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Abstract		
As a result of the revolution in genome sequencing a lot of -omics data were generated. After 
obtaining a primary genomic sequence the next major task is to study genomic regulatory 
code. Epigenetic data sets provide a hint of how regulatory patterns are distributed in 
different tissues. Other layer of genome regulatory code comprises DNA secondary 
structures, which can work as regulators of various genomic processes. Having Big Data 
from next-generation sequencing experiments, machine learning approaches were chosen to 
solve the task of recognizing genomic functional elements. The earlier attempts to solve the 
problems of genome annotation with different classes of functional ele-ments, i.e. 
nucleosomic DNA, exon-intron boundaries, enhancers used machine learning algorithms that 
required manual collection of different features needed to characterize genomic regions. 
Lately deep learning approaches including convolution neural networks and recurrent neural 
networks become successful in recognizing genomic functional elements based on sequence 
information on-ly and/or with additional information on epigenetics and known regulatory 
ele-ments. Here we discuss a deep learning approach and provide an example of building a 
deep learning model for the task of recognition of DNA secondary structures.  
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1. Introduction	

Deep learning is becoming popular and easy to apply in solving various tasks. Among them, CNN 
(Convolutional Neural Network) and RNN (Recurrent Neural Network) are the most popular deep 
learning architectures, which may show the state-of-the-art performance in the majority of 
applications [1]. This is achieved by the combination of the top performance in spatial and temporal 
dimen-sions. CNN may capture the hierarchical information in space. The mechanism of CNN is 
essentially in exploring a region of the input, one at a time, and mapping it to a specific feature space. 
By generating a series of convolutions at each region the network may learn the space features 
hierarchically [2]. For instance, for the task of face recognition, CNN starts to gather convolutions 
from lines or cir-cles in face images, and then it filters these features for building up the feature maps 
of nose, eyes, and ears, and finally it recognizes the face [3].  

RNN can learn temporal order using its context, and additionally, being turing-complete, it may 
learn, theoretically, any kind of function [4]. Essentially RNN model keeps passing the context vector, 
which compresses the in-formation at a certain time step to predict outcome in the future time steps. It 
means RNN may handle arbitrary length of input [5]. This feature makes RNN useful in many 
sequential tasks, such as machine learning translation, time series prediction, speech recognition, and 
signal  processing.  However,  in  practice RNN  does n ot work  well alone, especially  for the feature  
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extraction and long term prediction tasks [4, 5]. This is why modulating CNN and RNN is a common 
practice and shows the best results in deep learning tasks [6-8]. 

In Bioinformatics, research in deep learning has been rapidly increasing since early 2000s and 
CNN and RNN are widely applied to various tasks [6]. For example, CNN applied to predict gene 
expression from epigenomic data, anomaly classification in biomedical imaging, brain decoding in 
biomedical signal processing [6]. RNN also was applied to protein structure classification, and 
anomaly classification in biomedical signal processing. Although combining two models in practice 
shows good performance, there is a tendency to use them separately in bioinformatics tasks [6]. One 
of the pioneering example of hybrid CNN and RNN model to predict function of the DNA sequence 
was implemented and tested in DanQ [7]. Another hybrid CNN-RNN model was applied for a task of 
predicting enhancers based on histone modification marks [8]. In this research, we continue testing 
deep learning approach combining two models to recognize genome functional elements using diverse 
genomic data. 

As a genomic functional element we chose Z-DNA belonging to DNA secondary structures. The 
role of DNA secondary structures in the regulation of genomic processes was confirmed 
experimentally for quadruplexes, cruciform structures, triplexes, and Z-DNA. Experiments on whole-
genome detection of Z-DNA regions are under development, and currently several experimental 
datasets are available [9, 10]. Building and testing machine learning models that would aggregate 
information from experimental data is an urgent task, since there is a need for computer methods of 
genome annotation with functional elements. Here we tested several machine learning approaches 
including deep learning to detect Z-DNA regions. We showed that deep learning, and specifically 
hybrid CNN plus RNN models achieved the best performance in the task of Z-DNA recognition.   

