agents of weight 𝑟 − 1 from the right. The former
coalition will be also referred to as the MaxAmbig. These atructures are parameterized by the
facility position 𝜇 ∈ [0, 𝑑].

• Pseudofederation is a structure where one coalition includes all agents from one pole and some
agents from the other, and the second coalition is formed by the remaining agents of the other
pole. We distinguish right pseudofederations where the first coalition includes all agents from the
right and left pseudofederations where it includes all agents from the left. All pseudofederations
may be parameterized by a single parameter 𝑘 ∈ (−1, 𝑟). If 𝑘 < 0, then the dispersed coalition
consists of |𝑘| agents from the left and 𝑟 agents from the right. If 𝑘 > 0, then it consists of
mass-1 agents from the left and 𝑘 agents from the right. In case 𝑘 = 0 the structure turns into
the Federation. In case 𝑘 ∈ {−1, 𝑟} the structure becomes the Union.



Of course, this list is not exhaustive. In particular, some structures may contain three or more coali-
tions. We claim that the most stable configuration may be of one of three types: Union, MaxAmbig
or Pseudofederation(𝑘) where 𝑘 ∈ [0, 𝑟 − 1]. In the sequel we prove this assertion and find the world
where the relative instability of these structures is maximal. In fact, we proceed in the opposite way.
Firstly, we maximize the instability of the three types of partition over all possible worlds. Then we
show that the instabilities of all other structures of this specific world are even greater.

3.2. Analysis of the three main structures

It was shown by Savvateev [17] that in an unstable structure it must hold that 𝑑 > 0.5, 𝑟 < 1.62,
𝑟 < 𝑑 + 1 and 𝑑𝑟 < 1 (the exact bounds are tighter, but these are enough for us). In the sequel we
take these bounds as granted. Now consider all credible threats for each structure and calculate the
new-to-old ratios for them.

Lemma 1. If the Union is unstable, then the set of all left agents wins the most from the secession.

Proof. Indeed, all right agents have the smallest possible cost in the Union. So only a coalition of left
agents may want to secede. But the cost is the least possible in the coalition of all left agents. So this
set has the maximal willingness to secede.

Note that the new-to-old ratio is 1/ ( 1

1+𝑟
+ 𝑑).

Lemma 2. Let Pseudofederation(𝑘), where 𝑘 ∈ [0, 𝑟 − 1], be unstable. If the Union is also unstable, then
the group that wins the most from the secession is either the MaxAmbig group or the set of all right agents.

Proof. Recall that 𝑘 > 0 means that there is a group with all agents from the left and some agents from
the right. Suppose that some group with the center on the left wins from the secession. Since the left
agents are better off, the group must be larger then the initial left group. If all left agents join the
group, they are even better off. Some agents from the right must also be in that group and be better
off. Thus, the right agents will join the seceding group until the center is still at 0. So, the limit case
is the MaxAmbig group.

Similarly, if some ambiguous group is a credible threat, then it must be larger than the initial left
group. Thus it must include agents from the right group and the MaxAmbig group is a greater threat.
If some group with the center on the right is a credible threat, then it will be more credible when
expanded to the whole right pole. If there were some agents from the left, then the grand coalition
will be a greater threat again. But we assume that the Union is unstable, so the set of all left agents
reduces the costs after seceding from the Union. By transitivity, it means that the left pole becomes
better off when seceding from the Pseudofederation, which is a contradiction.

The analysis of the new-to-old ratio is more complex here. We should maximize the ratio over all
possible threats and all agents participating in a threat. Consider two possibilities:

• MaxAmbig threat with median 𝜇. Here the agents from the left compare the new cost 1

2
+𝜇 to the

old cost 1

1+𝑘
. The agents from the right compare 1

2
+𝑑 −𝜇 to either 1

𝑟−𝑘
or 1

1+𝑘
+𝑑 . It can be shown

that with our parameters the latter is greater than the former, so we should maximizes the ratios
1

2
+𝜇

1

1+𝑘

and
1

2
+𝑑−𝜇

1

𝑟−𝑘

. Since the first ratio grows with 𝜇 and the second one decreases, the maximum

of them is the largest when they are equal. Solving the equation, we get 𝜇 =
1

2
+ 𝑑 −

(1+𝑘)(1+𝑑)

1+𝑟
.

