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Abstract
Static and dynamic equilibria in a noisy binary choice game with Ising externalities on complete and random
graphs with topology corresponding to configuration model are considered. It is shown that static equilibria
realise Quantal Response Equilibria (QRE). Corresponding regime switching (phase transitions) at critical values
of parameters is discussed. Myopic dynamics having the discussed static equilibria as stationary configurations
is described.
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Let us consider a noisy binary choice game played by 𝑁 agents placed at vertices of a graph 
with an adjacency matrix 𝑔𝑖𝑗 equipped with a set of strategies parametrized by 𝑠𝑖 = ±1, 𝑖 = 1, ⋯𝑁 in
which a utillity of each agent 𝑖 contains a strategy-dependent additive random contribution 𝜖𝑠𝑖

known
to 𝑖 but unknown to his neighbours characterised by a common distribution function 𝜙(𝜖𝑠𝑖

), its form
assumed to be common knowledge. Games of this type were considered in a variety os socioeconomic
settings, see e.g. [1, 2, 3, 4]. Let us note that a presence of random contributions to utility means that
a description of this game (equilibria, evolution, et.) is necessarily probabilistic, i.e. its equilibrium is
characterised by probabilities of playing certain strategies

{𝑠𝑖 = ±1} → {𝑝
±

𝑖
} (1)

In what follows we shall restrict our consideration to the case of independent random contributions
to utility for different agents corresponding to Nash equilibrium in mixed strategies.

A choice of an agent 𝑖 is determined by his expectations concerning the choices of his neighbours.
The Ising game is defined by the corresponding expected utility of the following form

⟨𝑈𝑖(𝑠𝑖)⟩ =

[

𝐻𝑖 +∑

𝑗≠𝑖

𝑔𝑖𝑗𝐽𝑖𝑗⟨𝑠𝑗⟩(𝑖)
]

𝑠𝑖 + 𝜖𝑠𝑖

where ⟨𝑠𝑗⟩(𝑖) stands for 𝑖
′
𝑠 expectation with respect of the choice of the neighbour 𝑗 Strategy 𝑠𝑖 is

preferred to −𝑠𝑖 if
⟨𝑈𝑖(𝑠𝑖)⟩ > ⟨𝑈𝑖(−𝑠𝑖)⟩

Probability 𝑝𝑠𝑖
of choosing the strategy 𝑠𝑖 by an agent 𝑖 is

𝑝𝑠𝑖
= 𝐹

(𝑖)

<

([

2𝐻𝑖 + 2∑

𝑗

𝑔𝑖𝑗𝐽𝑖𝑗⟨𝑠𝑗⟩(𝑖)
]

𝑠𝑖
)
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where 𝐹
(𝑖)

<
(𝑧) is a distribution function for the difference 𝜖−𝑠𝑖

− 𝜖𝑠𝑖

𝐹
(𝑖)

<
(𝑧) =

∫

𝑧

𝑑𝑧1 ∫
𝑑𝑧2 𝜙

(𝑖)
(𝑧2)𝜙

(𝑖)
(𝑧2 + 𝑧1)

In particular, the probability of choosing 𝑠𝑖 = 1 is equal to

𝑝
+

𝑖
= 𝐹

(𝑖)

<

(

2𝐻𝑖 + 2∑

𝑗

𝑔𝑖𝑗𝐽𝑖𝑗⟨𝑠𝑗⟩(𝑖)
)

Quantal response equilibrium (QRE) [5, 6, 7] is a particular form of mixed strategies in which the
vector of expected payoffs for agent’s alternative actions is mapped into a probability distribution of
choices over these strategies. The QRE does arise from realization of beliefs. A player’s payoffs are
computed based on beliefs about other players’ probability distribution over strategies. An equilib-
rium is a set of probabilities such that player’s beliefs are correct.