 

2. Material	and	Methods	

2.1. Data	on	Z-DNA,	epigenetics,	RNA	polymerase,	and	transcription	factor	
binding	sites	

The positions of Z-DNA are taken from the dataset of the Chip-Seq experiment on identification of 
binding sites of the Zaa protein, which binds to the left-twisted form of DNA [10]. To improve the 
prediction quality of the sequence we added information on epigenetic and regulatory code. Histone 
marker positions and DNase hypersensitivity sites, which mark regions of an open chromatin, are 
taken from the international consortium project Roadmap Epigenomics [11]. Information on the 
binding sites of RNA polymerase and transcription factors are taken from the Encyclopedia of DNA 
elements (ENCODE) project [12]. Totally, 1065 features are selected. 

DNA subsequence with Z-DNA regions is considered as an output vector. A binary value is 
assigned to every nucleotide depending on its location inside the Z-DNA region. We considered 
subsequences of 5000 bp, thus, every output vector has a length of 5000. 

 

2.2. Construction	of	train	and	test	datasets		

We encoded human DNA sequence using one hot encoding method where a sequence is 
transformed to a binary matrix of 4xL where L is the length of the sequence and 4 rows correspond to 
the 4 nucleotides, TCAG. This matrix is filled with zeros and has only one value at the corresponding 
nucleotide cell in each position. Epigenomic data and RNA polymerase and transcription factors 
binding sites were added to the encoded DNA sequence. Finally, we create a set of matrices for every 
chromosome, which has the same length of DNA sequence. The shape of input matrix is 1069xL, 
where 1064 comes from additional features and 4 from one-hot encoded DNA, and L is the length of 
the sequence. In order to avoid any dependencies between Z-DNA sites and borders of DNA 
subsequences, DNA is uniformly divided  into subsequences of length 5000. Then we split 



subsequence into train and test sets in a ratio of 4 to 1 respectively preserving the proportion of 
subsequences with Z-DNA in each set. 

 
 
 

2.3. Machine	learning	models	

2.3.1. Baseline	model	

In order to show the level of performance of deep learning models, we prepared a boosting 
classifier as a baseline. The term ‘boosting’ here means that it converts weak learners to strong 
learners. Basically, boosting is an ensemble method for improving the model predictions of any given 
learning algorithm. This method consists of sequential training of simple models, where each 
subsequent model corrects the errors of the previous one. Boosting is a well-known method in the 
bioinformatics domain and generally shows good results in many classification tasks [13-15]. 

2.3.2. Deep	learning	models	

 DNA has patterns in the form of one-dimensional sequence motifs, which CNN may capture very 
well, and, from the other hand, DNA is a text, so RNN may learn the context from it. Therefore, we 
expect the best result when we combine two models, CNN and RNN. For the proper comparison, we 
also trained independent CNN along with CNN + RNN. 

2.3.3. CNN	

We experimented with several hyperparameters for CNN models. We considered different 
sizes of the kernels and strides because it may influence the result. The number of output kernels was 
set to 1 and we use a softmax layer at the end. Thus, these models have a vector of outcome with 
length of input, each nucleotide corresponds to a probability value from 0 to 1. For each nucleotide, 
there are C boolean values, where C is kernel size. Every boolean value depicts the presence of Z-
DNA in this very point. Averaging on these C values was used as a target for the outcome cell. Since 
the padding is absent, the number of outcomes of the models equals the number of averaged values. 
That means each model will predict the average number of nucleotides that occurred in a given 
segment, and assign this number to the middle of the segment. Increasing layer number or kernel size 
make worse its complexity but may have better results. Next set of models has more convolutional 
layers with ReLU activation. In this case, the target variable is calculated in a slightly different way. 
Averaging is performed by the size of the last layer. The size and number of kernels on the first and 
second layers were selected from a predefined set of values. 