Plugging this back to the ratios, we get the value (1+𝑑)(1+𝑘)(𝑟−𝑘)

1+𝑟
.



• The right pole threat. Here the agents from the undivided coalition compare 1

𝑟
to 1

𝑟−𝑘
and the

agents from the right part of the dispersed coalition compare 1

𝑟
to 1

1+𝑘
+ 𝑑 . Thus the maximal

new-to-old ratio is max

{

1 −
𝑘

𝑟
,

1+𝑘

𝑟(1+𝑑+𝑑𝑘)

}

.

Minimization of the maximal new-to-old ratio yields the following result:

Lemma 3. The minimax of the new-to-old ratio in a Pseudofederation(𝑘) is achieved when 𝑘 =
1−𝑟𝑑

𝑟(1+𝑑)
.

The minimum is reached simultaneously for the right pole threat and for the MaxAmbig threat with
𝜇 =

1

2
+ 𝑑 −

(1+𝑘)(1+𝑑)

1+𝑟
. The corresponding new-to-old ratio is 1 − 1−𝑟𝑑

𝑟
2
(1+𝑑)

.

Proof sketch. The proof is rather straightforward, but technical, so we present only the general direc-
tion. It can be shown that MaxAmbig is the most credible threat for 𝑘 close to 0 and for 𝑘 close to 𝑟 −1

and the right pole is the most credible for the intermediate values of 𝑘. Thus, the value of the most
credible threat has two local peaks. It can be checked that the left one is higher and corresponds to
the claimed values of 𝑘 and 𝜇.

Finally, we consider the last case.

Lemma 4. Let MaxAmbig(𝜇) be unstable. If the Union and the Federation are also unstable, then the
group that wins the most from secession is either the right pole, or the left pole united with the part of the
right pole not in the ambiguous coalition.

Proof. It is clear that an ambiguous coalition cannot be a credible threat. Indeed, it cannot be larger
than MaxAmbig, and the facility becomes further from one half of the agents. The Union cannot be
credible if it is unstable, analogously to lemma 2. If a credible threat has the facility on the right, then
it must contain agents from both the ambiguous coalition and the remaining right coalition. Thus,
the whole right pole must be more credible. Similarly, if it has the facility on the left, it must contain
some agents from the right. Otherwise, the Federation would be stable. Thus, the coalition containing
the left part of the ambiguous coalition and the whole right coalition must be the most credible.

Minimization of the maximal new-to-old ratio yields the following result:

Lemma 5. The maximal new-to-old ratio is minimal in a MaxAmbig(𝜇) when 𝜇 =
𝑑

2
.

Proof. If the right pole is a credible threat, then the agents from the right part of the ambiguous
coalition compare 1

𝑟
to 1

2
+ 𝑑 − 𝜇 and the agents from the right coalition compare 1

𝑟
to 1

𝑟−1
. Similarly,

if the left pole plus the right coalition is a credible threat, then the agents from the left compare 1

𝑟
to

1

2
+ 𝜇, and the agents from the right compare 1

𝑟
+ 𝑑 to 1

𝑟−1
. Note that

1

2

+ 𝑑 − 𝜇 <

1

2

+ 𝑑 <

1

2

+

1

𝑟

<

1

𝑟 − 1

,

where the second inequality arises from 𝑑𝑟 < 1 and the last one from 𝑟 < 2. Thus, in the first case the
right half of the ambiguous coalition is relatively less satisfied than the right coalition. To determine
the instability, we should now compare three ratios: 1

𝑟
/ (

1

2
+ 𝑑 − 𝜇), 1

𝑟
/ (

1

2
+ 𝜇) and (

1

𝑟
+ 𝑑) /

1

𝑟−1
. It is

clear that the maximum of the first two values is minimal when 𝜇 =
𝑑

2
. Then it can be shown that

1

𝑟
/ (

1

2
+

𝑑

2 )
> (

1

𝑟
+ 𝑑) /

1

𝑟−1
. Indeed, it is equivalent to 2 > (1 + 𝑑𝑟)(1 + 𝑑)(𝑟 − 1). Since 𝑑𝑟 < 1, it follows

from (1 + 𝑑)(𝑟 − 1) < 1, which follows from 𝑑𝑟 < 1 and 𝑟 < 𝑑 + 1.