Quantal response equilibrium (QRE) of the Ising game under consideration is thus a set of proba-
bilities (𝑝+

1
, ⋯ , 𝑝

+

𝑁
) such that

⟨𝑠𝑗⟩(𝑖) = 2𝑝
+

𝑗
− 1

so that mixed strategies chosen by all agents are consistent with the corresponding expectations of
other agents with respect to this choice. From (2) we obtain the following system of equations defining
the QRE probabilties (𝑝+

1
, ⋯ , 𝑝

+

𝑁
) of the Ising game:

𝑝
+

𝑖
= 𝐹

(𝑖)

<

(

2𝐻𝑖 + 2∑

𝑗

𝑔𝑖𝑗𝐽𝑖𝑗(2𝑝
+

𝑗
− 1)

)

, ∀𝑖

In terms of equilibrium averages 𝑚𝑖 = 2𝑝
+

𝑖
− 1 these read

𝑚𝑖 = 2𝐹
(𝑖)

<

(

2𝐻𝑖 + 2∑

𝑗

𝑔𝑖𝑗𝐽𝑖𝑗𝑚𝑗

)

− 1 , ∀𝑖

Let us now consider the Ising game on the complete graph. In this case it is customary to rescale
the coupling 𝐽𝑖𝑗 = 𝐽 /𝑁 . Besides that, we assume for simplicity that 𝐻𝑖 = 𝐻 . For the complete graph 𝐺

all local averages are the same and QRE is defined by the single equation

𝑚 = 2𝐹< [2𝐻 + 2𝐽𝑚] − 1

coinciding with the equation obtained in [8, 1]. For 𝐻 = 0 the space of solutions of (2) undergoes
restructuring (a phase transition) at 4𝐽 𝑓 (0) = 1 so that for 4𝐽 𝑓 (0) < 1 the only solution is 𝑚 = 0, and
for 4𝐽 𝑓 (0) > 1 there appears a pair of additional solutions ±𝑚 ≠ 0.

For the Gumbel noise 𝜙(𝜖) = 𝛽 exp(−𝛽𝜖 − exp(−𝛽𝜖)) we get the Curie-Weiss equation well known
in the physics of magnetics, see e.g. [9]:

𝑚 = tanh (𝛽(𝐻 + 𝐽𝑚)) (2)

In physics the Curie-Weiss equation (2) defines minima for the "noisy potential" - the free energy
𝛽𝐹 = 𝛽𝐸 − 𝑆 at temperature 𝑇 = 1/𝛽 :

𝛽𝐽𝑚 = atanh(𝑚) ↔

𝑑

𝑑𝑚
[

1

2

𝛽𝐽𝑚
2
− 𝑆(𝑚)

]
= 0



𝑆(𝑚) = −

1 − 𝑚

2

ln

1 − 𝑚

2

−

1 + 𝑚

2

ln

1 + 𝑚

2

Let us note that it is possible to define an optimisation problem in which the equation (2) arises from

finding a minimum of a certain function [1] which, however, does not possess properties of a game-
theoretic potential.

Let us now turn to the analysis of the so-called annealed approximation, see e.g. [10], which is in
fact equivalent to a random graph topology as generated by the so-called configuration model, see e.g.
[11], in which the matrix elements 𝑔𝑖𝑗 are replaced by the probabilities of forming a link 𝑖, 𝑗 between
the nodes with degrees 𝑘𝑖 , 𝑘𝑗

𝑔𝑖𝑗 ≃

𝑘𝑖𝑘𝑗

𝑁⟨𝑘⟩

In this approximation all vertices having the same degree are equivalent so QRE is now defined in
terms of averages for the nodes with the same degree:

𝑚𝑘 = ⟨𝑠𝑖⟩|∀𝑖∶ deg(𝑖)=𝑘
(3)

The corresponding system of equations defining QRE reads

𝑚𝑘 = 2𝐹<
[

2𝐻 + 2𝐽𝑘∑

𝑘
′

𝑘
′
𝑝𝑘′

⟨𝑘⟩

𝑚𝑘
′

]

− 1

= 2𝐹< [2𝐻 + 2𝐽𝑘𝑚𝑤] − 1 (4)

where we have defined the weighted average

𝑚𝑤 = ∑

𝑘

𝑘𝑝𝑘

⟨𝑘⟩

𝑚𝑘

The corresponding generalised Curie-Weiss equation for 𝑚𝑤 reads

𝑚𝑤 = ∑

𝑘

𝑘𝑝𝑘

⟨𝑘⟩

2𝐹< [2𝐻 + 2𝐽𝑘𝑚𝑤] − 1

The phase transition takes place at
4𝐽⟨𝑘

2
⟩𝑓 (0) = ⟨𝑘⟩

differing from the result for the complete graph by the factor ⟨𝑘⟩/⟨𝑘2⟩ which routinely appears in
the analysis of random graph related problems (appearance of giant cluster, epidemic threshold, etc.
[11]).