2.3.4. CNN+RNN	

This type of hybrid model was successfully implemented in the DanQ [7]. CNN extracts important 
motifs and simultaneously RNN can learn complex regulatory grammar between the motifs. It is 
assumed that the motifs that were detected by the CNN layer also have recurrent dependencies. In 
theory, such a network is able to recognize a succession of motifs on which Z-DNA configuration 
depends. The model architecture used for Z-DNA detection is shown in Fig. 1. 

 
 



 
Figure	1:	Architecture	of	a	hybrid	model,	CNN	+	RNN	for	Z-DNA	prediction.	DNA	sequence	data	
transformed	with	one-hot	encoding	was	concatenated	with	sparse	vectors	of	epigenomic	data.	
 
 
 
 
 

 
Figure	2:	Schematic	representation	of	approaches	for	the	classification	using	RNN	architecture.	

 
 

There are several ways to use RNN: one-to-one, one-to-many, many-to-one, and many-to-many 
(Fig. 2). In this paper, we considered two approaches, many-to-many and many-to-one. 



2.3.5. Approach	many-to-one	

 
In this case, the structure of a model is as follows. The first part of the model is one or several 

CNN layers, and each column of the received out-put is separately transferred to the RNN network. In 
our case, a multi-layer bidirectional LSTM is selected for RNN. Next, the number of layers in the 
CNN and LSTM parts will be selected. The sizes of kernels and hidden layers will be selected. At the 
end and beginning of the sequence, the RNN layer will output 2 vectors that are associated with long-
term LSTM memory cells. Two LSTM context vectors were included since this RNN model is 
bidirectional. Then the vectors are passed to the fully connected layer, which makes the prediction. 
The target variable is a boolean value of Z-DNA presence in the region in this sequence.  

2.3.6. Approach	many-to-many	

This architecture completely copies the previous one, except for one element. After the RNN layer, 
the output of the long-term memory element is ignored and the short-term memory outputs of each 
direction are aggregated. Next, each unit of the sequence corresponds to two vectors, which are 
passed to the fully connected layer and then predictions are made for each part of the sequence. The 
target variable in this case will be calculated exactly as in the case of CNN. That is, each unit of the 
sequence will be mapped to the average of a certain region of the chain. 

3. Results	

Quantiles were calculated for the distribution of random AUC using bootstrap sampling (Table 1). 
You can see that the first model has a rather low quality, indistinguishable from that of a random 
choice. The best CNN model among all showed 69 AUC on test set. The architecture can be listed as 
follows. For the best CNN model, the first layer is a convolutional layer with 36 kernels, kernels size 
13, stride 2 and padding 6.  Second layer is a ReLU. Third layer is a convolutional layer with 2 ker-
nels, kernels size 13, stride 2 and padding 6. Last layer is a Sigmoid. The performance of the hybrid 
CNN+RNN showed quality higher than CNN model. 
 
Table	1	
Experiment	result	

Model	 AUC	 Accuracy	
Boosting	 0.532	 0.691	
CNN	 0.69	 0.55	

CNN+RNN	 0.865	 0.75	
	

Best model with a many-to-one approach showed 86.5 AUC. The architecture of the best 
CNN+RNN model can be listed as follows. The first layer is a convolutional layer with 64 kernels, 
kernels size 13, stride 4 and padding 6.Second layer is a ReLU. Output of ReLU was sent to 
bidirectional LSTM layer with hidden size 64 and 2 layers. Hidden state of LSTM goes to the dropout 
layer with probability 0.7. Last fully connected layer has 2 neurons.  

The best model with a many-to-many approach showed 80.5 AUC. First layer is a convolutional 
layer with 36 kernels, kernels size 25, stride 2 and padding 12. Second layer is a ReLU. Third layer is 
a convolutional layer with 64 kernels, kernels size 25, stride 2 and padding 12.Fourth layer is a ReLU. 
Output of ReLU was sent to bidirectional LSTM layer with hidden size 64 and 2 layers. Hidden state 
of LSTM goes to the dropout layer with probability 0.7. Last fully connected layer has 2 neurons. 