Now we compare the new-to-old ratios of all three structures and prove the following result:



Theorem 1. The maximal new-to-old ratio is minimal among Union, Pseudofederation(𝑘) and MaxAm-
big(𝜇) for 𝑑 =

√

65−3

8
≈ 0.6328 and 𝑟 =

1+

√

13/5

2
≈ 1.3062. The relative instability is 𝜖 =

√

65 − 8 ≈ 0.06226

and the parameter of Pseudofederation is 𝑘 =
1−𝑟𝑑

𝑟(1+𝑑)
≈ 0.0813.

Proof sketch. We should minimize the maximum of 𝑈 (𝑑, 𝑟) = 1/ (
1

1+𝑟
+ 𝑑), 𝑃 (𝑑, 𝑟) = 1 −

1−𝑟𝑑

𝑟
2
(1+𝑑)

and

𝑀(𝑑, 𝑟) =
1

𝑟
/ (

1

2
+

𝑑

2 )
. It can be shown that 𝑀 is decreasing by both variables, 𝑃 is increasing by both

and 𝑈 is decreasing by 𝑑 and increasing by 𝑟 . Thus, if the maximum is reached by only one function,
then it can be decreased by changing some variable. If it is reached by 𝑀 and 𝑈 simultaneously, then
it can be decreased by rising 𝑑 . If it is reached by 𝑃 and 𝑈 , then it can be decreased by lowering 𝑟 .
And if it is reached by 𝑀 and 𝑃 , then it equals 2(𝑟+1)

3𝑟+1
and thus can be decreased by lowering 𝑟 . Thus,

the maximum is minimal only if all three maximands are equal. Solving the equations, one can obtain
the claimed values.

3.3. Analysis of the remaining structures

Now we show that in any setting the least unstable configuration is either the Union, or a Pseudofed-
eration, or a MaxAmbig. We start from the following theorem proven in [16].

Theorem 2. In any bipolar world, the most unstable configuration consists of at most three jurisdictions,
of which:

• At most one locates the facility at 0, at most one locates it at 𝑑 and at most one locates it somewhere
else;

• Among coalitions with the facilities at 0 and 𝑑 at most one contains agents from the other pole.

Now we should exclude all possibilities except the three considered types. The idea is to prove that
in any other configuration some coalition wishes to break out with willingness greater than

√

65 − 8.
The whole proof is rather technical and tedious, so we present only the general idea.

Theorem 3. In any bipolar world, the most unstable configuration is either the Union, or a Pseudofedera-
tion(𝑘) for 𝑘 ∈ [0, 𝑟 − 1], or a MaxAmbig(𝜇).

Proof idea. Theorem 2 leaves the following possible configurations: two coalitions where one is am-
biguous but not maximal; a Pseudofederation(𝑘) with 𝑘 ∉ [0, 𝑟−1], or a configuration with 3 coalitions.
The following facts may be demonstrated and imply the statement:

• If one coalition is ambiguous but not maximal, then some threat is more credible than the most
credible one in the MaxAmbig with the same median. Thus, MaxAmbig is more stable.

• The relative instability of Pseudofederation(𝑘) increases when 𝑘 > 𝑟 − 1. If 𝑘 ∈ [0, 1], then
the relative instability of Pseudofederation(−𝑘) is higher than the one of Pseudofederation(𝑘).
Thus, the minimal instability of a Pseudofederation is reached for 𝑘 ∈ [0, 𝑟 − 1].