Is it possible to recover the above-found QRE equilibrium as a stationary point of a dynamical
game? Generically stochastic dynamics operates with a probability distribution of observing a certain
configuration of strategies {𝑠} at time 𝑡 :

𝑃 ({𝑠}(𝑡)) = 𝑃 [𝑠1(𝑡), 𝑠2(𝑡), ⋯ 𝑠𝑁 (𝑡)]

Conventional independent choice assumption corresponding to nixed state static Nash equilibria cor-
responds to a factorised distribution

𝑃 ({𝑠}(𝑡)) = 𝑃 [𝑠1(𝑡), 𝑠2(𝑡), ⋯ 𝑠𝑁 (𝑡)] =

𝑁

∏

𝑖=1

𝑝(𝑠𝑖(𝑡))



Temporal evolution is driven by strategy flips 𝑠𝑖(𝑡) → −𝑠𝑖(𝑡)

Let us assume that within an infinitesimally small time interval one can have only one strategy
flip. Then the process of dynamical evolution is fully described by a time-dependent strategy flip
probability 𝑤(𝑠𝑖 → −𝑠𝑖). The local strategy change can in principle take into account past realized
(memory) and future expected (forward-looking) configurations of strategies. In the simplest myopic
response approximation agents base their decisions on the configuration of neighbour’s strategies
immediately preceding the decision time. The evolution equation for 𝑃 ({𝑠}(𝑡)) then reads

𝑑𝑃 ({𝑠}(𝑡))

𝑑𝑡

= ∑

𝑖

[𝑤(−𝑠𝑖 → 𝑠𝑖)𝑃 (𝑠1, ⋯ , −𝑠𝑖 , ⋯ 𝑠𝑁 )

−𝑤(𝑠𝑖 → −𝑠𝑖)𝑃 (𝑠1, ⋯ , 𝑠𝑖 , ⋯ 𝑠𝑁 )]

The corresponding evolution equation of the local average strategies 𝑚𝑖(𝑡) = ⟨𝑠𝑖⟩𝑃({𝑠}(𝑡)) then reads

𝑑𝑚𝑖(𝑡)

𝑑𝑡

= −2⟨𝑠𝑖(𝑡)𝑤(𝑠𝑖 → −𝑠𝑖)⟩𝑃({𝑠}(𝑡))

A natural choice for 𝑤(𝑠𝑖 → −𝑠𝑖) is [1]

𝑤(𝑠𝑖 → −𝑠𝑖) = 𝜆𝑝−𝑠𝑖
= 𝜆𝐹

(𝑖)

<

(

−

[

2𝐻𝑖 + 2∑

𝑗

𝑔𝑖𝑗𝐽𝑖𝑗𝑠𝑗(𝑡)

]

𝑠𝑖(𝑡)

)

To derive the evolution equation for 𝑚𝑖(𝑡) it is convenient to use the following identity:

𝑝−𝑠𝑖
=

1

2
[1 − 𝑠𝑖(𝑠𝑖𝑝𝑠𝑖

− 𝑠𝑖𝑝−𝑠𝑖
)] ≡

1

2

[1 − 𝑠𝑖⟨𝑠𝑖⟩]

The resulting evolution equation for 𝑚𝑖(𝑡) reads

𝑑𝑚𝑖(𝑡)

𝑑𝑡

= −𝜆

{

𝑚𝑖(𝑡) −

(

2𝐹
(𝑖)

<

[

2𝐻𝑖 + 2∑

𝑗

𝑔𝑖𝑗𝐽𝑖𝑗𝑚𝑗(𝑡)

]

− 1

)

}

We see that stationary points of this system of evolution equations are exactly the above-described
QRE equilibria described by the equations (2).
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