 
 
 
 



4. Conclusions	and	Discussion	

The following conclusions can be drawn from the obtained results. Although CNN model shows 
higher performance than the baseline, it does not handle the sequential nature of DNA sequence. 
Baseline and CNN models perform much worse than a model that contains an RNN layer. The 
maximum quality that can be achieved on this dataset with the power of this set of architectures does 
not exceed 86 % of the AUC, which indicates that the task can be solved using available data. 

Here we presented results of a deep learning approach for the Z-DNA prediction, in particular a 
hybrid model of two famous deep learning network architectures - CNN and RNN. This architecture 
outperforms both models based only on CNN and  classical machine learning models such as gradient 
boosting. As we expected CNN + RNN shows better results than CNN because RNN may capture the 
sequential pattern using its context. We assume our approach may be applied to many other bioinfor-
matics tasks, which are required for mapping spatial data to sequential output. 

One of the advantages of our approach is scalability, where we can upgrade the system when more 
epigenetics and regulatory data become available. Thus, the same type of models can be applied to 
recognition of quadruplexes or triplexes as well as patterns of association of DNA secondary 
structures and epigenetic code. We expect that inclusion of omics data will improve prediction quality 
of the model. However there is a drawback in having a large feature space that will increase the time 
of mod-el training. It would be beneficial first to find a minimal set that would achieve the desired 
model quality and then train the model with the reduced size of feature space. It will also help to find 
scientifically important associations between studied functional and epigenetic and/or regulatory 
elements. 

Deep neural networks are capable of processing effectively aggregated information from different 
levels of genome organization. At the present time, when next-generation sequencing experiments are 
still too expensive, machine learning models for annotating genomes with functional genomic 
elements are very important. For some species next-generation sequencing experiments on 
epigenomic and regulatory code are not available at all. Finding de novo or imputed novel functional 
elements with computational artificial intelligence systems would help researchers in understanding 
principles and mechanisms of genome functioning. 

 

5. References	

[1] Meireles, M.R.G., Almeida, P.E.M., Simoes, M.G.: A comprehensive review for industrial 
applicability of artificial neural networks. IEEE Transactions on Industrial Electronics 50, (2003) 
585-601. 

[2] LeCun, Y., Haffner, P., Bottou, L., Bengio, Y.: Object recognition with gradient-based learning 
In: Forsyth, D.A., Mundy, J.L., Gesú, V.d., Cipolla, R. (eds.) Shape, contour and grouping in 
computer vision, pp. 319-345. Springer, Berlin, Heidelberg (1999.) 

[3] Hu, G., Yang, Y., Yi, D., Kittler, J., Christmas, W., Li, S.Z., Hospedales, T.: When face 
recognition meets with deep learning: an evaluation of convolutional neural networks for face 
recognition. . Proceedings of the IEEE international conference on computer vision workshops. 
(2015) 
142-150.  

[4] Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016). 
[5] Hochreiter, S., Schmidhuber, J.: Long short-term memory. . Neural computation 9(8), (1997) 

1735-1780.  
[6] Fan, Y., Lu, X., Li, D., Liu, Y., : Video-based emotion recognition using CNN-RNN and C3D 

hybrid networks. Proceedings of the 18th ACM International Conference on Multimodal 
Interaction (2016) 445-450. 

[7] Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., Xu, W.: Cnn-rnn: A unified framework for 
multi-label image classification. Proceedings of the IEEE conference on computer vision and 
pattern recognition (2016) 2285-2294.  



[8] Selvin, S., Vinayakumar, R., Gopalakrishnan, E.A., Menon, V.K., Soman, K.P., : Stock price 
prediction using LSTM, RNN and CNN-sliding window model. international conference on 
advances in computing, communications and informatics (icacci), IEEE (2017) pp. 1643-1647.  