• In the case of three coalitions several subcases are considered. If the ambiguous coalition is
rather small, it will be much better off when joining some other coalition. If it is large, then it
can be shown that MaxAmbig is more stable. For intermediate sizes it can be directly shown
that the instability is larger than

√

65 − 8.



4. Approximate migrational stability under egalitarian
redistribution

Here we consider the model described by Weber et al [8]. All costs inside a jurisdiction are redis-
tributed equally among all its members. The authors show that there exists a world without a stable
configuration. We analyze their construction and tune the parameters in order to obtain the maximal
possible instability. We believe that this value is close to maximum.

The example is the following: there are 6 agents living at 3 points. Agents 1 lives at point 0, agents
2 and 3 live at point 𝑎 and agents 4, 5 and 6 live at point 𝑎 + 𝑏. In [8] the parameters are the following:
𝑎 = 1.9, 𝑏 = 2.2. The idea behind the result is the following. The grand coalition is not stable because
agent 1 wishes to secede and not to subsidize the others’ transportation. Then agent 2 would also like
to secede for the same reason (the configuration is ({1}, {2}, {3, 4, 5, 6})). Then agent 3 would like to
join agent 2: ({1}, {2, 3}, {4, 5, 6}). Then agent 1 would also like to join: ({1, 2, 3}, {4, 5, 6}) (Note that
agents 2 and 3 may become worse off, but in the migrational setting it does not matter.) But now
agent 3 would like not to subsidize agent 1’s transportation and would better join the right coalition:
({1, 2}, {3, 4, 5, 6}). Now agent 1 would like to be alone, and we return to ({1}, {2}, {3, 4, 5, 6}).

Now we calculate the values compared by the switching agents. Every row of the following table
presents the initial configuration, the final configuration, the agent who wishes to move, the values
she compare (the initial cost reduced by 𝛿 and the final cost) and the resulted bound on 𝛿 .

Old config. New config. Agent Ineq. on util. Ineq. on 𝛿

{1, 2, 3, 4, 5, 6} {1}, {2, 3, 4, 5, 6} 1
𝑎+3𝑏+1

6
(1 − 𝛿) > 1 𝛿 <

𝑎+3𝑏−5

𝑎+3𝑏+1

{1}, {2, 3, 4, 5, 6} {1}, {2}, {3, 4, 5, 6} 2
2𝑏+1

5
(1 − 𝛿) > 1 𝛿 <

2𝑏−4

2𝑏+1

{1}, {2}, {3, 4, 5, 6} {1}, {2, 3}, {4, 5, 6} 3
𝑏+1

4
(1 − 𝛿) >

1

2
𝛿 <

𝑏−1

𝑏+1

{1}, {2, 3}, {4, 5, 6} {1, 2, 3}, {4, 5, 6} 1 1 − 𝛿 >
𝑎+1

3
𝛿 <

2−𝑎

3

{1, 2, 3}, {4, 5, 6} {1, 2}, {3, 4, 5, 6} 3
𝑎+1

3
(1 − 𝛿) >

1+𝑏

4
𝛿 <

4𝑎+1−3𝑏

4𝑎+4

{1, 2}, {3, 4, 5, 6} {1}, {2}, {3, 4, 5, 6} 1
𝑎+1

2
(1 − 𝛿) > 1 𝛿 <

𝑎−1

𝑎+1

The analysis of the inequalities lead to the following result:

Theorem 4. In every world of the described type, the relative instability is at most 𝛿 ≈ 0.0963 (the exact
value is the real root of the equation 8𝛿

3
− 24𝛿

2
+ 23𝛿 − 2 = 0). The corresponding values of the distances

are 𝑎 = 2−3𝛿 ≈ 1.711 and 𝑏 =
4+𝛿

2−2𝛿
≈ 2.2665. Every value of instability below this threshold is achievable.