[9] Min, S., Lee, B., Yoon, S.: Deep learning in bioinformatics. Brief Bioinform 18, (2017) 851-869.  
[10] Quang, D., Xie, X.: DanQ: a hybrid convolutional and recurrent deep neural network for 

quantifying the function of DNA sequences. Nucleic Acids Res (2016) 44, e107.  
[11]  Lim, A., Lim, S., Kim, S.: Enhancer prediction with histone modification marks using a hybrid 

neural network model. Methods 166, (2019) 48-56.  
[12] Kouzine, F., Wojtowicz, D., Baranello, L., Yamane, A., Nelson, S., Resch, W., Kieffer-Kwon, 

K.R., Benham, C.J., Casellas, R., Przytycka, T.M., Levens, D.: Permanganate/S1 Nuclease 
Footprinting Reveals Non-B DNA Structures with Regulatory Potential across a Mammalian 
Genome. Cell Syst 4, (2017) 344-356 e347.  

[13] 13. Shin, S.I., Ham, S., Park, J., Seo, S.H., Lim, C.H., Jeon, H., Huh, J., Roh, T.Y.: Z-DNA-
forming sites identified by ChIP-Seq are associated with actively transcribed regions in the 
human genome. DNA Res (2016). 

[14] 14. Roadmap Epigenomics, C., Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., 
Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M.J., Amin, V., Whitaker, 
J.W., Schultz, M.D., Ward, L.D., Sarkar, A., Quon, G., Sandstrom, R.S., Eaton, M.L., Wu, Y.C., 
Pfenning, A.R., Wang, X., Claussnitzer, M., Liu, Y., Coarfa, C., Harris, R.A., Shoresh, N., 
Epstein, C.B., Gjoneska, E., Leung, D., Xie, W., Hawkins, R.D., Lister, R., Hong, C., Gascard, 
P., Mungall, A.J., Moore, R., Chuah, E., Tam, A., Canfield, T.K., Hansen, R.S., Kaul, R., Sabo, 
P.J., Bansal, M.S., Carles, A., Dixon, J.R., Farh, K.H., Feizi, S., Karlic, R., Kim, A.R., Kulkarni, 
A., Li, D., Lowdon, R., Elliott, G., Mercer, T.R., Neph, S.J., Onuchic, V., Polak, P., Rajagopal, 
N., Ray, P., Sallari, R.C., Siebenthall, K.T., Sinnott-Armstrong, N.A., Stevens, M., Thurman, 
R.E., Wu, J., Zhang, B., Zhou, X., Beaudet, A.E., Boyer, L.A., De Jager, P.L., Farnham, P.J., 
Fisher, S.J., Haussler, D., Jones, S.J., Li, W., Marra, M.A., McManus, M.T., Sunyaev, S., 
Thomson, J.A., Tlsty, T.D., Tsai, L.H., Wang, W., Waterland, R.A., Zhang, M.Q., Chadwick, 
L.H., Bernstein, B.E., Costello, J.F., Ecker, J.R., Hirst, M., Meissner, A., Milosavljevic, A., Ren, 
B., Stamatoyannopoulos, J.A., Wang, T., Kellis, M.: Integrative analysis of 111 reference human 
epigenomes. Nature 518, (2015) 317-330.  

[15] 15. Davis, C.A., Hitz, B.C., Sloan, C.A., Chan, E.T., Davidson, J.M., Gabdank, I., Hilton, J.A., 
Jain, K., Baymuradov, U.K., Narayanan, A.K., Onate, K.C., Graham, K., Miyasato, S.R., 
Dreszer, T.R., Strattan, J.S., Jolanki, O., Tanaka, F.Y., Cherry, J.M.: The Encyclopedia of DNA 
elements (ENCODE): data portal update. Nucleic Acids Res 46, (2018) D794-D801.  

[16] 16. Hothorn, T., Buhlmann, P.: Model-based boosting in high dimensions. Bioinformatics 22, 
(2006) 2828-2829.  

[17] 17. Dettling, M., Buhlmann, P.: Boosting for tumor classification with gene expression data. 
Bioinformatics 19, (2003) 1061-1069.  

[18] 18. Eickholt, J., Cheng, J.: Predicting protein residue-residue contacts using deep networks and 
boosting. Bioinformatics 28, (2012) 3066-3072.  
 
 

 