Proof idea. We should find the maximal 𝛿 for which all inequalities are satisfiable. It may be shown
that the binding inequalities are 𝛿 <

2𝑏−4

2𝑏+1
, 𝛿 <

2−𝑎

3
and 𝛿 <

4𝑎+1−3𝑏

4𝑎+4
. Solving the system of corresponding

equalities yields the claimed values.

5. Approximate migrational stability under the central median rule

Here we analyze a model described by Bogomolnaia et al [10]. Namely, we analyze migrational sta-
bility under no-redistribution and central median rules. Recall that the latter means that if a group
has an even number of members, then the facility is located at the middle of the segment of medians.

The considered example is the following: agent 1 lives at point 0, agents 2 and 3 live at point 𝑎, agent
4 lives at point 𝑎+𝑏 and agent 5 lives at point 𝑎+𝑏+𝑐. In [10] the values are 𝑎 =

23

30
, 𝑏 =

1

5
and 𝑐 =

5

8
. The

idea behind the instability result is the following: agents 2, 3 and 4 are always in the same coalition.
But agent 5 prefers to be in the main coalition iff agent 1 does not belong to it, and agent 1 prefers to
be in the main coalition iff agent 5 belongs to it. Thus we have the following cycle of configurations:



({1}, {2, 3, 4}, {5}) → ({1}, {2, 3, 4, 5}) → ({1, 2, 3, 4, 5}) → ({1, 2, 3, 4}, {5}) → ({1}, {2, 3, 4}, {5}).
We analyze the following table:

Old config. New config. Agent Ineq. on util. Ineq. on 𝛿

{1}, {2, 3, 4}, {5} {1}, {2, 3, 4, 5} 5 1 − 𝛿 >
1

4
+ 𝑐 +

𝑏

2
𝛿 <

3

4
− 𝑐 −

𝑏

2

{1}, {2, 3, 4, 5} {1, 2, 3, 4, 5} 1 1 − 𝛿 >
1

5
𝛿 <

4

5
− 𝑎

{1, 2, 3, 4, 5} {1, 2, 3, 4}, {5} 5 (
1

5
+ 𝑏 + 𝑐) (1 − 𝛿) > 1 𝛿 <

5𝑏+5𝑐−4

5𝑏+5𝑐+1

{1, 2, 3, 4}, {5} {1}, {2, 3, 4}, {5} 1 (
1

4
+ 𝑎) (1 − 𝛿) > 1 𝛿 <

4𝑎−3

4𝑎+1

The analysis of the inequalitites shows the following:

Theorem 5. In every world of the described type, the relative instability is at most 𝛿 =
41−

√

1601

40
≈ 0.0247.

The corresponding values of the distances are 𝑎 =

√

1601−9

40
≈ 0.775 and a range of 𝑏 and 𝑐: for instance,

𝑏 =
1

4
and 𝑐 =

47

80
would fit. Every value of instability below this threshold is achievable.

Proof idea. It turns out that only the conditions on 𝑎 are binding. For the claimed value of 𝑎 the
values are equal. It can be checked that for the specified values of 𝑏 and 𝑐 both other inequalities are
satisfied.

6. Conclusion

This work provides an analysis of approximate stability of jurisdiction partitions in several frame-
works. We believe that the considered examples are either the most unstable worlds or close to them.
The future research should clarify this issue and give the provable least unstable constructions. An-
other possible approach is the algorithmic one. Suppose that an algorithm gets the total description
of a world and a number 𝛿 . Can we efficiently compute whether this world is 𝛿-stable? Or is this
problem hard for some computational complexity class?

What can we learn about the real world from our constructions? It depends on two things. Firstly,
how typical are our examples? It seems that a bipolar world may occur in different situations, like
twin cities or cat and dog lovers. And the situation that one pole is about 30% larger than the other
is also realistic. For instance, it is how much Minneapolis is greater by population than Saint Paul.
Secondly, what are the real values of 𝛿? It seems that in long-existing structures it can be much larger
than several percents, so the participants may want to make a new coalition but then see the cost and
“all of the sudden we’re scared to change a thing”. A study of such real cases would be an interesting
research topic.
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